Added gauss() (same as normal but twice as fast) and betavariate();
print more statistics in test_generator()
This commit is contained in:
parent
ff03b1ae5b
commit
95bfcda3e0
|
@ -6,6 +6,7 @@
|
|||
# lognormal
|
||||
# negative exponential
|
||||
# gamma
|
||||
# beta
|
||||
#
|
||||
# distributions on the circle (angles 0 to 2pi)
|
||||
# ---------------------------------------------
|
||||
|
@ -15,7 +16,7 @@
|
|||
# Translated from anonymously contributed C/C++ source.
|
||||
|
||||
from whrandom import random, uniform, randint, choice # Also for export!
|
||||
from math import log, exp, pi, e, sqrt, acos, cos
|
||||
from math import log, exp, pi, e, sqrt, acos, cos, sin
|
||||
|
||||
# Housekeeping function to verify that magic constants have been
|
||||
# computed correctly
|
||||
|
@ -172,6 +173,37 @@ def stdgamma(alpha, ainv, bbb, ccc):
|
|||
break
|
||||
return x
|
||||
|
||||
|
||||
# -------------------- Gauss (faster alternative) --------------------
|
||||
|
||||
# When x and y are two variables from [0, 1), uniformly distributed, then
|
||||
#
|
||||
# cos(2*pi*x)*log(1-y)
|
||||
# sin(2*pi*x)*log(1-y)
|
||||
#
|
||||
# are two *independent* variables with normal distribution (mu = 0, sigma = 1).
|
||||
# (Lambert Meertens)
|
||||
|
||||
gauss_next = None
|
||||
def gauss(mu, sigma):
|
||||
global gauss_next
|
||||
if gauss_next != None:
|
||||
z = gauss_next
|
||||
gauss_next = None
|
||||
else:
|
||||
x2pi = random() * TWOPI
|
||||
log1_y = log(1.0 - random())
|
||||
z = cos(x2pi) * log1_y
|
||||
gauss_next = sin(x2pi) * log1_y
|
||||
return mu + z*sigma
|
||||
|
||||
# -------------------- beta --------------------
|
||||
|
||||
def betavariate(alpha, beta):
|
||||
y = expovariate(alpha)
|
||||
z = expovariate(1.0/beta)
|
||||
return z/(y+z)
|
||||
|
||||
# -------------------- test program --------------------
|
||||
|
||||
def test():
|
||||
|
@ -179,7 +211,7 @@ def test():
|
|||
print 'LOG4 =', LOG4
|
||||
print 'NV_MAGICCONST =', NV_MAGICCONST
|
||||
print 'SG_MAGICCONST =', SG_MAGICCONST
|
||||
N = 100
|
||||
N = 200
|
||||
test_generator(N, 'random()')
|
||||
test_generator(N, 'normalvariate(0.0, 1.0)')
|
||||
test_generator(N, 'lognormvariate(0.0, 1.0)')
|
||||
|
@ -192,21 +224,30 @@ def test():
|
|||
test_generator(N, 'gammavariate(2.0, 1.0)')
|
||||
test_generator(N, 'gammavariate(20.0, 1.0)')
|
||||
test_generator(N, 'gammavariate(200.0, 1.0)')
|
||||
test_generator(N, 'gauss(0.0, 1.0)')
|
||||
test_generator(N, 'betavariate(3.0, 3.0)')
|
||||
|
||||
def test_generator(n, funccall):
|
||||
import sys
|
||||
print '%d calls to %s:' % (n, funccall),
|
||||
sys.stdout.flush()
|
||||
import time
|
||||
print n, 'times', funccall
|
||||
code = compile(funccall, funccall, 'eval')
|
||||
sum = 0.0
|
||||
sqsum = 0.0
|
||||
smallest = 1e10
|
||||
largest = 1e-10
|
||||
t0 = time.time()
|
||||
for i in range(n):
|
||||
x = eval(code)
|
||||
sum = sum + x
|
||||
sqsum = sqsum + x*x
|
||||
smallest = min(x, smallest)
|
||||
largest = max(x, largest)
|
||||
t1 = time.time()
|
||||
print round(t1-t0, 3), 'sec,',
|
||||
avg = sum/n
|
||||
stddev = sqrt(sqsum/n - avg*avg)
|
||||
print 'avg %g, stddev %g' % (avg, stddev)
|
||||
print 'avg %g, stddev %g, min %g, max %g' % \
|
||||
(avg, stddev, smallest, largest)
|
||||
|
||||
if __name__ == '__main__':
|
||||
test()
|
||||
|
|
Loading…
Reference in New Issue