bpo-17005: Add a class to perform topological sorting to the standard library (GH-11583)
Co-Authored-By: Tim Peters <tim.peters@gmail.com>
This commit is contained in:
parent
79f89e6e5a
commit
99e6c260d6
|
@ -8,10 +8,16 @@
|
||||||
.. moduleauthor:: Raymond Hettinger <python@rcn.com>
|
.. moduleauthor:: Raymond Hettinger <python@rcn.com>
|
||||||
.. moduleauthor:: Nick Coghlan <ncoghlan@gmail.com>
|
.. moduleauthor:: Nick Coghlan <ncoghlan@gmail.com>
|
||||||
.. moduleauthor:: Łukasz Langa <lukasz@langa.pl>
|
.. moduleauthor:: Łukasz Langa <lukasz@langa.pl>
|
||||||
|
.. moduleauthor:: Pablo Galindo <pablogsal@gmail.com>
|
||||||
.. sectionauthor:: Peter Harris <scav@blueyonder.co.uk>
|
.. sectionauthor:: Peter Harris <scav@blueyonder.co.uk>
|
||||||
|
|
||||||
**Source code:** :source:`Lib/functools.py`
|
**Source code:** :source:`Lib/functools.py`
|
||||||
|
|
||||||
|
.. testsetup:: default
|
||||||
|
|
||||||
|
import functools
|
||||||
|
from functools import *
|
||||||
|
|
||||||
--------------
|
--------------
|
||||||
|
|
||||||
The :mod:`functools` module is for higher-order functions: functions that act on
|
The :mod:`functools` module is for higher-order functions: functions that act on
|
||||||
|
@ -512,6 +518,192 @@ The :mod:`functools` module defines the following functions:
|
||||||
.. versionadded:: 3.8
|
.. versionadded:: 3.8
|
||||||
|
|
||||||
|
|
||||||
|
.. class:: TopologicalSorter(graph=None)
|
||||||
|
|
||||||
|
Provides functionality to topologically sort a graph of hashable nodes.
|
||||||
|
|
||||||
|
A topological order is a linear ordering of the vertices in a graph such that for
|
||||||
|
every directed edge u -> v from vertex u to vertex v, vertex u comes before vertex
|
||||||
|
v in the ordering. For instance, the vertices of the graph may represent tasks to
|
||||||
|
be performed, and the edges may represent constraints that one task must be
|
||||||
|
performed before another; in this example, a topological ordering is just a valid
|
||||||
|
sequence for the tasks. A complete topological ordering is possible if and only if
|
||||||
|
the graph has no directed cycles, that is, if it is a directed acyclic graph.
|
||||||
|
|
||||||
|
If the optional *graph* argument is provided it must be a dictionary representing
|
||||||
|
a directed acyclic graph where the keys are nodes and the values are iterables of
|
||||||
|
all predecessors of that node in the graph (the nodes that have edges that point
|
||||||
|
to the value in the key). Additional nodes can be added to the graph using the
|
||||||
|
:meth:`~TopologicalSorter.add` method.
|
||||||
|
|
||||||
|
In the general case, the steps required to perform the sorting of a given graph
|
||||||
|
are as follows:
|
||||||
|
|
||||||
|
* Create an instance of the :class:`TopologicalSorter` with an optional initial graph.
|
||||||
|
* Add additional nodes to the graph.
|
||||||
|
* Call :meth:`~TopologicalSorter.prepare` on the graph.
|
||||||
|
* While :meth:`~TopologicalSorter.is_active` is ``True``, iterate over the
|
||||||
|
nodes returned by :meth:`~TopologicalSorter.get_ready` and process them.
|
||||||
|
Call :meth:`~TopologicalSorter.done` on each node as it finishes processing.
|
||||||
|
|
||||||
|
In case just an immediate sorting of the nodes in the graph is required and
|
||||||
|
no parallelism is involved, the convenience method :meth:`TopologicalSorter.static_order`
|
||||||
|
can be used directly. For example, this method can be used to implement a simple
|
||||||
|
version of the C3 linearization algorithm used by Python to calculate the Method
|
||||||
|
Resolution Order (MRO) of a derived class:
|
||||||
|
|
||||||
|
.. doctest::
|
||||||
|
|
||||||
|
>>> class A: pass
|
||||||
|
>>> class B(A): pass
|
||||||
|
>>> class C(A): pass
|
||||||
|
>>> class D(B, C): pass
|
||||||
|
|
||||||
|
>>> D.__mro__
|
||||||
|
(<class 'D'>, <class 'B'>, <class 'C'>, <class 'A'>, <class 'object'>)
|
||||||
|
|
||||||
|
>>> graph = {D: {B, C}, C: {A}, B: {A}, A:{object}}
|
||||||
|
>>> ts = TopologicalSorter(graph)
|
||||||
|
>>> topological_order = tuple(ts.static_order())
|
||||||
|
>>> tuple(reversed(topological_order))
|
||||||
|
(<class 'D'>, <class 'B'>, <class 'C'>, <class 'A'>, <class 'object'>)
|
||||||
|
|
||||||
|
The class is designed to easily support parallel processing of the nodes as they
|
||||||
|
become ready. For instance::
|
||||||
|
|
||||||
|
topological_sorter = TopologicalSorter()
|
||||||
|
|
||||||
|
# Add nodes to 'topological_sorter'...
|
||||||
|
|
||||||
|
topological_sorter.prepare()
|
||||||
|
while topological_sorter.is_active():
|
||||||
|
for node in topological_sorter.get_ready():
