Fix links to the __next__ method.

This commit is contained in:
Ezio Melotti 2012-10-12 13:42:08 +03:00
parent 35cbf16202
commit 7fa822275b
10 changed files with 60 additions and 55 deletions

View File

@ -354,7 +354,7 @@ Glossary
iterator
An object representing a stream of data. Repeated calls to the iterator's
:meth:`__next__` method (or passing it to the built-in function
:meth:`~iterator.__next__` method (or passing it to the built-in function
:func:`next`) return successive items in the stream. When no more data
are available a :exc:`StopIteration` exception is raised instead. At this
point, the iterator object is exhausted and any further calls to its

View File

@ -42,12 +42,13 @@ Executor Objects
Equivalent to ``map(func, *iterables)`` except *func* is executed
asynchronously and several calls to *func* may be made concurrently. The
returned iterator raises a :exc:`TimeoutError` if :meth:`__next__()` is
called and the result isn't available after *timeout* seconds from the
original call to :meth:`Executor.map`. *timeout* can be an int or a
float. If *timeout* is not specified or ``None``, there is no limit to
the wait time. If a call raises an exception, then that exception will
be raised when its value is retrieved from the iterator.
returned iterator raises a :exc:`TimeoutError` if
:meth:`~iterator.__next__` is called and the result isn't available
after *timeout* seconds from the original call to :meth:`Executor.map`.
*timeout* can be an int or a float. If *timeout* is not specified or
``None``, there is no limit to the wait time. If a call raises an
exception, then that exception will be raised when its value is
retrieved from the iterator.
.. method:: shutdown(wait=True)
@ -358,10 +359,11 @@ Module Functions
different :class:`Executor` instances) given by *fs* that yields futures as
they complete (finished or were cancelled). Any futures that completed
before :func:`as_completed` is called will be yielded first. The returned
iterator raises a :exc:`TimeoutError` if :meth:`__next__` is called and the
result isn't available after *timeout* seconds from the original call to
:func:`as_completed`. *timeout* can be an int or float. If *timeout* is not
specified or ``None``, there is no limit to the wait time.
iterator raises a :exc:`TimeoutError` if :meth:`~iterator.__next__` is
called and the result isn't available after *timeout* seconds from the
original call to :func:`as_completed`. *timeout* can be an int or float.
If *timeout* is not specified or ``None``, there is no limit to the wait
time.
.. seealso::

View File

@ -658,10 +658,10 @@ the more significant byte last.
.. opcode:: FOR_ITER (delta)
``TOS`` is an :term:`iterator`. Call its :meth:`__next__` method. If this
yields a new value, push it on the stack (leaving the iterator below it). If
the iterator indicates it is exhausted ``TOS`` is popped, and the byte code
counter is incremented by *delta*.
``TOS`` is an :term:`iterator`. Call its :meth:`~iterator.__next__` method.
If this yields a new value, push it on the stack (leaving the iterator below
it). If the iterator indicates it is exhausted ``TOS`` is popped, and the
byte code counter is incremented by *delta*.
.. opcode:: LOAD_GLOBAL (namei)

View File

@ -262,7 +262,7 @@ The following exceptions are the exceptions that are usually raised.
.. exception:: StopIteration
Raised by built-in function :func:`next` and an :term:`iterator`\'s
:meth:`__next__` method to signal that there are no further values.
:meth:`~iterator.__next__` method to signal that there are no further values.
.. exception:: SyntaxError

