Add decimal docs to the core.
This commit is contained in:
parent
e0f1581bab
commit
8de63a206e
|
@ -120,6 +120,7 @@ and how to embed it in other applications.
|
|||
\input{libdoctest}
|
||||
\input{libunittest}
|
||||
\input{libtest}
|
||||
\input{libdecimal}
|
||||
\input{libmath}
|
||||
\input{libcmath}
|
||||
\input{librandom}
|
||||
|
|
|
@ -0,0 +1,882 @@
|
|||
\section{\module{decimal} ---
|
||||
Decimal floating point arithmetic}
|
||||
|
||||
\declaremodule{standard}{decimal}
|
||||
\modulesynopsis{Implementation of the General Decimal Arithmetic
|
||||
Specification.}
|
||||
|
||||
\moduleauthor{Eric Price}{eprice at tjhsst.edu}
|
||||
\moduleauthor{Facundo Batista}{facundo at taniquetil.com.ar}
|
||||
\moduleauthor{Raymond Hettinger}{python at rcn.com}
|
||||
\moduleauthor{Aahz}{aahz at pobox.com}
|
||||
\moduleauthor{Tim Peters}{tim.one at comcast.net}
|
||||
|
||||
\sectionauthor{Raymond D. Hettinger}{python at rcn.com}
|
||||
|
||||
\versionadded{2.4}
|
||||
|
||||
The decimal \module{module} provides support for decimal floating point
|
||||
arithmetic. It offers several advantages over the \class{float()} datatype:
|
||||
|
||||
\begin{itemize}
|
||||
|
||||
\item Decimal numbers can be represented exactly. In contrast, numbers like
|
||||
\constant{1.1} do not have an exact representations in binary floating point.
|
||||
End users typically wound not expect \constant{1.1} to display as
|
||||
\constant{1.1000000000000001} as it does with binary floating point.
|
||||
|
||||
\item The exactness carries over into arithmetic. In decimal floating point,
|
||||
\samp{0.1 + 0.1 + 0.1 - 0.3} is exactly equal to zero. In binary floating
|
||||
point, result is \constant{5.5511151231257827e-017}. While near to zero, the
|
||||
differences prevent reliable equality testing and differences can accumulate.
|
||||
For this reason, decimal would be preferred in accounting applications which
|
||||
have strict equality invariants.
|
||||
|
||||
\item The decimal module incorporates notion of significant places so that
|
||||
\samp{1.30 + 1.20} is \constant{2.50}. The trailing zero is kept to indicate
|
||||
significance. This is the customary presentation for monetary applications. For
|
||||
multiplication, the ``schoolbook'' approach uses all the figures in the
|
||||
multiplicands. For instance, \samp{1.3 * 1.2} gives \constant{1.56} while
|
||||
\samp{1.30 * 1.20} gives \constant{1.5600}.
|
||||
|
||||
\item Unlike hardware based binary floating point, the decimal module has a user
|
||||
settable precision (defaulting to 28 places) which can be as large as needed for
|
||||
a given problem:
|
||||
|
||||
\begin{verbatim}
|
||||
>>> getcontext().prec = 6
|
||||
>>> Decimal(1) / Decimal(7)
|
||||
Decimal("0.142857")
|
||||
>>> getcontext().prec = 28
|
||||
>>> Decimal(1) / Decimal(7)
|
||||
Decimal("0.1428571428571428571428571429")
|
||||
\end{verbatim}
|
||||
|
||||
\item Both binary and decimal floating point are implemented in terms of published
|
||||
standards. While the built-in float type exposes only a modest portion of its
|
||||
capabilities, the decimal module exposes all required parts of the standard.
|
||||
When needed, the programmer has full control over rounding and signal handling.
|
||||
|
||||
\end{itemize}
|
||||
|
||||
|
||||
The module design is centered around three concepts: the decimal number, the
|
||||
context for arithmetic, and signals.
|
||||
|
||||
A decimal number is immutable. It has a sign, coefficient digits, and an
|
||||
exponent. To preserve significance, the coefficient digits do not truncate
|
||||
trailing zeroes. Decimals also include special values such as
|
||||
\constant{Infinity} (the result of \samp{1 / 0}), \constant{-Infinity},
|
||||
(the result of \samp{-1 / 0}), and \constant{NaN} (the result of
|
||||
\samp{0 / 0}). The standard also differentiates \constant{-0} from
|
||||
\constant{+0}.
|
||||
|
||||
The context for arithmetic is an environment specifying precision, rounding
|
||||
rules, limits on exponents, flags that indicate the results of operations,
|
||||
and trap enablers which determine whether signals are to be treated as
|
||||
exceptions. Rounding options include \constant{ROUND_CEILING},
|
||||
\constant{ROUND_DOWN}, \constant{ROUND_FLOOR}, \constant{ROUND_HALF_DOWN},
|
||||
\constant{ROUND_HALF_EVEN}, \constant{ROUND_HALF_UP}, and \constant{ROUND_UP}.