|
||||||
|
# Worker threads or processes take nodes to work on off the
|
||||||
|
# 'task_queue' queue.
|
||||||
|
task_queue.put(node)
|
||||||
|
|
||||||
|
# When the work for a node is done, workers put the node in
|
||||||
|
# 'finalized_tasks_queue' so we can get more nodes to work on.
|
||||||
|
# The definition of 'is_active()' guarantees that, at this point, at
|
||||||
|
# least one node has been placed on 'task_queue' that hasn't yet
|
||||||
|
# been passed to 'done()', so this blocking 'get()' must (eventually)
|
||||||
|
# succeed. After calling 'done()', we loop back to call 'get_ready()'
|
||||||
|
# again, so put newly freed nodes on 'task_queue' as soon as
|
||||||
|
# logically possible.
|
||||||
|
node = finalized_tasks_queue.get()
|
||||||
|
topological_sorter.done(node)
|
||||||
|
|
||||||
|
.. method:: add(node, *predecessors)
|
||||||
|
|
||||||
|
Add a new node and its predecessors to the graph. Both the *node* and
|
||||||
|
all elements in *predecessors* must be hashable.
|
||||||
|
|
||||||
|
If called multiple times with the same node argument, the set of dependencies
|
||||||
|
will be the union of all dependencies passed in.
|
||||||
|
|
||||||
|
It is possible to add a node with no dependencies (*predecessors* is not
|
||||||
|
provided) or to provide a dependency twice. If a node that has not been
|
||||||
|
provided before is included among *predecessors* it will be automatically added
|
||||||
|
to the graph with no predecessors of its own.
|
||||||
|
|
||||||
|
Raises :exc:`ValueError` if called after :meth:`~TopologicalSorter.prepare`.
|
||||||
|
|
||||||
|
.. method:: prepare()
|
||||||
|
|
||||||
|
Mark the graph as finished and check for cycles in the graph. If any cycle is
|
||||||
|
detected, :exc:`CycleError` will be raised, but
|
||||||
|
:meth:`~TopologicalSorter.get_ready` can still be used to obtain as many nodes
|
||||||
|
as possible until cycles block more progress. After a call to this function,
|
||||||
|
the graph cannot be modified, and therefore no more nodes can be added using
|
||||||
|
:meth:`~TopologicalSorter.add`.
|
||||||
|
|
||||||
|
.. method:: is_active()
|
||||||
|
|
||||||
|
Returns ``True`` if more progress can be made and ``False`` otherwise. Progress
|
||||||
|
can be made if cycles do not block the resolution and either there are still
|
||||||
|
nodes ready that haven't yet been returned by
|
||||||
|
:meth:`TopologicalSorter.get_ready` or the number of nodes marked
|
||||||
|
:meth:`TopologicalSorter.done` is less than the number that have been returned
|
||||||
|
by :meth:`TopologicalSorter.get_ready`.
|
||||||
|
|
||||||
|
The :meth:`~TopologicalSorter.__bool__` method of this class defers to this
|
||||||
|
function, so instead of::
|
||||||
|
|
||||||
|
if ts.is_active():
|
||||||
|
...
|
||||||
|
|
||||||
|
if possible to simply do::
|
||||||
|
|
||||||
|
if ts:
|
||||||
|
...
|
||||||
|
|
||||||
|
Raises :exc:`ValueError` if called without calling :meth:`~TopologicalSorter.prepare`
|
||||||
|
previously.
|
||||||
|
|
||||||
|
.. method:: done(*nodes)
|
||||||
|
|
||||||
|
Marks a set of nodes returned by :meth:`TopologicalSorter.get_ready` as
|
||||||
|
processed, unblocking any successor of each node in *nodes* for being returned
|
||||||
|
in the future by a call to :meth:`TopologicalSorter.get_ready`.
|
||||||
|
|
||||||
|
Raises :exc:`ValueError` if any node in *nodes* has already been marked as
|
||||||
|
processed by a previous call to this method or if a node was not added to the
|
||||||
|
graph by using :meth:`TopologicalSorter.add`, if called without calling
|
||||||
|
:meth:`~TopologicalSorter.prepare` or if node has not yet been returned by
|
||||||
|
:meth:`~TopologicalSorter.get_ready`.
|
||||||
|
|
||||||
|
.. method:: get_ready()
|
||||||
|
|
||||||
|
Returns a ``tuple`` with all the nodes that are ready. Initially it returns all
|
||||||
|
nodes with no predecessors, and once those are marked as processed by calling
|
||||||
|
:meth:`TopologicalSorter.done`, further calls will return all new nodes that
|
||||||
|
have all their predecessors already processed. Once no more progress can be
|
||||||
|
made, empty tuples are returned.
|
||||||
|
made.
|
||||||
|
|
||||||
|
Raises :exc:`ValueError` if called without calling
|
||||||
|
:meth:`~TopologicalSorter.prepare` previously.
