bpo-40541: Add optional *counts* parameter to random.sample() (GH-19970)
This commit is contained in:
parent
2effef7453
commit
81a5fc38e8
|
@ -217,7 +217,7 @@ Functions for sequences
|
|||
The optional parameter *random*.
|
||||
|
||||
|
||||
.. function:: sample(population, k)
|
||||
.. function:: sample(population, k, *, counts=None)
|
||||
|
||||
Return a *k* length list of unique elements chosen from the population sequence
|
||||
or set. Used for random sampling without replacement.
|
||||
|
@ -231,6 +231,11 @@ Functions for sequences
|
|||
Members of the population need not be :term:`hashable` or unique. If the population
|
||||
contains repeats, then each occurrence is a possible selection in the sample.
|
||||
|
||||
Repeated elements can be specified one at a time or with the optional
|
||||
keyword-only *counts* parameter. For example, ``sample(['red', 'blue'],
|
||||
counts=[4, 2], k=5)`` is equivalent to ``sample(['red', 'red', 'red', 'red',
|
||||
'blue', 'blue'], k=5)``.
|
||||
|
||||
To choose a sample from a range of integers, use a :func:`range` object as an
|
||||
argument. This is especially fast and space efficient for sampling from a large
|
||||
population: ``sample(range(10000000), k=60)``.
|
||||
|
@ -238,6 +243,9 @@ Functions for sequences
|
|||
If the sample size is larger than the population size, a :exc:`ValueError`
|
||||
is raised.
|
||||
|
||||
.. versionchanged:: 3.9
|
||||
Added the *counts* parameter.
|
||||
|
||||
.. deprecated:: 3.9
|
||||
In the future, the *population* must be a sequence. Instances of
|
||||
:class:`set` are no longer supported. The set must first be converted
|
||||
|
@ -420,12 +428,11 @@ Simulations::
|
|||
>>> choices(['red', 'black', 'green'], [18, 18, 2], k=6)
|
||||
['red', 'green', 'black', 'black', 'red', 'black']
|
||||
|
||||
>>> # Deal 20 cards without replacement from a deck of 52 playing cards
|
||||
>>> # and determine the proportion of cards with a ten-value
|
||||
>>> # (a ten, jack, queen, or king).
|
||||
>>> deck = collections.Counter(tens=16, low_cards=36)
|
||||
>>> seen = sample(list(deck.elements()), k=20)
|
||||
>>> seen.count('tens') / 20
|
||||
>>> # Deal 20 cards without replacement from a deck
|
||||
>>> # of 52 playing cards, and determine the proportion of cards
|
||||
>>> # with a ten-value: ten, jack, queen, or king.
|
||||
>>> dealt = sample(['tens', 'low cards'], counts=[16, 36], k=20)
|
||||
>>> dealt.count('tens') / 20
|
||||
0.15
|
||||
|
||||
>>> # Estimate the probability of getting 5 or more heads from 7 spins
|
||||
|
|
|
@ -331,7 +331,7 @@ class Random(_random.Random):
|
|||
j = _int(random() * (i+1))
|
||||
x[i], x[j] = x[j], x[i]
|
||||
|
||||
def sample(self, population, k):
|
||||
def sample(self, population, k, *, counts=None):
|
||||
"""Chooses k unique random elements from a population sequence or set.
|
||||
|
||||
Returns a new list containing elements from the population while
|
||||
|
@ -344,9 +344,21 @@ class Random(_random.Random):
|
|||
population contains repeats, then each occurrence is a possible
|
||||
selection in the sample.
|
||||
|
||||
To choose a sample in a range of integers, use range as an argument.
|
||||
This is especially fast and space efficient for sampling from a
|
||||
large population: sample(range(10000000), 60)
|
||||
Repeated elements can be specified one at a time or with the optional
|
||||
counts parameter. For example:
|
||||
|
||||
sample(['red', 'blue'], counts=[4, 2], k=5)
|
||||
|
||||
is equivalent to:
|
||||
|
||||
sample(['red', 'red', 'red', 'red', 'blue', 'blue'], k=5)
|
||||
|
||||
To choose a sample from a range of integers, use range() for the
|
||||
population argument. This is especially fast and space efficient
|
||||
for sampling from a large population:
|
||||
|
||||
sample(range(10000000), 60)
|
||||
|
||||
"""
|
||||
|
||||
# Sampling without replacement entails tracking either potential
|
||||
|
@ -379,8 +391,20 @@ class Random(_random.Random):
|
|||
population = tuple(population)
|
||||
if not isinstance(population, _Sequence):
|
||||
raise TypeError("Population must be a sequence. For dicts or sets, use sorted(d).")
|
||||
randbelow = self._randbelow
|
||||
n = len(population)
|
||||
if counts is not None:
|
||||
cum_counts = list(_accumulate(counts))
|
||||
if len(cum_counts) != n:
|
||||
raise ValueError('The number of counts does not match the population')
|
||||
total = cum_counts.pop()
|
||||
if not isinstance(total, int):
|
||||
raise TypeError('Counts must be integers')
|
||||
if total <= 0:
|
||||
raise ValueError('Total of counts must be greater than zero')
|
||||
selections = sample(range(total), k=k)
|
||||
bisect = _bisect
|
||||
return [population[bisect(cum_counts, s)] for s in selections]
|
||||
randbelow = self._randbelow
|
||||
if not 0 <= k <= n:
|
||||
raise ValueError("Sample larger than population or is negative")
|
||||
result = [None] * k
|
||||
|
|
|
@ -9,7 +9,7 @@ from functools import partial
|
|||
from math import log, exp, pi, fsum, sin, factorial
|
||||
from test import support
|
||||
from fractions import Fraction
|
||||
|
||||
from collections import Counter
|
||||
|
||||
class TestBasicOps:
|
||||
# Superclass with tests common to all generators.
|
||||
|
@ -161,6 +161,77 @@ class TestBasicOps:
|
|||
population = {10, 20, 30, 40, 50, 60, 70}
|
||||
self.gen.sample(population, k=5)
|
||||
|
||||
def test_sample_with_counts(self):
|
||||
sample = self.gen.sample
|
||||
|
||||
# General case
|
||||
colors = ['red', 'green', 'blue', 'orange', 'black', 'brown', 'amber']
|
||||
counts = [500, 200, 20, 10, 5, 0, 1 ]
|
||||
k = 700
|
||||
summary = Counter(sample(colors, counts=counts, k=k))
|
||||
self.assertEqual(sum(summary.values()), k)
|
||||
for color, weight in zip(colors, counts):
|
||||
self.assertLessEqual(summary[color], weight)
|
||||
self.assertNotIn('brown', summary)
|
||||
|
||||
# Case that exhausts the population
|
||||
k = sum(counts)
|
||||
summary = Counter(sample(colors, counts=counts, k=k))
|
||||
self.assertEqual(sum(summary.values()), k)
|
||||
for color, weight in zip(colors, counts):
|
||||
self.assertLessEqual(summary[color], weight)
|
||||
self.assertNotIn('brown', summary)
|
||||
|
||||
# Case with population size of 1
|
||||
summary = Counter(sample(['x'], counts=[10], k=8))
|
||||
self.assertEqual(summary, Counter(x=8))
|
||||
|
||||
# Case with all counts equal.
|
||||
nc = len(colors)
|
||||
summary = Counter(sample(colors, counts=[10]*nc, k=10*nc))
|
||||
self.assertEqual(summary, Counter(10*colors))
|
||||
|
||||
# Test error handling
|
||||
with self.assertRaises(TypeError):
|
||||
sample(['red', 'green', 'blue'], counts=10, k=10) # counts not iterable
|
||||
with self.assertRaises(ValueError):
|
||||
sample(['red', 'green', 'blue'], counts=[-3, -7, -8], k=2) # counts are negative
|
||||
with self.assertRaises(ValueError):
|
||||
sample(['red', 'green', 'blue'], counts=[0, 0, 0], k=2) # counts are zero
|
||||
with self.assertRaises(ValueError):
|
||||
sample(['red', 'green'], counts=[10, 10], k=21) # population too small
|
||||
with self.assertRaises(ValueError):
|
||||
sample(['red', 'green', 'blue'], counts=[1, 2], k=2) # too few counts
|
||||
with self.assertRaises(ValueError):
|
||||
sample(['red', 'green', 'blue'], counts=[1, 2, 3, 4], k=2) # too many counts
|
||||
|
||||
def test_sample_counts_equivalence(self):
|
||||
# Test the documented strong equivalence to a sample with repeated elements.
|
||||
# We run this test on random.Random() which makes deterministic selections
|
||||
# for a given seed value.
|
||||
sample = random.sample
|
||||
seed = random.seed
|
||||
|
||||
colors = ['red', 'green', 'blue', 'orange', 'black', 'amber']
|
||||
counts = [500, 200, 20, 10, 5, 1 ]
|
||||
k = 700
|
||||
seed(8675309)
|
||||
s1 = sample(colors, counts=counts, k=k)
|
||||
seed(8675309)
|
||||
expanded = [color for (color, count) in zip(colors, counts) for i in range(count)]
|
||||
self.assertEqual(len(expanded), sum(counts))
|
||||
s2 = sample(expanded, k=k)
|
||||
self.assertEqual(s1, s2)
|
||||
|
||||
pop = 'abcdefghi'
|
||||
counts = [10, 9, 8, 7, 6, 5, 4, 3, 2]
|
||||
seed(8675309)
|
||||
s1 = ''.join(sample(pop, counts=counts, k=30))
|
||||
expanded = ''.join([letter for (letter, count) in zip(pop, counts) for i in range(count)])
|
||||
seed(8675309)
|
||||
s2 = ''.join(sample(expanded, k=30))
|
||||
self.assertEqual(s1, s2)
|
||||
|
||||
def test_choices(self):
|
||||
choices = self.gen.choices
|
||||
data = ['red', 'green', 'blue', 'yellow']
|
||||
|
|
|
@ -0,0 +1 @@
|
|||
Added an optional *counts* parameter to random.sample().
|
Loading…
Reference in New Issue