|
||||
|
||||
Signals are types of information that arise during the course of a
|
||||
computation. Depending on the needs of the application, some signals may be
|
||||
ignored, considered as informational, or treated as exceptions. The signals in
|
||||
the decimal module are: \constant{Clamped}, \constant{InvalidOperation},
|
||||
\constant{ConversionSyntax}, \constant{DivisionByZero},
|
||||
\constant{DivisionImpossible}, \constant{DivisionUndefined},
|
||||
\constant{Inexact}, \constant{InvalidContext}, \constant{Rounded},
|
||||
\constant{Subnormal}, \constant{Overflow}, and \constant{Underflow}.
|
||||
|
||||
For each signal there is a flag and a trap enabler. When a signal is
|
||||
encountered, its flag incremented from zero and, then, if the trap enabler
|
||||
is set to one, an exception is raised.
|
||||
|
||||
|
||||
\begin{seealso}
|
||||
\seetext{IBM's General Decimal Arithmetic Specification,
|
||||
\citetitle[http://www2.hursley.ibm.com/decimal/decarith.html]
|
||||
{The General Decimal Arithmetic Specification}.}
|
||||
|
||||
\seetext{IEEE standard 854-1987,
|
||||
\citetitle[http://www.cs.berkeley.edu/~ejr/projects/754/private/drafts/854-1987/dir.html]
|
||||
{Unofficial IEEE 854 Text}.}
|
||||
\end{seealso}
|
||||
|
||||
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\subsection{Quick-start Tutorial \label{decimal-tutorial}}
|
||||
|
||||
The normal start to using decimals is to import the module, and then use
|
||||
\function{getcontext()} to view the context and, if necessary, set the context
|
||||
precision, rounding, or trap enablers:
|
||||
|
||||
\begin{verbatim}
|
||||
>>> from decimal import *
|
||||
>>> getcontext()
|
||||
Context(prec=28, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
|
||||
setflags=[], settraps=[])
|
||||
|
||||
>>> getcontext().prec = 7
|
||||
\end{verbatim}
|
||||
|
||||
Decimal instances can be constructed from integers or strings. To create a
|
||||
Decimal from a \class{float}, first convert it to a string. This serves as an
|
||||
explicit reminder of the details of the conversion (including representation
|
||||
error). Malformed strings signal \constant{ConversionSyntax} and return a
|
||||
special kind of Decimal called a \constant{NaN} which stands for ``Not a
|
||||
number''. Positive and negative \constant{Infinity} is yet another special
|
||||
kind of Decimal.
|
||||
|
||||
\begin{verbatim}
|
||||
>>> Decimal(10)
|
||||
Decimal("10")
|
||||
>>> Decimal('3.14')
|
||||
Decimal("3.14")
|
||||
>>> Decimal(str(2.0 ** 0.5))
|
||||
Decimal("1.41421356237")
|
||||
>>> Decimal('Mickey Mouse')
|
||||
Decimal("NaN")
|
||||
>>> Decimal('-Infinity')
|
||||
Decimal("-Infinity")
|
||||
\end{verbatim}
|
||||
|
||||
Creating decimals is unaffected by context precision. Their level of
|
||||
significance is completely determined by the number of digits input. It is
|
||||
the arithmetic operations that are governed by context.
|
||||
|
||||
\begin{verbatim}
|
||||
>>> getcontext().prec = 6
|
||||
>>> Decimal('3.0000')
|
||||
Decimal("3.0000")
|
||||
>>> Decimal('3.0')
|
||||
Decimal("3.0")
|
||||
>>> Decimal('3.1415926535')
|
||||
Decimal("3.1415926535")
|
||||
>>> Decimal('3.1415926535') + Decimal('2.7182818285')
|
||||
Decimal("5.85987")
|
||||
>>> getcontext().rounding = ROUND_UP
|
||||
>>> Decimal('3.1415926535') + Decimal('2.7182818285')
|
||||
Decimal("5.85988")
|
||||
\end{verbatim}
|
||||
|
||||
Decimals interact well with much of the rest of python. Here is a small
|
||||
decimal floating point flying circus:
|
||||
|
||||
\begin{verbatim}
|
||||
>>> data = map(Decimal, '1.34 1.87 3.45 2.35 1.00 0.03 9.25'.split())
|
||||
>>> max(data)
|
||||
Decimal("9.25")
|
||||
>>> min(data)
|
||||
Decimal("0.03")
|
||||
>>> sorted(data)
|
||||
[Decimal("0.03"), Decimal("1.00"), Decimal("1.34"), Decimal("1.87"),
|
||||
Decimal("2.35"), Decimal("3.45"), Decimal("9.25")]
|
||||
>>> sum(data)
|
||||
Decimal("19.29")
|
||||
>>> a,b,c = data[:3]
|
||||
>>> str(a)
|
||||
'1.34'
|
||||
>>> float(a)
|
||||
1.3400000000000001
|
||||
>>> round(a, 1)
|
||||
1.3
|
||||
>>> int(a)
|
||||
1
|
||||
>>> a * 5
|
||||
Decimal("6.70")
|
||||
>>> a * b
|
||||
Decimal("2.5058")
|
||||
>>> c % a
|
||||
Decimal("0.77")
|
||||
\end{verbatim}
|
||||
|
||||
The \function{getcontext()} function accesses the current context. This one
|
||||
context is sufficient for many applications; however, for more advanced work,
|
||||
multiple contexts can be created using the Context() constructor. To make a
|
||||
new context active, use the \function{setcontext()} function.
