bpo-40541: Add optional *counts* parameter to random.sample() (GH-19970)

This commit is contained in:
Raymond Hettinger 2020-05-08 07:53:15 -07:00 committed by GitHub
parent 2effef7453
commit 81a5fc38e8
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 116 additions and 13 deletions

View File

@ -217,7 +217,7 @@ Functions for sequences
The optional parameter *random*.
.. function:: sample(population, k)
.. function:: sample(population, k, *, counts=None)
Return a *k* length list of unique elements chosen from the population sequence
or set. Used for random sampling without replacement.
@ -231,6 +231,11 @@ Functions for sequences
Members of the population need not be :term:`hashable` or unique. If the population
contains repeats, then each occurrence is a possible selection in the sample.
Repeated elements can be specified one at a time or with the optional
keyword-only *counts* parameter. For example, ``sample(['red', 'blue'],
counts=[4, 2], k=5)`` is equivalent to ``sample(['red', 'red', 'red', 'red',
'blue', 'blue'], k=5)``.
To choose a sample from a range of integers, use a :func:`range` object as an
argument. This is especially fast and space efficient for sampling from a large
population: ``sample(range(10000000), k=60)``.
@ -238,6 +243,9 @@ Functions for sequences
If the sample size is larger than the population size, a :exc:`ValueError`
is raised.
.. versionchanged:: 3.9
Added the *counts* parameter.
.. deprecated:: 3.9
In the future, the *population* must be a sequence. Instances of
:class:`set` are no longer supported. The set must first be converted
@ -420,12 +428,11 @@ Simulations::
>>> choices(['red', 'black', 'green'], [18, 18, 2], k=6)
['red', 'green', 'black', 'black', 'red', 'black']
>>> # Deal 20 cards without replacement from a deck of 52 playing cards
>>> # and determine the proportion of cards with a ten-value
>>> # (a ten, jack, queen, or king).
>>> deck = collections.Counter(tens=16, low_cards=36)
>>> seen = sample(list(deck.elements()), k=20)
>>> seen.count('tens') / 20
>>> # Deal 20 cards without replacement from a deck
>>> # of 52 playing cards, and determine the proportion of cards
>>> # with a ten-value: ten, jack, queen, or king.
>>> dealt = sample(['tens', 'low cards'], counts=[16, 36], k=20)
>>> dealt.count('tens') / 20
0.15
>>> # Estimate the probability of getting 5 or more heads from 7 spins

View File

@ -331,7 +331,7 @@ class Random(_random.Random):
j = _int(random() * (i+1))
x[i], x[j] = x[j], x[i]
def sample(self, population, k):
def sample(self, population, k, *, counts=None):
"""Chooses k unique random elements from a population sequence or set.
Returns a new list containing elements from the population while
@ -344,9 +344,21 @@ class Random(_random.Random):
population contains repeats, then each occurrence is a possible
selection in the sample.
To choose a sample in a range of integers, use range as an argument.
This is especially fast and space efficient for sampling from a
large population: sample(range(10000000), 60)
Repeated elements can be specified one at a time or with the optional
counts parameter. For example:
sample(['red', 'blue'], counts=[4, 2], k=5)
is equivalent to:
sample(['red', 'red', 'red', 'red', 'blue', 'blue'], k=5)
To choose a sample from a range of integers, use range() for the
population argument. This is especially fast and space efficient
for sampling from a large population:
sample(range(10000000), 60)
"""
# Sampling without replacement entails tracking either potential
@ -379,8 +391,20 @@ class Random(_random.Random):
population = tuple(population)
if not isinstance(population, _Sequence):
raise TypeError("Population must be a sequence. For dicts or sets, use sorted(d).")
randbelow = self._randbelow
n = len(population)
if counts is not None:
cum_counts = list(_accumulate(counts))
if len(cum_counts) != n:
raise ValueError('The number of counts does not match the population')
total = cum_counts.pop()
if not isinstance(total, int):
raise TypeError('Counts must be integers')
if total <= 0:
raise ValueError('Total of counts must be greater than zero')
selections = sample(range(total), k=k)
bisect = _bisect
return [population[bisect(cum_counts, s)] for s in selections]
randbelow = self._randbelow
if not 0 <= k <= n:
raise ValueError("Sample larger than population or is negative")
result = [None] * k

View File

@ -9,7 +9,7 @@ from functools import partial
from math import log, exp, pi, fsum, sin, factorial
from test import support
from fractions import Fraction
from collections import Counter
class TestBasicOps:
# Superclass with tests common to all generators.
@ -161,6 +161,77 @@ class TestBasicOps:
population = {10, 20, 30, 40, 50, 60, 70}
self.gen.sample(population, k=5)
def test_sample_with_counts(self):
sample = self.gen.sample
# General case
colors = ['red', 'green', 'blue', 'orange', 'black', 'brown', 'amber']
counts = [500, 200, 20, 10, 5, 0, 1 ]
k = 700
summary = Counter(sample(colors, counts=counts, k=k))
self.assertEqual(sum(summary.values()), k)
for color, weight in zip(colors, counts):
self.assertLessEqual(summary[color], weight)
self.assertNotIn('brown', summary)
# Case that exhausts the population
k = sum(counts)
summary = Counter(sample(colors, counts=counts, k=k))
self.assertEqual(sum(summary.values()), k)
for color, weight in zip(colors, counts):
self.assertLessEqual(summary[color], weight)
self.assertNotIn('brown', summary)
# Case with population size of 1
summary = Counter(sample(['x'], counts=[10], k=8))
self.assertEqual(summary, Counter(x=8))
# Case with all counts equal.
nc = len(colors)
summary = Counter(sample(colors, counts=[10]*nc, k=10*nc))
self.assertEqual(summary, Counter(10*colors))
# Test error handling
with self.assertRaises(TypeError):
sample(['red', 'green', 'blue'], counts=10, k=10) # counts not iterable
with self.assertRaises(ValueError):
sample(['red', 'green', 'blue'], counts=[-3, -7, -8], k=2) # counts are negative
with self.assertRaises(ValueError):
sample(['red', 'green', 'blue'], counts=[0, 0, 0], k=2) # counts are zero
with self.assertRaises(ValueError):
sample(['red', 'green'], counts=[10, 10], k=21) # population too small
with self.assertRaises(ValueError):
sample(['red', 'green', 'blue'], counts=[1, 2], k=2) # too few counts
with self.assertRaises(ValueError):
sample(['red', 'green', 'blue'], counts=[1, 2, 3, 4], k=2) # too many counts
def test_sample_counts_equivalence(self):
# Test the documented strong equivalence to a sample with repeated elements.
# We run this test on random.Random() which makes deterministic selections
# for a given seed value.
sample = random.sample
seed = random.seed
colors = ['red', 'green', 'blue', 'orange', 'black', 'amber']
counts = [500, 200, 20, 10, 5, 1 ]
k = 700
seed(8675309)
s1 = sample(colors, counts=counts, k=k)
seed(8675309)
expanded = [color for (color, count) in zip(colors, counts) for i in range(count)]
self.assertEqual(len(expanded), sum(counts))
s2 = sample(expanded, k=k)
self.assertEqual(s1, s2)
pop = 'abcdefghi'
counts = [10, 9, 8, 7, 6, 5, 4, 3, 2]
seed(8675309)
s1 = ''.join(sample(pop, counts=counts, k=30))
expanded = ''.join([letter for (letter, count) in zip(pop, counts) for i in range(count)])
seed(8675309)
s2 = ''.join(sample(expanded, k=30))
self.assertEqual(s1, s2)
def test_choices(self):
choices = self.gen.choices
data = ['red', 'green', 'blue', 'yellow']

View File

@ -0,0 +1 @@
Added an optional *counts* parameter to random.sample().