|
||||||
|
|
||||||
|
.. method:: static_order()
|
||||||
|
|
||||||
|
Returns an iterable of nodes in a topological order. Using this method
|
||||||
|
does not require to call :meth:`TopologicalSorter.prepare` or
|
||||||
|
:meth:`TopologicalSorter.done`. This method is equivalent to::
|
||||||
|
|
||||||
|
def static_order(self):
|
||||||
|
self.prepare()
|
||||||
|
while self.is_active():
|
||||||
|
node_group = self.get_ready()
|
||||||
|
yield from node_group
|
||||||
|
self.done(*node_group)
|
||||||
|
|
||||||
|
The particular order that is returned may depend on the specific order in
|
||||||
|
which the items were inserted in the graph. For example:
|
||||||
|
|
||||||
|
.. doctest::
|
||||||
|
|
||||||
|
>>> ts = TopologicalSorter()
|
||||||
|
>>> ts.add(3, 2, 1)
|
||||||
|
>>> ts.add(1, 0)
|
||||||
|
>>> print([*ts.static_order()])
|
||||||
|
[2, 0, 1, 3]
|
||||||
|
|
||||||
|
>>> ts2 = TopologicalSorter()
|
||||||
|
>>> ts2.add(1, 0)
|
||||||
|
>>> ts2.add(3, 2, 1)
|
||||||
|
>>> print([*ts2.static_order()])
|
||||||
|
[0, 2, 1, 3]
|
||||||
|
|
||||||
|
This is due to the fact that "0" and "2" are in the same level in the graph (they
|
||||||
|
would have been returned in the same call to :meth:`~TopologicalSorter.get_ready`)
|
||||||
|
and the order between them is determined by the order of insertion.
|
||||||
|
|
||||||
|
|
||||||
|
If any cycle is detected, :exc:`CycleError` will be raised.
|
||||||
|
|
||||||
|
.. versionadded:: 3.9
|
||||||
|
|
||||||
|
|
||||||
.. function:: update_wrapper(wrapper, wrapped, assigned=WRAPPER_ASSIGNMENTS, updated=WRAPPER_UPDATES)
|
.. function:: update_wrapper(wrapper, wrapped, assigned=WRAPPER_ASSIGNMENTS, updated=WRAPPER_UPDATES)
|
||||||
|
|
||||||
Update a *wrapper* function to look like the *wrapped* function. The optional
|
Update a *wrapper* function to look like the *wrapped* function. The optional
|
||||||
|
@ -621,3 +813,19 @@ differences. For instance, the :attr:`~definition.__name__` and :attr:`__doc__`
|
||||||
are not created automatically. Also, :class:`partial` objects defined in
|
are not created automatically. Also, :class:`partial` objects defined in
|
||||||
classes behave like static methods and do not transform into bound methods
|
classes behave like static methods and do not transform into bound methods
|
||||||
during instance attribute look-up.
|
during instance attribute look-up.
|
||||||
|
|
||||||
|
|
||||||
|
Exceptions
|
||||||
|
----------
|
||||||
|
The :mod:`functools` module defines the following exception classes:
|
||||||
|
|
||||||
|
.. exception:: CycleError
|
||||||
|
|
||||||
|
Subclass of :exc:`ValueError` raised by :meth:`TopologicalSorter.prepare` if cycles exist
|
||||||
|
in the working graph. If multiple cycles exist, only one undefined choice among them will
|
||||||
|
be reported and included in the exception.
|
||||||
|
|
||||||
|
The detected cycle can be accessed via the second element in the :attr:`~CycleError.args`
|
||||||
|
attribute of the exception instance and consists in a list of nodes, such that each node is,
|
||||||
|
in the graph, an immediate predecessor of the next node in the list. In the reported list,
|
||||||
|
the first and the last node will be the same, to make it clear that it is cyclic.
|
||||||
|
|
Binary file not shown.
|
@ -166,6 +166,13 @@ ftplib
|
||||||
if the given timeout for their constructor is zero to prevent the creation of
|
if the given timeout for their constructor is zero to prevent the creation of
|
||||||
a non-blocking socket. (Contributed by Dong-hee Na in :issue:`39259`.)
|
a non-blocking socket. (Contributed by Dong-hee Na in :issue:`39259`.)
|
||||||
|
|
||||||
|
functools
|
||||||
|
---------
|
||||||
|
|
||||||
|
Add the :class:`functools.TopologicalSorter` class to offer functionality to perform
|
||||||
|
topological sorting of graphs. (Contributed by Pablo Galindo, Tim Peters and Larry
|
||||||
|
Hastings in :issue:`17005`.)
|
||||||
|
|
||||||
gc
|
gc
|
||||||
--
|
--
|
||||||
|
|
||||||
|
|
249
Lib/functools.py
249
Lib/functools.py
|
@ -10,8 +10,9 @@
|
||||||
# See C source code for _functools credits/copyright
|
# See C source code for _functools credits/copyright
|
||||||
|
|
||||||
__all__ = ['update_wrapper', 'wraps', 'WRAPPER_ASSIGNMENTS', 'WRAPPER_UPDATES',
|
__all__ = ['update_wrapper', 'wraps', 'WRAPPER_ASSIGNMENTS', 'WRAPPER_UPDATES',
|
||||||
'total_ordering', 'cmp_to_key', 'lru_cache', 'reduce', 'partial',
|
'total_ordering', 'cmp_to_key', 'lru_cache', 'reduce',
|
||||||
'partialmethod', 'singledispatch', 'singledispatchmethod']
|
'TopologicalSorter', 'CycleError',
|
||||||
|
'partial', 'partialmethod', 'singledispatch', 'singledispatchmethod']
|
||||||
|
|
||||||
from abc import get_cache_token
|
from abc import get_cache_token
|
||||||
from collections import namedtuple
|
from collections import namedtuple
|
||||||
|
@ -192,6 +193,250 @@ def total_ordering(cls):
|
||||||
setattr(cls, opname, opfunc)
|
setattr(cls, opname, opfunc)
|
||||||
return cls
|
return cls
|
||||||
|
|
||||||
|
################################################################################
|
||||||
|
### topological sort
|
||||||
|
################################################################################
|
||||||
|
|
||||||
|
_NODE_OUT = -1
|
||||||
|
_NODE_DONE = -2
|
||||||
|
|
||||||
|
|
||||||
|
class _NodeInfo:
|
||||||
|
__slots__ = 'node', 'npredecessors', 'successors'
|
||||||
|
|
||||||
|
def __init__(self, node):