|
||||
|
||||
In accordance with the standard, the \module{Decimal} module provides two
|
||||
ready to use standard contexts, \constant{BasicContext} and
|
||||
\constant{ExtendedContext}. The former is especially useful for debugging
|
||||
because many of the traps are enabled:
|
||||
|
||||
\begin{verbatim}
|
||||
>>> myothercontext = Context(prec=60, rounding=ROUND_HALF_DOWN)
|
||||
>>> myothercontext
|
||||
Context(prec=60, rounding=ROUND_HALF_DOWN, Emin=-999999999, Emax=999999999,
|
||||
setflags=[], settraps=[])
|
||||
>>> ExtendedContext
|
||||
Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
|
||||
setflags=[], settraps=[])
|
||||
>>> setcontext(myothercontext)
|
||||
>>> Decimal(1) / Decimal(7)
|
||||
Decimal("0.142857142857142857142857142857142857142857142857142857142857")
|
||||
>>> setcontext(ExtendedContext)
|
||||
>>> Decimal(1) / Decimal(7)
|
||||
Decimal("0.142857143")
|
||||
>>> Decimal(42) / Decimal(0)
|
||||
Decimal("Infinity")
|
||||
>>> setcontext(BasicContext)
|
||||
>>> Decimal(42) / Decimal(0)
|
||||
Traceback (most recent call last):
|
||||
File "<pyshell#143>", line 1, in -toplevel-
|
||||
Decimal(42) / Decimal(0)
|
||||
DivisionByZero: x / 0
|
||||
\end{verbatim}
|
||||
|
||||
Besides using contexts to control precision, rounding, and trapping signals,
|
||||
they can be used to monitor flags which give information collected during
|
||||
computation. The flags remain set until explicitly cleared, so it is best to
|
||||
clear the flags before each set of monitored computations by using the
|
||||
\method{clear_flags()} method.
|
||||
|
||||
\begin{verbatim}
|
||||
>>> setcontext(ExtendedContext)
|
||||
>>> getcontext().clear_flags()
|
||||
>>> Decimal(355) / Decimal(113)
|
||||
Decimal("3.14159292")
|
||||
>>> getcontext()
|
||||
Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
|
||||
setflags=['Inexact', 'Rounded'], settraps=[])
|
||||
\end{verbatim}
|
||||
|
||||
The \var{setflags} entry shows that the rational approximation to
|
||||
\constant{Pi} was rounded (digits beyond the context precision were thrown
|
||||
away) and that the result is inexact (some of the discarded digits were
|
||||
non-zero).
|
||||
|
||||
Individual traps are set using the dictionary in the \member{trap_enablers}
|
||||
field of a context:
|
||||
|
||||
\begin{verbatim}
|
||||
>>> Decimal(1) / Decimal(0)
|
||||
Decimal("Infinity")
|
||||
>>> getcontext().trap_enablers[DivisionByZero] = 1
|
||||
>>> Decimal(1) / Decimal(0)
|
||||
|
||||
Traceback (most recent call last):
|
||||
File "<pyshell#112>", line 1, in -toplevel-
|
||||
Decimal(1) / Decimal(0)
|
||||
DivisionByZero: x / 0
|
||||
\end{verbatim}
|
||||
|
||||
To turn all the traps on or off all at once, use a loop. Also, the
|
||||
\method{dict.update()} method is useful for changing a handfull of values.
|
||||
|
||||
\begin{verbatim}
|
||||
>>> getcontext.clear_flags()
|
||||
>>> for sig in getcontext().trap_enablers:
|
||||
... getcontext().trap_enablers[sig] = 1
|
||||
|
||||
>>> getcontext().trap_enablers.update({Rounded:0, Inexact:0, Subnormal:0})
|
||||
>>> getcontext()
|
||||
Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
|
||||
setflags=[], settraps=['Underflow', 'DecimalException', 'Clamped',
|
||||
'InvalidContext', 'InvalidOperation', 'ConversionSyntax',
|
||||
'DivisionByZero', 'DivisionImpossible', 'DivisionUndefined',
|
||||
'Overflow'])
|
||||
\end{verbatim}
|
||||
|
||||
Applications typically set the context once at the beginning of a program
|
||||
and no further changes are needed. For many applications, the data resides
|
||||
in a resource external to the program and is converted to \class{Decimal} with
|
||||
a single cast inside a loop. Afterwards, decimals are as easily manipulated
|
||||
as other Python numeric types.
|
||||
|
||||
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\subsection{Decimal objects \label{decimal-decimal}}
|
||||
|
||||
\begin{classdesc}{Decimal}{\optional{value \optional{, context}}}
|
||||
Constructs a new \class{Decimal} object based from \var{value}.
|
||||
|
||||
\var{value} can be an integer, string, or another \class{Decimal} object.
|
||||
If no \var{value} is given, returns \code{Decimal("0")}. If \var{value} is
|
||||
a string, it should conform to the decimal numeric string syntax:
|
||||
|
||||
\begin{verbatim}
|
||||
sign ::= '+' | '-'
|
||||
digit ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
|
||||
indicator ::= 'e' | 'E'
|
||||
digits ::= digit [digit]...