View File

@ -346,10 +346,10 @@ are always available. They are listed here in alphabetical order.
.. function:: enumerate(iterable, start=0)
Return an enumerate object. *iterable* must be a sequence, an
:term:`iterator`, or some other object which supports iteration. The
:meth:`__next__` method of the iterator returned by :func:`enumerate` returns a
tuple containing a count (from *start* which defaults to 0) and the
values obtained from iterating over *iterable*.
:term:`iterator`, or some other object which supports iteration.
The :meth:`~iterator.__next__` method of the iterator returned by
:func:`enumerate` returns a tuple containing a count (from *start* which
defaults to 0) and the values obtained from iterating over *iterable*.
>>> seasons = ['Spring', 'Summer', 'Fall', 'Winter']
>>> list(enumerate(seasons))
@ -681,9 +681,10 @@ are always available. They are listed here in alphabetical order.
starting at ``0``). If it does not support either of those protocols,
:exc:`TypeError` is raised. If the second argument, *sentinel*, is given,
then *object* must be a callable object. The iterator created in this case
will call *object* with no arguments for each call to its :meth:`__next__`
method; if the value returned is equal to *sentinel*, :exc:`StopIteration`
will be raised, otherwise the value will be returned.
will call *object* with no arguments for each call to its
:meth:`~iterator.__next__` method; if the value returned is equal to
*sentinel*, :exc:`StopIteration` will be raised, otherwise the value will
be returned.
One useful application of the second form of :func:`iter` is to read lines of
a file until a certain line is reached. The following example reads a file
@ -781,9 +782,9 @@ are always available. They are listed here in alphabetical order.
.. function:: next(iterator[, default])
Retrieve the next item from the *iterator* by calling its :meth:`__next__`
method. If *default* is given, it is returned if the iterator is exhausted,
otherwise :exc:`StopIteration` is raised.
Retrieve the next item from the *iterator* by calling its
:meth:`~iterator.__next__` method. If *default* is given, it is returned
if the iterator is exhausted, otherwise :exc:`StopIteration` is raised.
.. function:: object()

View File

@ -775,9 +775,9 @@ specific sequence types, dictionaries, and other more specialized forms. The
specific types are not important beyond their implementation of the iterator
protocol.
Once an iterator's :meth:`__next__` method raises :exc:`StopIteration`, it must
continue to do so on subsequent calls. Implementations that do not obey this
property are deemed broken.
Once an iterator's :meth:`~iterator.__next__` method raises
:exc:`StopIteration`, it must continue to do so on subsequent calls.
Implementations that do not obey this property are deemed broken.
.. _generator-types:
@ -788,7 +788,8 @@ Generator Types
Python's :term:`generator`\s provide a convenient way to implement the iterator
protocol. If a container object's :meth:`__iter__` method is implemented as a
generator, it will automatically return an iterator object (technically, a
generator object) supplying the :meth:`__iter__` and :meth:`__next__` methods.
generator object) supplying the :meth:`__iter__` and :meth:`~generator.__next__`
methods.
More information about generators can be found in :ref:`the documentation for
the yield expression <yieldexpr>`.

View File

@ -588,9 +588,9 @@ Callable types
A function or method which uses the :keyword:`yield` statement (see section
:ref:`yield`) is called a :dfn:`generator function`. Such a function, when
called, always returns an iterator object which can be used to execute the
body of the function: calling the iterator's :meth:`__next__` method will
cause the function to execute until it provides a value using the
:keyword:`yield` statement. When the function executes a
body of the function: calling the iterator's :meth:`iterator__next__`
method will cause the function to execute until it provides a value
using the :keyword:`yield` statement. When the function executes a
:keyword:`return` statement or falls off the end, a :exc:`StopIteration`
exception is raised and the iterator will have reached the end of the set of
values to be returned.