|
||||||
|
# The node this class is augmenting.
|
||||||
|
self.node = node
|
||||||
|
|
||||||
|
# Number of predecessors, generally >= 0. When this value falls to 0,
|
||||||
|
# and is returned by get_ready(), this is set to _NODE_OUT and when the
|
||||||
|
# node is marked done by a call to done(), set to _NODE_DONE.
|
||||||
|
self.npredecessors = 0
|
||||||
|
|
||||||
|
# List of successor nodes. The list can contain duplicated elements as
|
||||||
|
# long as they're all reflected in the successor's npredecessors attribute).
|
||||||
|
self.successors = []
|
||||||
|
|
||||||
|
|
||||||
|
class CycleError(ValueError):
|
||||||
|
"""Subclass of ValueError raised by TopologicalSorterif cycles exist in the graph
|
||||||
|
|
||||||
|
If multiple cycles exist, only one undefined choice among them will be reported
|
||||||
|
and included in the exception. The detected cycle can be accessed via the second
|
||||||
|
element in the *args* attribute of the exception instance and consists in a list
|
||||||
|
of nodes, such that each node is, in the graph, an immediate predecessor of the
|
||||||
|
next node in the list. In the reported list, the first and the last node will be
|
||||||
|
the same, to make it clear that it is cyclic.
|
||||||
|
"""
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
class TopologicalSorter:
|
||||||
|
"""Provides functionality to topologically sort a graph of hashable nodes"""
|
||||||
|
|
||||||
|
def __init__(self, graph=None):
|
||||||
|
self._node2info = {}
|
||||||
|
self._ready_nodes = None
|
||||||
|
self._npassedout = 0
|
||||||
|
self._nfinished = 0
|
||||||
|
|
||||||
|
if graph is not None:
|
||||||
|
for node, predecessors in graph.items():
|
||||||
|
self.add(node, *predecessors)
|
||||||
|
|
||||||
|
def _get_nodeinfo(self, node):
|
||||||
|
if (result := self._node2info.get(node)) is None:
|
||||||
|
self._node2info[node] = result = _NodeInfo(node)
|
||||||
|
return result
|
||||||
|
|
||||||
|
def add(self, node, *predecessors):
|
||||||
|
"""Add a new node and its predecessors to the graph.
|
||||||
|
|
||||||
|
Both the *node* and all elements in *predecessors* must be hashable.
|
||||||
|
|
||||||
|
If called multiple times with the same node argument, the set of dependencies
|
||||||
|
will be the union of all dependencies passed in.
|
||||||
|
|
||||||
|
It is possible to add a node with no dependencies (*predecessors* is not provided)
|
||||||
|
as well as provide a dependency twice. If a node that has not been provided before
|
||||||
|
is included among *predecessors* it will be automatically added to the graph with
|
||||||
|
no predecessors of its own.
|
||||||
|
|
||||||
|
Raises ValueError if called after "prepare".
|
||||||
|
"""
|
||||||
|
if self._ready_nodes is not None:
|
||||||
|
raise ValueError("Nodes cannot be added after a call to prepare()")
|
||||||
|
|
||||||
|
# Create the node -> predecessor edges
|
||||||
|
nodeinfo = self._get_nodeinfo(node)
|
||||||
|
nodeinfo.npredecessors += len(predecessors)
|
||||||
|
|
||||||
|
# Create the predecessor -> node edges
|
||||||
|
for pred in predecessors:
|
||||||
|
pred_info = self._get_nodeinfo(pred)
|
||||||
|
pred_info.successors.append(node)
|
||||||
|
|
||||||
|
def prepare(self):
|
||||||
|
"""Mark the graph as finished and check for cycles in the graph.
|
||||||
|
|
||||||
|
If any cycle is detected, "CycleError" will be raised, but "get_ready" can
|
||||||
|
still be used to obtain as many nodes as possible until cycles block more
|
||||||
|
progress. After a call to this function, the graph cannot be modified and
|
||||||
|
therefore no more nodes can be added using "add".
|
||||||
|
"""
|
||||||
|
if self._ready_nodes is not None:
|
||||||
|
raise ValueError("cannot prepare() more than once")
|
||||||
|
|
||||||
|
self._ready_nodes = [i.node for i in self._node2info.values()
|
||||||
|
if i.npredecessors == 0]
|
||||||
|
# ready_nodes is set before we look for cycles on purpose:
|
||||||
|
# if the user wants to catch the CycleError, that's fine,
|
||||||
|
# they can continue using the instance to grab as many
|
||||||
|
# nodes as possible before cycles block more progress
|
||||||
|
cycle = self._find_cycle()
|
||||||
|
if cycle:
|
||||||
|
raise CycleError(f"nodes are in a cycle", cycle)
|
||||||
|
|
||||||
|
def get_ready(self):
|
||||||
|
"""Return a tuple of all the nodes that are ready.
|
||||||
|
|
||||||
|
Initially it returns all nodes with no predecessors; once those are marked
|
||||||
|
as processed by calling "done", further calls will return all new nodes that
|
||||||
|
have all their predecessors already processed. Once no more progress can be made,
|
||||||
|
empty tuples are returned.