|
||||
decimal-part ::= digits '.' [digits] | ['.'] digits
|
||||
exponent-part ::= indicator [sign] digits
|
||||
infinity ::= 'Infinity' | 'Inf'
|
||||
nan ::= 'NaN' [digits] | 'sNaN' [digits]
|
||||
numeric-value ::= decimal-part [exponent-part] | infinity
|
||||
numeric-string ::= [sign] numeric-value | [sign] nan
|
||||
\end{verbatim}
|
||||
|
||||
The supplied \var{context} or, if not specified, the current context
|
||||
governs only the handling of mal-formed strings not conforming to the
|
||||
numeric string syntax. If the context traps \constant{ConversionSyntax},
|
||||
an exception is raised; otherwise, the constructor returns a new Decimal
|
||||
with the value of \constant{NaN}.
|
||||
|
||||
The context serves no other purpose. The number of significant digits
|
||||
recorded is determined solely by the \var{value} and the var{context}
|
||||
precision is not a factor. For example, \samp{Decimal("3.0000")} records
|
||||
all four zeroes even if the context precision is only three.
|
||||
|
||||
Once constructed, \class{Decimal} objects are immutable.
|
||||
\end{classdesc}
|
||||
|
||||
Decimal floating point objects share many properties with the other builtin
|
||||
numeric types such as \class{float} and \class{int}. All of the usual
|
||||
math operations and special methods apply. Likewise, decimal objects can
|
||||
be copied, pickled, printed, used as dictionary keys, used as set elements,
|
||||
compared, sorted, and coerced to another type (such as \class{float}
|
||||
or \class{long}).
|
||||
|
||||
In addition to the standard numeric properties, decimal floating point objects
|
||||
have a number of more specialized methods:
|
||||
|
||||
\begin{methoddesc}{adjusted}{}
|
||||
Return the number's adjusted exponent that results from shifting out the
|
||||
coefficients rightmost digits until only the lead digit remains:
|
||||
\code{Decimal("321e+5").adjusted()} returns seven. Used for determining
|
||||
the place value of the most significant digit.
|
||||
\end{methoddesc}
|
||||
|
||||
\begin{methoddesc}{as_tuple}{}
|
||||
Returns a tuple representation of the number:
|
||||
\samp{(sign, digittuple, exponent)}.
|
||||
\end{methoddesc}
|
||||
|
||||
\begin{methoddesc}{compare}{other\optional{, context}}
|
||||
Compares like \method{__cmp__()} but returns a decimal instance:
|
||||
\begin{verbatim}
|
||||
a or b is a NaN ==> Decimal("NaN")
|
||||
a < b ==> Decimal("-1")
|
||||
a == b ==> Decimal("0")
|
||||
a > b ==> Decimal("1")
|
||||
\end{verbatim}
|
||||
\end{methoddesc}
|
||||
|
||||
\begin{methoddesc}{max}{other\optional{, context}}
|
||||
Like \samp{max(self, other)} but returns \constant{NaN} if either is a
|
||||
\constant{NaN}. Applies the context rounding rule before returning.
|
||||
\end{methoddesc}
|
||||
|
||||
\begin{methoddesc}{min}{other\optional{, context}}
|
||||
Like \samp{min(self, other)} but returns \constant{NaN} if either is a
|
||||
\constant{NaN}. Applies the context rounding rule before returning.
|
||||
\end{methoddesc}
|
||||
|
||||
\begin{methoddesc}{normalize}{\optional{context}}
|
||||
Normalize the number by striping the rightmost trailing zeroes and
|
||||
converting any result equal to \constant{Decimal("0")} to Decimal("0e0").
|
||||
Used for producing a canonical value for members of an equivalence class.
|
||||
For example, \code{Decimal("32.100")} and \code{Decimal("0.321000e+2")}
|
||||
both normalize to the equivalent value \code{Decimal("32.1")}
|
||||
\end{methoddesc}
|
||||
|
||||
\begin{methoddesc}{quantize}
|
||||
{\optional{exp \optional{, rounding\optional{, context\optional{, watchexp}}}}}
|
||||
Quantize makes the exponent the same as \var{exp}. Searches for a
|
||||
rounding method in \var{rounding}, then in \var{context}, and then
|
||||
in the current context.
|
||||
|
||||
Of \var{watchexp} is set (default), then an error is returned if
|
||||
the resulting exponent is greater than \member{Emax} or less than
|
||||
\member{Etiny}.
|
||||
\end{methoddesc}
|
||||
|
||||
\begin{methoddesc}{remainder_near}{other\optional{, context}}
|
||||
Computed the modulo as either a positive or negative value depending
|
||||
on which is closest to zero. For instance,
|
||||
\samp{Decimal(10).remainder_near(6)} returns \code{Decimal("-2")}
|
||||
which is closer to zero than \code{Decimal("4")}.
|
||||
|
||||
If both are equally close, the one chosen will have the same sign
|
||||
as \var{self}.
|
||||
\end{methoddesc}
|
||||
|
||||
\begin{methoddesc}{same_quantum{other\optional{, context}}}
|
||||
Test whether self and other have the same exponent or whether both
|
||||
are \constant{NaN}.
|
||||
\end{methoddesc}
|
||||
|
||||
\begin{methoddesc}{sqrt}{\optional{context}}
|
||||
Return the square root to full precision.