View File

@ -294,13 +294,13 @@ for comprehensions, except that it is enclosed in parentheses instead of
brackets or curly braces.
Variables used in the generator expression are evaluated lazily when the
:meth:`__next__` method is called for generator object (in the same fashion as
normal generators). However, the leftmost :keyword:`for` clause is immediately
evaluated, so that an error produced by it can be seen before any other possible
error in the code that handles the generator expression. Subsequent
:keyword:`for` clauses cannot be evaluated immediately since they may depend on
the previous :keyword:`for` loop. For example: ``(x*y for x in range(10) for y
in bar(x))``.
:meth:`~generator.__next__` method is called for generator object (in the same
fashion as normal generators). However, the leftmost :keyword:`for` clause is
immediately evaluated, so that an error produced by it can be seen before any
other possible error in the code that handles the generator expression.
Subsequent :keyword:`for` clauses cannot be evaluated immediately since they
may depend on the previous :keyword:`for` loop. For example: ``(x*y for x in
range(10) for y in bar(x))``.
The parentheses can be omitted on calls with only one argument. See section
:ref:`calls` for the detail.
@ -371,10 +371,11 @@ is already executing raises a :exc:`ValueError` exception.
Starts the execution of a generator function or resumes it at the last
executed :keyword:`yield` expression. When a generator function is resumed
with a :meth:`__next__` method, the current :keyword:`yield` expression
always evaluates to :const:`None`. The execution then continues to the next
:keyword:`yield` expression, where the generator is suspended again, and the
value of the :token:`expression_list` is returned to :meth:`next`'s caller.
with a :meth:`~generator.__next__` method, the current :keyword:`yield`
expression always evaluates to :const:`None`. The execution then continues
to the next :keyword:`yield` expression, where the generator is suspended
again, and the value of the :token:`expression_list` is returned to
:meth:`next`'s caller.
If the generator exits without yielding another value, a :exc:`StopIteration`
exception is raised.

View File

@ -738,11 +738,11 @@ using a :keyword:`for` statement::
This style of access is clear, concise, and convenient. The use of iterators
pervades and unifies Python. Behind the scenes, the :keyword:`for` statement
calls :func:`iter` on the container object. The function returns an iterator
object that defines the method :meth:`__next__` which accesses elements in the
container one at a time. When there are no more elements, :meth:`__next__`
raises a :exc:`StopIteration` exception which tells the :keyword:`for` loop to
terminate. You can call the :meth:`__next__` method using the :func:`next`
built-in function; this example shows how it all works::
object that defines the method :meth:`~iterator.__next__` which accesses
elements in the container one at a time. When there are no more elements,
:meth:`__next__` raises a :exc:`StopIteration` exception which tells the
:keyword:`for` loop to terminate. You can call the :meth:`__next__` method
using the :func:`next` built-in function; this example shows how it all works::
>>> s = 'abc'
>>> it = iter(s)
@ -762,8 +762,8 @@ built-in function; this example shows how it all works::
Having seen the mechanics behind the iterator protocol, it is easy to add
iterator behavior to your classes. Define an :meth:`__iter__` method which
returns an object with a :meth:`__next__` method. If the class defines
:meth:`__next__`, then :meth:`__iter__` can just return ``self``::
returns an object with a :meth:`~iterator.__next__` method. If the class
defines :meth:`__next__`, then :meth:`__iter__` can just return ``self``::
class Reverse:
"""Iterator for looping over a sequence backwards."""
@ -820,8 +820,8 @@ easy to create::
Anything that can be done with generators can also be done with class based
iterators as described in the previous section. What makes generators so
compact is that the :meth:`__iter__` and :meth:`__next__` methods are created
automatically.
compact is that the :meth:`__iter__` and :meth:`~generator.__next__` methods
are created automatically.
Another key feature is that the local variables and execution state are
automatically saved between calls. This made the function easier to write and

View File

@ -771,7 +771,7 @@ Operators And Special Methods
respectively).
* :pep:`3114`: the standard :meth:`next` method has been renamed to
:meth:`__next__`.
:meth:`~iterator.__next__`.
* The :meth:`__oct__` and :meth:`__hex__` special methods are removed
-- :func:`oct` and :func:`hex` use :meth:`__index__` now to convert
@ -807,7 +807,7 @@ Builtins
To get the old behavior of :func:`input`, use ``eval(input())``.
* A new built-in function :func:`next` was added to call the
:meth:`__next__` method on an object.
:meth:`~iterator.__next__` method on an object.
* The :func:`round` function rounding strategy and return type have
changed. Exact halfway cases are now rounded to the nearest even