|
||||||
|
|
||||||
|
Raises ValueError if called without calling "prepare" previously.
|
||||||
|
"""
|
||||||
|
if self._ready_nodes is None:
|
||||||
|
raise ValueError("prepare() must be called first")
|
||||||
|
|
||||||
|
# Get the nodes that are ready and mark them
|
||||||
|
result = tuple(self._ready_nodes)
|
||||||
|
n2i = self._node2info
|
||||||
|
for node in result:
|
||||||
|
n2i[node].npredecessors = _NODE_OUT
|
||||||
|
|
||||||
|
# Clean the list of nodes that are ready and update
|
||||||
|
# the counter of nodes that we have returned.
|
||||||
|
self._ready_nodes.clear()
|
||||||
|
self._npassedout += len(result)
|
||||||
|
|
||||||
|
return result
|
||||||
|
|
||||||
|
def is_active(self):
|
||||||
|
"""Return True if more progress can be made and ``False`` otherwise.
|
||||||
|
|
||||||
|
Progress can be made if cycles do not block the resolution and either there
|
||||||
|
are still nodes ready that haven't yet been returned by "get_ready" or the
|
||||||
|
number of nodes marked "done" is less than the number that have been returned
|
||||||
|
by "get_ready".
|
||||||
|
|
||||||
|
Raises ValueError if called without calling "prepare" previously.
|
||||||
|
"""
|
||||||
|
if self._ready_nodes is None:
|
||||||
|
raise ValueError("prepare() must be called first")
|
||||||
|
return self._nfinished < self._npassedout or bool(self._ready_nodes)
|
||||||
|
|
||||||
|
def __bool__(self):
|
||||||
|
return self.is_active()
|
||||||
|
|
||||||
|
def done(self, *nodes):
|
||||||
|
"""Marks a set of nodes returned by "get_ready" as processed.
|
||||||
|
|
||||||
|
This method unblocks any successor of each node in *nodes* for being returned
|
||||||
|
in the future by a a call to "get_ready"
|
||||||
|
|
||||||
|
Raises :exec:`ValueError` if any node in *nodes* has already been marked as
|
||||||
|
processed by a previous call to this method, if a node was not added to the
|
||||||
|
graph by using "add" or if called without calling "prepare" previously or if
|
||||||
|
node has not yet been returned by "get_ready".
|
||||||
|
"""
|
||||||
|
|
||||||
|
if self._ready_nodes is None:
|
||||||
|
raise ValueError("prepare() must be called first")
|
||||||
|
|
||||||
|
n2i = self._node2info
|
||||||
|
|
||||||
|
for node in nodes:
|
||||||
|
|
||||||
|
# Check if we know about this node (it was added previously using add()
|
||||||
|
if (nodeinfo := n2i.get(node)) is None:
|
||||||
|
raise ValueError(f"node {node!r} was not added using add()")
|
||||||
|
|
||||||
|
# If the node has not being returned (marked as ready) previously, inform the user.
|
||||||
|
stat = nodeinfo.npredecessors
|
||||||
|
if stat != _NODE_OUT:
|
||||||
|
if stat >= 0:
|
||||||
|
raise ValueError(f"node {node!r} was not passed out (still not ready)")
|
||||||
|
elif stat == _NODE_DONE:
|
||||||
|
raise ValueError(f"node {node!r} was already marked done")
|
||||||
|
else:
|
||||||
|
assert False, f"node {node!r}: unknown status {stat}"
|
||||||
|
|
||||||
|
# Mark the node as processed
|
||||||
|
nodeinfo.npredecessors = _NODE_DONE
|
||||||
|
|
||||||
|
# Go to all the successors and reduce the number of predecessors, collecting all the ones
|
||||||
|
# that are ready to be returned in the next get_ready() call.
|
||||||
|
for successor in nodeinfo.successors:
|
||||||
|
successor_info = n2i[successor]
|
||||||
|
successor_info.npredecessors -= 1
|
||||||
|
if successor_info.npredecessors == 0:
|
||||||
|
self._ready_nodes.append(successor)
|
||||||
|
self._nfinished += 1
|
||||||
|
|
||||||
|
def _find_cycle(self):
|
||||||
|
n2i = self._node2info
|
||||||
|
stack = []
|
||||||
|
itstack = []
|
||||||
|
seen = set()
|
||||||
|
node2stacki = {}
|
||||||
|
|
||||||
|
for node in n2i:
|
||||||
|
if node in seen:
|
||||||
|
continue
|
||||||
|
|
||||||
|
while True:
|
||||||
|
if node in seen:
|
||||||
|
# If we have seen already the node and is in the
|
||||||
|
# current stack we have found a cycle.
|
||||||
|
if node in node2stacki:
|
||||||
|
return stack[node2stacki[node]:] + [node]
|
||||||
|
# else go on to get next successor
|
||||||
|
else:
|
||||||
|
seen.add(node)
|
||||||
|
itstack.append(iter(n2i[node].successors).__next__)
|
||||||
|
node2stacki[node] = len(stack)
|
||||||
|
stack.append(node)
|
||||||
|
|
||||||
|
# Backtrack to the topmost stack entry with
|
||||||
|
# at least another successor.
|
||||||
|
while stack:
|
||||||
|
try:
|
||||||
|
node = itstack[-1]()
|
||||||
|
break
|
||||||
|
except StopIteration:
|
||||||
|
del node2stacki[stack.pop()]
|
||||||
|
itstack.pop()
|
||||||
|
else:
|
||||||
|
break
|
||||||
|
return None
|
||||||
|
|
||||||
|
def static_order(self):
|
||||||
|
"""Returns an iterable of nodes in a topological order.
|
||||||
|
|
||||||
|
The particular order that is returned may depend on the specific
|
||||||
|
order in which the items were inserted in the graph.
|
||||||
|
|
||||||
|
Using this method does not require to call "prepare" or "done". If any
|
||||||
|
cycle is detected, :exc:`CycleError` will be raised.
|
||||||
|
"""
|
||||||
|
self.prepare()
|
||||||
|
while self.is_active():
|
||||||
|
node_group = self.get_ready()
|
||||||
|
yield from node_group
|
||||||
|
self.done(*node_group)
|
||||||
|
|
||||||
|
|
||||||
################################################################################
|
################################################################################
|
||||||
### cmp_to_key() function converter
|
### cmp_to_key() function converter
|
||||||
|
|
|
@ -3,7 +3,7 @@ import builtins
|
||||||
import collections
|
import collections
|
||||||
import collections.abc
|
import collections.abc
|
||||||
import copy
|
import copy
|
||||||
from itertools import permutations
|
from itertools import permutations, chain
|
||||||
import pickle
|
import pickle
|
||||||
from random import choice
|
from random import choice
|
||||||
import sys
|
import sys
|
||||||
|
@ -13,9 +13,12 @@ import time
|
||||||
import typing
|
import typing
|
||||||
import unittest
|
import unittest
|
||||||
import unittest.mock
|
import unittest.mock
|
||||||
|
import os
|
||||||
from weakref import proxy
|
from weakref import proxy
|
||||||
import contextlib
|
import contextlib
|
||||||
|
|
||||||
|
from test.support.script_helper import assert_python_ok
|
||||||
|
|
||||||
import functools
|
import functools
|
||||||
|
|
||||||
py_functools = support.import_fresh_module('functools', blocked=['_functools'])
|
py_functools = support.import_fresh_module('functools', blocked=['_functools'])
|
||||||
|
@ -1158,6 +1161,275 @@ class Orderable_LT:
|
||||||
return self.value == other.value
|
return self.value == other.value
|
||||||
|
|
||||||
|
|
||||||
|
class TestTopologicalSort(unittest.TestCase):
|
||||||
|
|
||||||
|
def _test_graph(self, graph, expected):
|
||||||
|
|
||||||
|
def static_order_with_groups(ts):
|
||||||
|
ts.prepare()
|
||||||
|
while ts.is_active():
|
||||||
|
nodes = ts.get_ready()
|
||||||
|
for node in nodes:
|
||||||
|
ts.done(node)
|
||||||
|
yield nodes
|
||||||
|
|
||||||
|
ts = functools.TopologicalSorter(graph)
|
||||||
|
self.assertEqual(list(static_order_with_groups(ts)), list(expected))
|
||||||
|
|
||||||
|
ts = functools.TopologicalSorter(graph)
|
||||||
|
self.assertEqual(list(ts.static_order()), list(chain(*expected)))
|
||||||
|
|
||||||
|
def _assert_cycle(self, graph, cycle):
|
||||||
|
ts = functools.TopologicalSorter()
|
||||||
|
for node, dependson in graph.items():
|
||||||
|
ts.add(node, *dependson)
|
||||||
|
try:
|
||||||
|
ts.prepare()
|
||||||
|
except functools.CycleError as e:
|
||||||
|
msg, seq = e.args
|
||||||
|
self.assertIn(' '.join(map(str, cycle)),
|
||||||
|
' '.join(map(str, seq * 2)))
|
||||||
|
else:
|
||||||
|
raise
|
||||||
|
|
||||||
|
def test_simple_cases(self):
|
||||||
|
self._test_graph(
|
||||||
|
{2: {11},
|
||||||
|
9: {11, 8},
|
||||||
|
10: {11, 3},
|
||||||
|
11: {7, 5},
|
||||||
|
8: {7, 3}},
|
||||||
|
[(3, 5, 7), (11, 8), (2, 10, 9)]
|
||||||
|
)
|
||||||
|
|
||||||
|
self._test_graph({1: {}}, [(1,)])
|
||||||
|
|
||||||
|
self._test_graph({x: {x+1} for x in range(10)},
|
||||||
|
[(x,) for x in range(10, -1, -1)])
|
||||||
|
|
||||||
|
self._test_graph({2: {3}, 3: {4}, 4: {5}, 5: {1},
|
||||||
|
11: {12}, 12: {13}, 13: {14}, 14: {15}},
|
||||||
|
[(1, 15), (5, 14), (4, 13), (3, 12), (2, 11)])
|
||||||
|
|
||||||
|
self._test_graph({
|
||||||
|
0: [1, 2],
|
||||||
|
1: [3],
|
||||||
|
2: [5, 6],
|
||||||
|
3: [4],
|
||||||
|
4: [9],
|
||||||
|
5: [3],
|
||||||
|
6: [7],
|
||||||
|
7: [8],
|
||||||
|
8: [4],
|
||||||
|
9: []
|
||||||
|
},
|
||||||
|
[(9,), (4,), (3, 8), (1, 5, 7), (6,), (2,), (0,)]
|
||||||
|
)
|
||||||
|
|
||||||
|
self._test_graph({
|
||||||
|
0: [1, 2],
|
||||||
|
1: [],
|
||||||
|
2: [3],
|
||||||
|
3: []
|
||||||
|
},
|
||||||
|
[(1, 3), (2,), (0,)]
|
||||||
|
)
|
||||||
|
|
||||||
|
self._test_graph({
|
||||||
|
0: [1, 2],
|
||||||
|
1: [],
|
||||||
|
2: [3],
|
||||||
|
3: [],
|
||||||
|
4: [5],
|
||||||
|
5: [6],
|
||||||
|
6: []
|
||||||
|
},
|
||||||
|
[(1, 3, 6), (2, 5), (0, 4)]
|
||||||
|
)
|
||||||
|
|
||||||
|
def test_no_dependencies(self):
|
||||||
|
self._test_graph(
|
||||||
|
{1: {2},
|
||||||
|
3: {4},
|
||||||
|
5: {6}},
|
||||||
|
[(2, 4, 6), (1, 3, 5)]
|
||||||
|
)
|
||||||
|
|
||||||
|
self._test_graph(
|
||||||
|
{1: set(),
|
||||||
|
3: set(),
|
||||||
|
5: set()},
|
||||||
|
[(1, 3, 5)]
|
||||||
|
)
|
||||||
|
|
||||||
|
def test_the_node_multiple_times(self):
|
||||||
|
# Test same node multiple times in dependencies
|
||||||
|
self._test_graph({1: {2}, 3: {4}, 0: [2, 4, 4, 4, 4, 4]},
|
||||||
|
[(2, 4), (1, 3, 0)])
|
||||||
|
|
||||||
|
# Test adding the same dependency multiple times
|
||||||
|
ts = functools.TopologicalSorter()
|
||||||
|
ts.add(1, 2)
|
||||||
|
ts.add(1, 2)
|
||||||
|
ts.add(1, 2)
|
||||||
|
self.assertEqual([*ts.static_order()], [2, 1])
|
||||||
|
|
||||||
|
def test_graph_with_iterables(self):
|
||||||
|
dependson = (2*x + 1 for x in range(5))
|
||||||
|
ts = functools.TopologicalSorter({0: dependson})
|
||||||
|
self.assertEqual(list(ts.static_order()), [1, 3, 5, 7, 9, 0])
|
||||||
|
|
||||||
|
def test_add_dependencies_for_same_node_incrementally(self):
|
||||||
|
# Test same node multiple times
|
||||||
|
ts = functools.TopologicalSorter()
|
||||||
|
ts.add(1, 2)
|
||||||
|
ts.add(1, 3)
|
||||||
|
ts.add(1, 4)
|
||||||
|
ts.add(1, 5)
|
||||||
|
|
||||||
|
ts2 = functools.TopologicalSorter({1: {2, 3, 4, 5}})
|
||||||
|
self.assertEqual([*ts.static_order()], [*ts2.static_order()])
|
||||||
|
|
||||||
|
def test_empty(self):
|
||||||
|
self._test_graph({}, [])
|
||||||
|
|
||||||
|
def test_cycle(self):
|
||||||
|
# Self cycle
|
||||||
|
self._assert_cycle({1: {1}}, [1, 1])
|
||||||
|
# Simple cycle
|
||||||
|
self._assert_cycle({1: {2}, 2: {1}}, [1, 2, 1])
|
||||||
|
# Indirect cycle
|
||||||
|
self._assert_cycle({1: {2}, 2: {3}, 3: {1}}, [1, 3, 2, 1])
|
||||||
|
# not all elements involved in a cycle
|
||||||
|
self._assert_cycle({1: {2}, 2: {3}, 3: {1}, 5: {4}, 4: {6}}, [1, 3, 2, 1])
|
||||||
|
# Multiple cycles
|
||||||
|
self._assert_cycle({1: {2}, 2: {1}, 3: {4}, 4: {5}, 6: {7}, 7: {6}},
|
||||||
|
[1, 2, 1])
|
||||||
|
# Cycle in the middle of the graph
|
||||||
|
self._assert_cycle({1: {2}, 2: {3}, 3: {2, 4}, 4: {5}}, [3, 2])
|
||||||
|
|
||||||
|
def test_calls_before_prepare(self):
|
||||||
|
ts = functools.TopologicalSorter()
|
||||||
|
|
||||||
|
with self.assertRaisesRegex(ValueError, r"prepare\(\) must be called first"):
|
||||||
|
ts.get_ready()
|
||||||
|
with self.assertRaisesRegex(ValueError, r"prepare\(\) must be called first"):
|
||||||
|
ts.done(3)
|
||||||
|
with self.assertRaisesRegex(ValueError, r"prepare\(\) must be called first"):
|
||||||
|
ts.is_active()
|
||||||
|
|
||||||
|
def test_prepare_multiple_times(self):
|
||||||
|
ts = functools.TopologicalSorter()
|
||||||
|
ts.prepare()
|
||||||
|
with self.assertRaisesRegex(ValueError, r"cannot prepare\(\) more than once"):
|
||||||
|
ts.prepare()
|
||||||
|
|
||||||
|
def test_invalid_nodes_in_done(self):
|
||||||
|
ts = functools.TopologicalSorter()
|
||||||
|
ts.add(1, 2, 3, 4)
|
||||||
|
ts.add(2, 3, 4)
|
||||||
|
ts.prepare()
|
||||||
|
ts.get_ready()
|
||||||
|
|
||||||
|
with self.assertRaisesRegex(ValueError, "node 2 was not passed out"):
|
||||||
|
ts.done(2)
|
||||||
|
with self.assertRaisesRegex(ValueError, r"node 24 was not added using add\(\)"):
|
||||||
|
ts.done(24)
|
||||||
|
|
||||||
|
def test_done(self):
|
||||||
|
ts = functools.TopologicalSorter()
|
||||||
|
ts.add(1, 2, 3, 4)
|
||||||
|
ts.add(2, 3)
|
||||||
|
ts.prepare()
|
||||||
|
|
||||||
|
self.assertEqual(ts.get_ready(), (3, 4))
|
||||||
|
# If we don't mark anything as done, get_ready() returns nothing
|
||||||
|
self.assertEqual(ts.get_ready(), ())
|
||||||
|
ts.done(3)
|
||||||
|
# Now 2 becomes available as 3 is done
|
||||||
|
self.assertEqual(ts.get_ready(), (2,))
|
||||||
|
self.assertEqual(ts.get_ready(), ())
|
||||||
|
ts.done(4)
|
||||||
|
ts.done(2)
|
||||||
|
# Only 1 is missing
|
||||||
|
self.assertEqual(ts.get_ready(), (1,))
|
||||||
|
self.assertEqual(ts.get_ready(), ())
|
||||||
|
ts.done(1)
|
||||||
|
self.assertEqual(ts.get_ready(), ())
|
||||||
|
self.assertFalse(ts.is_active())
|
||||||
|
|
||||||
|
def test_is_active(self):
|
||||||
|
ts = functools.TopologicalSorter()
|
||||||
|
ts.add(1, 2)
|
||||||
|
ts.prepare()
|
||||||
|
|
||||||
|
self.assertTrue(ts.is_active())
|
||||||
|
self.assertEqual(ts.get_ready(), (2,))
|
||||||
|
self.assertTrue(ts.is_active())
|
||||||
|
ts.done(2)
|
||||||
|
self.assertTrue(ts.is_active())
|
||||||
|
self.assertEqual(ts.get_ready(), (1,))
|
||||||
|
self.assertTrue(ts.is_active())
|
||||||
|
ts.done(1)
|
||||||
|
self.assertFalse(ts.is_active())
|
||||||
|
|
||||||
|
def test_not_hashable_nodes(self):
|
||||||
|
ts = functools.TopologicalSorter()
|
||||||
|
self.assertRaises(TypeError, ts.add, dict(), 1)
|
||||||
|
self.assertRaises(TypeError, ts.add, 1, dict())
|
||||||
|
self.assertRaises(TypeError, ts.add, dict(), dict())
|
||||||
|
|
||||||
|
def test_order_of_insertion_does_not_matter_between_groups(self):
|
||||||
|
def get_groups(ts):
|
||||||
|
ts.prepare()
|
||||||
|
while ts.is_active():
|
||||||
|
nodes = ts.get_ready()
|
||||||
|
ts.done(*nodes)
|
||||||
|
yield set(nodes)
|
||||||
|
|
||||||
|
ts = functools.TopologicalSorter()
|
||||||
|
ts.add(3, 2, 1)
|
||||||
|
ts.add(1, 0)
|
||||||
|
ts.add(4, 5)
|
||||||
|
ts.add(6, 7)
|
||||||
|
ts.add(4, 7)
|
||||||
|
|
||||||
|
ts2 = functools.TopologicalSorter()
|
||||||
|
ts2.add(1, 0)
|
||||||
|
ts2.add(3, 2, 1)
|
||||||
|
ts2.add(4, 7)
|
||||||
|
ts2.add(6, 7)
|
||||||
|
ts2.add(4, 5)
|
||||||
|
|
||||||
|
self.assertEqual(list(get_groups(ts)), list(get_groups(ts2)))
|
||||||
|
|
||||||
|
def test_static_order_does_not_change_with_the_hash_seed(self):
|
||||||
|
def check_order_with_hash_seed(seed):
|
||||||
|
code = """if 1:
|
||||||
|
import functools
|
||||||
|
ts = functools.TopologicalSorter()
|
||||||
|
ts.add('blech', 'bluch', 'hola')
|
||||||
|
ts.add('abcd', 'blech', 'bluch', 'a', 'b')
|
||||||
|
ts.add('a', 'a string', 'something', 'b')
|
||||||
|
ts.add('bluch', 'hola', 'abcde', 'a', 'b')
|
||||||
|
print(list(ts.static_order()))
|
||||||
|
"""
|
||||||
|
env = os.environ.copy()
|
||||||
|
# signal to assert_python not to do a copy
|
||||||
|
# of os.environ on its own
|
||||||
|
env['__cleanenv'] = True
|
||||||
|
env['PYTHONHASHSEED'] = str(seed)
|
||||||
|
out = assert_python_ok('-c', code, **env)
|
||||||
|
return out
|
||||||
|
|
||||||
|
run1 = check_order_with_hash_seed(1234)
|
||||||
|
run2 = check_order_with_hash_seed(31415)
|
||||||
|
|
||||||
|
self.assertNotEqual(run1, "")
|
||||||
|
self.assertNotEqual(run2, "")
|
||||||
|
self.assertEqual(run1, run2)
|
||||||
|
|
||||||
|
|
||||||
class TestLRU:
|
class TestLRU:
|
||||||
|
|
||||||
def test_lru(self):
|
def test_lru(self):
|
||||||
|
|
|
@ -0,0 +1,3 @@
|
||||||
|
Add :class:`functools.TopologicalSorter` to the :mod:`functools` module to
|
||||||
|
offers functionality to perform topological sorting of graphs. Patch by
|
||||||
|
Pablo Galindo, Tim Peters and Larry Hastings.
|
Loading…
Reference in New Issue