|
||||
\end{methoddesc}
|
||||
|
||||
\begin{methoddesc}{to_eng_string}{\optional{context}}
|
||||
Convert to engineering-type string.
|
||||
|
||||
Engineering notation has an exponent which is a multiple of 3, so there
|
||||
are up to 3 digits left of the decimal place. For example, converts
|
||||
\code{Decimal('123E+1')} to \code{Decimal("1.23E+3")}
|
||||
\end{methoddesc}
|
||||
|
||||
\begin{methoddesc}{to_integral}{\optional{rounding\optional{, context}}}
|
||||
Rounds to the nearest integer, without signaling \constant{Inexact}
|
||||
or \constant{Rounded}. If given, applies \var{rounding}; otherwise,
|
||||
uses the rounding method in either the supplied \var{context} or the
|
||||
current context.
|
||||
\end{methoddesc}
|
||||
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\subsection{Context objects \label{decimal-decimal}}
|
||||
|
||||
Contexts are environments for arithmetic operations. They govern the precision,
|
||||
rules for rounding, determine which signals are treated as exceptions, and set limits
|
||||
on the range for exponents.
|
||||
|
||||
Each thread has its own current context which is accessed or changed using
|
||||
the \function{getcontext()} and \function{setcontext()} functions:
|
||||
|
||||
\begin{funcdesc}{getcontext}{}
|
||||
Return the current context for the active thread.
|
||||
\end{funcdesc}
|
||||
|
||||
\begin{funcdesc}{setcontext}{c}
|
||||
Set the current context for the active thread to \var{c}.
|
||||
\end{funcdesc}
|
||||
|
||||
New contexts can formed using the \class{Context} constructor described below.
|
||||
In addition, the module provides three pre-made contexts:
|
||||
|
||||
|
||||
\begin{classdesc*}{BasicContext}
|
||||
This is a standard context defined by the General Decimal Arithmetic
|
||||
Specification. Precision is set to nine. Rounding is set to
|
||||
\constant{ROUND_HALF_UP}. All flags are cleared. All traps are enabled
|
||||
(treated as exceptions) except \constant{Inexact}, \constant{Rounded}, and
|
||||
\constant{Subnormal}.
|
||||
|
||||
Because many of the traps are enabled, this context is useful for debugging.
|
||||
\end{classdesc*}
|
||||
|
||||
\begin{classdesc*}{ExtendedContext}
|
||||
This is a standard context defined by the General Decimal Arithmetic
|
||||
Specification. Precision is set to nine. Rounding is set to
|
||||
\constant{ROUND_HALF_EVEN}. All flags are cleared. No traps are enabled
|
||||
(so that exceptions are not raised during computations).
|
||||
\end{classdesc*}
|
||||
|
||||
\begin{classdesc*}{DefaultContext}
|
||||
This class is used by the \class{Context} constructor as a prototype for
|
||||
new contexts. Changing a field (such a precision) has the effect of
|
||||
changing the default for new contexts creating by the \class{Context}
|
||||
constructor.
|
||||
|
||||
This context is most useful in multi-threaded environments. Changing one of
|
||||
the fields before threads are started has the effect of setting system-wide
|
||||
defaults. Changing the fields after threads have started is not recommended
|
||||
as it would require thread synchronization to prevent race conditions.
|
||||
|
||||
In single threaded environments, it is preferable to not use this context
|
||||
at all. Instead, simply create contexts explicitly. This is especially
|
||||
important because the default values context may change between releases
|
||||
(with initial release having precision=28, rounding=ROUND_HALF_EVEN,
|
||||
cleared flags, and no traps enabled).
|
||||
\end{classdesc*}
|
||||
|
||||
|
||||
\begin{classdesc}{Context}{prec=None, rounding=None, trap_enablers=None,
|
||||
flags=None, Emin=None, Emax=None, capitals=1}
|
||||
Creates a new context. If a field is not specified or is \constant{None},
|
||||
the default values are copied from the \constant{DefaultContext}. If the
|
||||
\var{flags} field is not specified or is \constant{None}, all flags are
|
||||
cleared.
|
||||
|
||||
The \var{prec} field in an positive integer that sets the precision for
|
||||
arithmetic operations in the context.
|
||||
|
||||
The \var{rounding} option is one of: \constant{ROUND_CEILING},
|
||||
\constant{ROUND_DOWN}, \constant{ROUND_FLOOR}, \constant{ROUND_HALF_DOWN},
|
||||
\constant{ROUND_HALF_EVEN}, \constant{ROUND_HALF_UP}, or
|
||||
\constant{ROUND_UP}.
|
||||
|
||||
The \var{trap_enablers} and \var{flags} fields are mappings from signals
|
||||
to either \constant{0} or \constant{1}.
|
||||
|
||||
The \var{Emin} and \var{Emax} fields are integers specifying the outer
|
||||
limits allowable for exponents.
|
||||
|
||||
The \var{capitals} field is either \constant{0} or \constant{1} (the
|
||||
default). If set to \constant{1}, exponents are printed with a capital
|
||||
\constant{E}; otherwise, lowercase is used: \constant{Decimal('6.02e+23')}.
|
||||
\end{classdesc}
|
||||
|
||||
The \class{Context} class defines several general methods as well as a
|
||||
large number of methods for doing arithmetic directly from the context.
|
||||
|
||||
\begin{methoddesc}{clear_flags}{}
|
||||
Sets all of the flags to \constant{0}.
|
||||
\end{methoddesc}
|
||||
|
||||
\begin{methoddesc}{copy}{}
|
||||
Returns a duplicate of the context.
|
||||
\end{methoddesc}
|
||||
|
||||
\begin{methoddesc}{create_decimal}{num}
|
||||
Creates a new Decimal instance but using \var{self} as context.
|
||||
Unlike the \class{Decimal} constructor, context precision,
|
||||
rounding method, flags, and traps are applied to the conversion.
|
||||
|
||||
This is useful because constants are often given to a greater
|
||||
precision than is needed by the application.
|
||||
\end{methoddesc}
|
||||
|
||||
\begin{methoddesc}{Etiny}{}
|
||||
Returns a value equal to \samp{Emin - prec + 1} which is the minimum
|
||||
exponent value for subnormal results. When underflow occurs, the
|
||||
exponont is set to \constant{Etiny}.
|
||||
\end{methoddesc}
|
||||
|
||||
The usual approach to working with decimals is to create Decimal
|
||||
instances and then apply arithmetic operations which take place
|
||||
within the current context for the active thread. An alternate
|
||||
approach is to use a context method to perform a particular
|
||||
computation within the given context rather than the current context.
|
||||
|
||||
Those methods parallel those for the \class{Decimal} class and are
|
||||
only briefed recounted here.
|
||||
|
||||
|
||||
\begin{methoddesc}{abs}{x}
|
||||
Returns the absolute value of \var{x}.
|
||||
\end{methoddesc}
|
||||
|
||||
\begin{methoddesc}{add}{x, y}
|
||||
Return the sum of \var{x} and \var{y}.
|
||||
\end{methoddesc}
|
||||
|
||||
\begin{methoddesc}{compare}{x, y}
|
||||
Compares values numerically.
|
||||
|
||||
Like \method{__cmp__()} but returns a decimal instance:
|
||||
\begin{verbatim}
|
||||
a or b is a NaN ==> Decimal("NaN")
|
||||
a < b ==> Decimal("-1")
|
||||
a == b ==> Decimal("0")
|
||||
a > b ==> Decimal("1")
|
||||
\end{verbatim}
|
||||
\end{methoddesc}
|
||||
|
||||
\begin{methoddesc}{divide}{x, y}
|
||||
Return \var{x} divided by \var{y}.
|
||||
\end{methoddesc}
|
||||
|
||||
\begin{methoddesc}{divide}{x, y}
|
||||
Divides two numbers and returns the integer part of the result.
|
||||
\end{methoddesc}
|
||||
|
||||
\begin{methoddesc}{max}{x, y}
|
||||
Compare two values numerically and returns the maximum.
|
||||
|
||||
If they are numerically equal then the left-hand operand is chosen as the
|
||||
result.
|
||||
\end{methoddesc}
|
||||
|
||||
\begin{methoddesc}{min}{x, y}
|
||||
Compare two values numerically and returns the minimum.
|
||||
|
||||
If they are numerically equal then the left-hand operand is chosen as the
|
||||
result.
|
||||
\end{methoddesc}
|
||||
|
||||
\begin{methoddesc}{minus}{x}
|
||||
Minus corresponds to unary prefix minus in Python.
|
||||
\end{methoddesc}
|
||||
|
||||
\begin{methoddesc}{multiply}{x, y}
|
||||
Return the product of \var{x} and \var{y}.
|
||||
\end{methoddesc}
|
||||
|
||||
\begin{methoddesc}{normalize}{x}
|
||||
Normalize reduces an operand to its simplest form.
|
||||
|
||||
Essentially a plus operation with all trailing zeros removed from the
|
||||
result.
|
||||
\end{methoddesc}
|
||||
|
||||
\begin{methoddesc}{plus}{x}
|
||||
Minus corresponds to unary prefix plus in Python.
|
||||
\end{methoddesc}
|
||||
|
||||
\begin{methoddesc}{power}{x, y\optional{, modulo}}
|
||||
Return \samp{x ** y} to the \var{modulo} if given.
|
||||
|
||||
The right-hand operand must be a whole number whose integer part (after any
|
||||
exponent has been applied) has no more than 9 digits and whose fractional
|
||||
part (if any) is all zeros before any rounding. The operand may be positive,
|
||||
negative, or zero; if negative, the absolute value of the power is used, and
|
||||
the left-hand operand is inverted (divided into 1) before use.
|
||||
|
||||
If the increased precision needed for the intermediate calculations exceeds
|
||||
the capabilities of the implementation then an Invalid operation condition
|
||||
is raised.
|
||||
|
||||
If, when raising to a negative power, an underflow occurs during the
|
||||
division into 1, the operation is not halted at that point but continues.
|
||||
\end{methoddesc}
|
||||
|
||||
\begin{methoddesc}{quantize}{x, y}
|
||||
Returns a value equal to \var{x} after rounding and having the
|
||||
exponent of v\var{y}.
|
||||
|
||||
Unlike other operations, if the length of the coefficient after the quantize
|
||||
operation would be greater than precision then an
|
||||
\constant{InvalidOperation} is signaled. This guarantees that, unless there
|
||||
is an error condition, the exponent of the result of a quantize is always
|
||||
equal to that of the right-hand operand.
|
||||
|
||||
Also unlike other operations, quantize never signals Underflow, even
|
||||
if the result is subnormal and inexact.
|
||||
\end{methoddesc}
|
||||
|
||||
\begin{methoddesc}{remainder}{x, y}
|
||||
Returns the remainder from integer division.
|
||||
|
||||
The sign of the result, if non-zero, is the same as that of the original
|
||||
dividend.
|
||||
\end{methoddesc}
|
||||
|
||||
\begin{methoddesc}{remainder_near}{x, y}
|
||||
Computed the modulo as either a positive or negative value depending
|
||||
on which is closest to zero. For instance,
|
||||
\samp{Decimal(10).remainder_near(6)} returns \code{Decimal("-2")}
|
||||
which is closer to zero than \code{Decimal("4")}.
|
||||
|
||||
If both are equally close, the one chosen will have the same sign
|
||||
as \var{self}.
|
||||
\end{methoddesc}
|
||||
|
||||
\begin{methoddesc}{same_quantum}{x, y}
|
||||
Test whether \var{x} and \var{y} have the same exponent or whether both are
|
||||
\constant{NaN}.
|
||||
\end{methoddesc}
|
||||
|
||||
\begin{methoddesc}{sqrt}{}
|
||||
Return the square root to full precision.
|
||||
\end{methoddesc}
|
||||
|
||||
\begin{methoddesc}{substract}{x, y}
|
||||
Return the difference of \var{x} and \var{y}.
|
||||
\end{methoddesc}
|
||||
|
||||
\begin{methoddesc}{to_eng_string}{}
|
||||
Convert to engineering-type string.
|
||||
|
||||
Engineering notation has an exponent which is a multiple of 3, so there
|
||||
are up to 3 digits left of the decimal place. For example, converts
|
||||
\code{Decimal('123E+1')} to \code{Decimal("1.23E+3")}
|
||||
\end{methoddesc}
|
||||
|
||||
\begin{methoddesc}{to_integral}{x}
|
||||
Rounds to the nearest integer, without signaling \constant{Inexact}
|
||||
or \constant{Rounded}.
|
||||
\end{methoddesc}
|
||||
|
||||
\begin{methoddesc}{to_sci_string}{}
|
||||
Converts a number to a string, using scientific notation.
|
||||
\end{methoddesc}
|
||||
|
||||
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\subsection{Signals \label{decimal-signals}}
|
||||
|
||||
Signals represent conditions that arise during computation.
|
||||
Each corresponds to one context flag and one context trap enabler.
|
||||
|
||||
The context flag is incremented whenever the condition is encountered.
|
||||
After the computation, flags may be checked for informational
|
||||
purposed (for instance, to determine whether a computation was exact).
|
||||
After checking the flags, be sure to clear all flags before starting
|
||||
the next computation.
|
||||
|
||||
If the context's trap enabler is set for the signal, then the condition
|
||||
causes a Python exception to be raised. For example, if the
|
||||
\class{DivisionByZero} trap is set, the a \exception{DivisionByZero}
|
||||
exception is raised upon encountering the condition.
|
||||
|
||||
|
||||
\begin{classdesc*}{Clamped}
|
||||
Altered an exponent to fit representation constraints.
|
||||
|
||||
Typically, clamping occurs when an exponent falls outside the context's
|
||||
\member{Emin} and \member{Emax} limits. If possible, the exponent is
|
||||
reduced to fit by adding zeroes to the coefficient.
|
||||
\end{classdesc*}
|
||||
|
||||
|
||||
\begin{classdesc*}{ConversionSyntax}
|
||||
Trying to convert a mal-formed string such as: \code{Decimal('jump')}.
|
||||
|
||||
Decimal converts only strings conforming to the numeric string
|
||||
syntax. If this signal is not trapped, returns \constant{NaN}.
|
||||
\end{classdesc*}
|
||||
|
||||
|
||||
\begin{classdesc*}{DecimalException}
|
||||
Base class for other signals.
|
||||
\end{classdesc*}
|
||||
|
||||
|
||||
\begin{classdesc*}{DivisionByZero}
|
||||
Signals the division of a non-infinite number by zero.
|
||||
|
||||
Can occur with division, modulo division, or when raising a number to
|
||||
a negative power. If this signal is not trapped, return
|
||||
\constant{Infinity} or \constant{-Infinity} with sign determined by
|
||||
the inputs to the calculation.
|
||||
\end{classdesc*}
|
||||
|
||||
|
||||
\begin{classdesc*}{DivisionImpossible}
|
||||
Error performing a division operation. Caused when an intermediate result
|
||||
has more digits that the allowed by the current precision. If not trapped,
|
||||
returns \constant{NaN}.
|
||||
\end{classdesc*}
|
||||
|
||||
|
||||
\begin{classdesc*}{DivisionUndefined}
|
||||
This is a subclass of \class{DivisionByZero}.
|
||||
|
||||
It occurs only in the context of division operations.
|
||||
\end{classdesc*}
|
||||
|
||||
|
||||
\begin{classdesc*}{Inexact}
|
||||
Indicates that rounding occurred and the result is not exact.
|
||||
|
||||
Signals whenever non-zero digits were discarded during rounding.
|
||||
The rounded result is returned. The signal flag or trap is used
|
||||
to detect when results are inexact.
|
||||
\end{classdesc*}
|
||||
|
||||
|
||||
\begin{classdesc*}{InvalidContext}
|
||||
This is a subclass of \class{InvalidOperation}.
|
||||
|
||||
Indicates an error within the Context object such as an unknown
|
||||
rounding operation. If not trapped, returns \constant{NaN}.
|
||||
\end{classdesc*}
|
||||
|
||||
|
||||
\begin{classdesc*}{InvalidOperation}
|
||||
An invalid operation was performed.
|
||||
|
||||
Indicates that an operation was requested that does not make sense.
|
||||
If not trapped, returns \constant{NaN}. Possible causes include:
|
||||
|
||||
\begin{verbatim}
|
||||
Infinity - Infinity
|
||||
0 * Infinity
|
||||
Infinity / Infinity
|
||||
x % 0
|
||||
Infinity % x
|
||||
x._rescale( non-integer )
|
||||
sqrt(-x) and x > 0
|
||||
0 ** 0
|
||||
x ** (non-integer)
|
||||
x ** Infinity
|
||||
\end{verbatim}
|
||||
\end{classdesc*}
|
||||
|
||||
|
||||
\begin{classdesc*}{Overflow}
|
||||
Numerical overflow.
|
||||
|
||||
Indicates the exponent is larger than \member{Emax} after rounding has
|
||||
occurred. If not trapped, the result depends on the rounding mode, either
|
||||
pulling inward to the largest representable finite number or rounding
|
||||
outward to \constant{Infinity}. In either case, \class{Inexact} and
|
||||
\class{Rounded} are also signaled.
|
||||
\end{classdesc*}
|
||||
|
||||
|
||||
\begin{classdesc*}{Rounded}
|
||||
Rounding occurred though possibly not information was lost.
|
||||
|
||||
Signaled whenever rounding discards digits; even if those digits are
|
||||
zero (such as rounding \constant{5.00} to \constant{5.0}). If not
|
||||
trapped, returns the result unchanged. This signal is used to detect
|
||||
loss of significant digits.
|
||||
\end{classdesc*}
|
||||
|
||||
|
||||
\begin{classdesc*}{Subnormal}
|
||||
Exponent was lower than \member{Emin} prior to rounding.
|
||||
|
||||
Occurs when an operation result is subnormal (the exponent is too small).
|
||||
If not trapped, returns the result unchanged.
|
||||
\end{classdesc*}
|
||||
|
||||
|
||||
\begin{classdesc*}{Underflow}
|
||||
Numerical underflow with result rounded to zero.
|
||||
|
||||
Occurs when a subnormal result is pushed to zero by rounding.
|
||||
\class{Inexact} and \class{Subnormal} are also signaled.
|
||||
\end{classdesc*}
|
||||
|
||||
|
||||
The following table summarizes the hierarchy of signals:
|
||||
|
||||
\begin{verbatim}
|
||||
exceptions.ArithmeticError(exceptions.StandardError)
|
||||
DecimalException
|
||||
Clamped
|
||||
DivisionByZero(DecimalException, exceptions.ZeroDivisionError)
|
||||
Inexact
|
||||
Overflow(Inexact, Rounded)
|
||||
Underflow(Inexact, Rounded, Subnormal)
|
||||
InvalidOperation
|
||||
ConversionSyntax
|
||||
DivisionImpossible
|
||||
DivisionUndefined(InvalidOperation, exceptions.ZeroDivisionError)
|
||||
InvalidContext
|
||||
Rounded
|
||||
Subnormal
|
||||
\end{verbatim}
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\subsection{Working with threads \label{decimal-threads}}
|
||||
|
||||
The \function{getcontext()} function accesses a different \class{Context}
|
||||
object for each thread. Having separate contexts means that threads may make
|
||||
changes (such as \code{getcontext.prec=10}) without interfering with other
|
||||
threads and without needing mutexes.
|
||||
|
||||
Likewise, the \function{setcontext()} function automatically assigns its target
|
||||
to the current thread.
|
||||
|
||||
If \function{setcontext()} has not been called before \function{getcontext()},
|
||||
then \function{getcontext()} will automatically create a new context for use
|
||||
in the current thread.
|
||||
|
||||
The new context is copied from a prototype context called \var{DefaultContext}.
|
||||
To control the defaults so that each thread will use the same values
|
||||
throughout the application, directly modify the \var{DefaultContext} object.
|
||||
This should be done \emph{before} any threads are started so that there won't
|
||||
be a race condition with threads calling \function{getcontext()}. For example:
|
||||
|
||||
\begin{verbatim}
|
||||
# Set application wide defaults for all threads about to be launched
|
||||
DefaultContext.prec=12
|
||||
DefaultContext.rounding=ROUND_DOWN
|
||||
DefaultContext.trap_enablers=dict.fromkeys(Signals, 0)
|
||||
setcontext(DefaultContext)
|
||||
|
||||
# Now start all of the threads
|
||||
t1.start()
|
||||
t2.start()
|
||||
t3.start()
|
||||
. . .
|
||||
\end{verbatim}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue