New Java-style threading module. The doc strings are in a separate module.

This commit is contained in:
Guido van Rossum 1998-04-09 22:01:42 +00:00
parent bb08066053
commit 7f5013a9a9
2 changed files with 1276 additions and 0 deletions

638
Lib/threading.py Normal file
View File

@ -0,0 +1,638 @@
# threading.py:
# Proposed new threading module, emulating a subset of Java's threading model
import sys
import time
import thread
import traceback
import StringIO
# Rename some stuff so "from threading import *" is safe
_sys = sys
del sys
_time = time.time
_sleep = time.sleep
del time
_start_new_thread = thread.start_new_thread
_allocate_lock = thread.allocate_lock
_get_ident = thread.get_ident
del thread
_print_exc = traceback.print_exc
del traceback
_StringIO = StringIO.StringIO
del StringIO
# Debug support (adapted from ihooks.py)
_VERBOSE = 0
if __debug__:
class _Verbose:
def __init__(self, verbose=None):
if verbose is None:
verbose = _VERBOSE
self.__verbose = verbose
def _note(self, format, *args):
if self.__verbose:
format = format % args
format = "%s: %s\n" % (
currentThread().getName(), format)
_sys.stderr.write(format)
else:
# Disable this when using "python -O"
class _Verbose:
def __init__(self, verbose=None):
pass
def _note(self, *args):
pass
# Synchronization classes
Lock = _allocate_lock
def RLock(*args, **kwargs):
return apply(_RLock, args, kwargs)
class _RLock(_Verbose):
def __init__(self, verbose=None):
_Verbose.__init__(self, verbose)
self.__block = _allocate_lock()
self.__owner = None
self.__count = 0
def __repr__(self):
return "<%s(%s, %d)>" % (
self.__class__.__name__,
self.__owner and self.__owner.getName(),
self.__count)
def acquire(self, blocking=1):
me = currentThread()
if self.__owner is me:
self.__count = self.__count + 1
if __debug__:
self._note("%s.acquire(%s): recursive success", self, blocking)
return 1
rc = self.__block.acquire(blocking)
if rc:
self.__owner = me
self.__count = 1
if __debug__:
self._note("%s.acquire(%s): initial succes", self, blocking)
else:
if __debug__:
self._note("%s.acquire(%s): failure", self, blocking)
return rc
def release(self):
me = currentThread()
assert self.__owner is me, "release() of un-acquire()d lock"
self.__count = count = self.__count - 1
if not count:
self.__owner = None
self.__block.release()
if __debug__:
self._note("%s.release(): final release", self)
else:
if __debug__:
self._note("%s.release(): non-final release", self)
# Internal methods used by condition variables
def _acquire_restore(self, (count, owner)):
self.__block.acquire()
self.__count = count
self.__owner = owner
if __debug__:
self._note("%s._acquire_restore()", self)
def _release_save(self):
if __debug__:
self._note("%s._release_save()", self)
count = self.__count
self.__count = 0
owner = self.__owner
self.__owner = None
self.__block.release()
return (count, owner)
def _is_owned(self):
return self.__owner is currentThread()
def Condition(*args, **kwargs):
return apply(_Condition, args, kwargs)
class _Condition(_Verbose):
def __init__(self, lock=None, verbose=None):
_Verbose.__init__(self, verbose)
if lock is None:
lock = RLock()
self.__lock = lock
# Export the lock's acquire() and release() methods
self.acquire = lock.acquire
self.release = lock.release
# If the lock defines _release_save() and/or _acquire_restore(),
# these override the default implementations (which just call
# release() and acquire() on the lock). Ditto for _is_owned().
try:
self._release_save = lock._release_save
except AttributeError:
pass
try:
self._acquire_restore = lock._acquire_restore
except AttributeError:
pass
try:
self._is_owned = lock._is_owned
except AttributeError:
pass
self.__waiters = []
def __repr__(self):
return "<Condition(%s, %d)>" % (self.__lock, len(self.__waiters))
def _release_save(self):
self.__lock.release() # No state to save
def _acquire_restore(self, x):
self.__lock.acquire() # Ignore saved state
def _is_owned(self):
if self.__lock.acquire(0):
self.__lock.release()
return 0
else:
return 1
def wait(self, timeout=None):
me = currentThread()
assert self._is_owned(), "wait() of un-acquire()d lock"
waiter = _allocate_lock()
waiter.acquire()
self.__waiters.append(waiter)
saved_state = self._release_save()
if timeout is None:
waiter.acquire()
if __debug__:
self._note("%s.wait(): got it", self)
else:
endtime = _time() + timeout
delay = 0.000001 # 1 usec
while 1:
gotit = waiter.acquire(0)
if gotit or _time() >= endtime:
break
_sleep(delay)
if delay < 1.0:
delay = delay * 2.0
if not gotit:
if __debug__:
self._note("%s.wait(%s): timed out", self, timeout)
try:
self.__waiters.remove(waiter)
except ValueError:
pass
else:
if __debug__:
self._note("%s.wait(%s): got it", self, timeout)
self._acquire_restore(saved_state)
def notify(self, n=1):
me = currentThread()
assert self._is_owned(), "notify() of un-acquire()d lock"
__waiters = self.__waiters
waiters = __waiters[:n]
if not waiters:
if __debug__:
self._note("%s.notify(): no waiters", self)
return
self._note("%s.notify(): notifying %d waiter%s", self, n,
n!=1 and "s" or "")
for waiter in waiters:
waiter.release()
try:
__waiters.remove(waiter)
except ValueError:
pass
def notifyAll(self):
self.notify(len(self.__waiters))
def Semaphore(*args, **kwargs):
return apply(_Semaphore, args, kwargs)
class _Semaphore(_Verbose):
# After Tim Peters' semaphore class, but bnot quite the same (no maximum)
def __init__(self, value=1, verbose=None):
assert value >= 0, "Semaphore initial value must be >= 0"
_Verbose.__init__(self, verbose)
self.__cond = Condition(Lock())
self.__value = value
def acquire(self, blocking=1):
rc = 0
self.__cond.acquire()
while self.__value == 0:
if not blocking:
break
self.__cond.wait()
else:
self.__value = self.__value - 1
rc = 1
self.__cond.release()
return rc
def release(self):
self.__cond.acquire()
self.__value = self.__value + 1
self.__cond.notify()
self.__cond.release()
def Event(*args, **kwargs):
return apply(_Event, args, kwargs)
class _Event(_Verbose):
# After Tim Peters' event class (without is_posted())
def __init__(self, verbose=None):
_Verbose.__init__(self, verbose)
self.__cond = Condition(Lock())
self.__flag = 0
def isSet(self):
return self.__flag
def set(self):
self.__cond.acquire()
self.__flag = 1
self.__cond.notifyAll()
self.__cond.release()
def clear(self):
self.__cond.acquire()
self.__flag = 0
self.__cond.release()
def wait(self, timeout=None):
self.__cond.acquire()
if not self.__flag:
self.__cond.wait(timeout)
self.__cond.release()
# Helper to generate new thread names
_counter = 0
def _newname(template="Thread-%d"):
global _counter
_counter = _counter + 1
return template % _counter
# Active thread administration
_active_limbo_lock = _allocate_lock()
_active = {}
_limbo = {}
# Main class for threads
class Thread(_Verbose):
__initialized = 0
def __init__(self, group=None, target=None, name=None,
args=(), kwargs={}, verbose=None):
assert group is None, "group argument must be None for now"
_Verbose.__init__(self, verbose)
self.__target = target
self.__name = str(name or _newname())
self.__args = args
self.__kwargs = kwargs
self.__daemonic = self._set_daemon()
self.__started = 0
self.__stopped = 0
self.__block = Condition(Lock())
self.__initialized = 1
def _set_daemon(self):
# Overridden in _MainThread and _DummyThread
return currentThread().isDaemon()
def __repr__(self):
assert self.__initialized, "Thread.__init__() was not called"
status = "initial"
if self.__started:
status = "started"
if self.__stopped:
status = "stopped"
if self.__daemonic:
status = status + " daemon"
return "<%s(%s, %s)>" % (self.__class__.__name__, self.__name, status)
def start(self):
assert self.__initialized, "Thread.__init__() not called"
assert not self.__started, "thread already started"
if __debug__:
self._note("%s.start(): starting thread", self)
_active_limbo_lock.acquire()
_limbo[self] = self
_active_limbo_lock.release()
_start_new_thread(self.__bootstrap, ())
self.__started = 1
_sleep(0.000001) # 1 usec, to let the thread run (Solaris hack)
def run(self):
if self.__target:
apply(self.__target, self.__args, self.__kwargs)
def __bootstrap(self):
try:
self.__started = 1
_active_limbo_lock.acquire()
_active[_get_ident()] = self
del _limbo[self]
_active_limbo_lock.release()
if __debug__:
self._note("%s.__bootstrap(): thread started", self)
try:
self.run()
except SystemExit:
if __debug__:
self._note("%s.__bootstrap(): raised SystemExit", self)
except:
if __debug__:
self._note("%s.__bootstrap(): unhandled exception", self)
s = _StringIO()
_print_exc(file=s)
_sys.stderr.write("Exception in thread %s:\n%s\n" %
(self.getName(), s.getvalue()))
else:
if __debug__:
self._note("%s.__bootstrap(): normal return", self)
finally:
self.__stop()
self.__delete()
def __stop(self):
self.__block.acquire()
self.__stopped = 1
self.__block.notifyAll()
self.__block.release()
def __delete(self):
_active_limbo_lock.acquire()
del _active[_get_ident()]
_active_limbo_lock.release()
def join(self, timeout=None):
assert self.__initialized, "Thread.__init__() not called"
assert self.__started, "cannot join thread before it is started"
assert self is not currentThread(), "cannot join current thread"
if __debug__:
if not self.__stopped:
self._note("%s.join(): waiting until thread stops", self)
self.__block.acquire()
if timeout is None:
while not self.__stopped:
self.__block.wait()
if __debug__:
self._note("%s.join(): thread stopped", self)
else:
deadline = time.time() + timeout
while not self.__stopped:
delay = deadline - time.time()
if delay <= 0:
if __debug__:
self._note("%s.join(): timed out", self)
break
self.__block.wait(delay)
else:
if __debug__:
self._note("%s.join(): thread stopped", self)
self.__block.release()
def getName(self):
assert self.__initialized, "Thread.__init__() not called"
return self.__name
def setName(self, name):
assert self.__initialized, "Thread.__init__() not called"
self.__name = str(name)
def isAlive(self):
assert self.__initialized, "Thread.__init__() not called"
return self.__started and not self.__stopped
def isDaemon(self):
assert self.__initialized, "Thread.__init__() not called"
return self.__daemonic
def setDaemon(self, daemonic):
assert self.__initialized, "Thread.__init__() not called"
assert not self.__started, "cannot set daemon status of active thread"
self.__daemonic = daemonic
# Special thread class to represent the main thread
# This is garbage collected through an exit handler
class _MainThread(Thread):
def __init__(self):
Thread.__init__(self, name="MainThread")
self._Thread__started = 1
_active_limbo_lock.acquire()
_active[_get_ident()] = self
_active_limbo_lock.release()
try:
self.__oldexitfunc = _sys.exitfunc
except AttributeError:
self.__oldexitfunc = None
_sys.exitfunc = self.__exitfunc
def _set_daemon(self):
return 0
def __exitfunc(self):
self._Thread__stop()
t = _pickSomeNonDaemonThread()
if t:
if __debug__:
self._note("%s: waiting for other threads", self)
while t:
t.join()
t = _pickSomeNonDaemonThread()
if self.__oldexitfunc:
if __debug__:
self._note("%s: calling exit handler", self)
self.__oldexitfunc()
if __debug__:
self._note("%s: exiting", self)
self._Thread__delete()
def _pickSomeNonDaemonThread():
for t in enumerate():
if not t.isDaemon() and t.isAlive():
return t
return None
# Dummy thread class to represent threads not started here.
# These aren't garbage collected when they die,
# nor can they be waited for.
# Their purpose is to return *something* from currentThread().
# They are marked as daemon threads so we won't wait for them
# when we exit (conform previous semantics).
class _DummyThread(Thread):
def __init__(self):
Thread.__init__(self, name=_newname("Dummy-%d"))
self.__Thread_started = 1
_active_limbo_lock.acquire()
_active[_get_ident()] = self
_active_limbo_lock.release()
def _set_daemon(self):
return 1
def join(self):
assert 0, "cannot join a dummy thread"
# Global API functions
def currentThread():
try:
return _active[_get_ident()]
except KeyError:
print "currentThread(): no current thread for", _get_ident()
return _DummyThread()
def activeCount():
_active_limbo_lock.acquire()
count = len(_active) + len(_limbo)
_active_limbo_lock.release()
return count
def enumerate():
_active_limbo_lock.acquire()
active = _active.values() + _limbo.values()
_active_limbo_lock.release()
return active
# Create the main thread object
_MainThread()
# Self-test code
def _test():
import whrandom
class BoundedQueue(_Verbose):
def __init__(self, limit):
_Verbose.__init__(self)
self.mon = RLock()
self.rc = Condition(self.mon)
self.wc = Condition(self.mon)
self.limit = limit
self.queue = []
def put(self, item):
self.mon.acquire()
while len(self.queue) >= self.limit:
self._note("put(%s): queue full", item)
self.wc.wait()
self.queue.append(item)
self._note("put(%s): appended, length now %d",
item, len(self.queue))
self.rc.notify()
self.mon.release()
def get(self):
self.mon.acquire()
while not self.queue:
self._note("get(): queue empty")
self.rc.wait()
item = self.queue[0]
del self.queue[0]
self._note("get(): got %s, %d left", item, len(self.queue))
self.wc.notify()
self.mon.release()
return item
class ProducerThread(Thread):
def __init__(self, queue, quota):
Thread.__init__(self, name="Producer")
self.queue = queue
self.quota = quota
def run(self):
from whrandom import random
counter = 0
while counter < self.quota:
counter = counter + 1
self.queue.put("%s.%d" % (self.getName(), counter))
_sleep(random() * 0.00001)
class ConsumerThread(Thread):
def __init__(self, queue, count):
Thread.__init__(self, name="Consumer")
self.queue = queue
self.count = count
def run(self):
while self.count > 0:
item = self.queue.get()
print item
self.count = self.count - 1
import time
NP = 3
QL = 4
NI = 5
Q = BoundedQueue(QL)
P = []
for i in range(NP):
t = ProducerThread(Q, NI)
t.setName("Producer-%d" % (i+1))
P.append(t)
C = ConsumerThread(Q, NI*NP)
for t in P:
t.start()
_sleep(0.000001)
C.start()
for t in P:
t.join()
C.join()
if __name__ == '__main__':
_test()

638
Lib/threading_api.py Normal file
View File

@ -0,0 +1,638 @@
"""Proposed new higher-level threading interfaces.
This module is safe for use with 'from threading import *'. It
defines the following objects:
Lock()
A factory function that returns a new primitive lock object. Once
a thread has acquired it, subsequent attempts to acquire it block,
until it is released; any thread may release it.
RLock()
A factory function that returns a new reentrant lock object.
A reentrant lock must be released by the thread that acquired it.
Once a thread has acquired a reentrant lock, the same thread may
acquire it again without blocking; the thread must release it once
for each time it has acquired it.
Condition()
A factory function that returns a new condition variable object.
A condition variable allows one or more threads to wait until they
are notified by another thread.
Semaphore()
A factory function that returns a new semaphore object. A
semaphore manages a counter representing the number of release()
calls minus the number of acquire() calls, plus an initial value.
The acquire() method blocks if necessary until it can return
without making the counter negative.
Event()
A factory function that returns a new event object. An event
manages a flag that can be set to true with the set() method and
reset to false with the clear() method. The wait() method blocks
until the flag is true.
Thread
A class that represents a thread of control -- subclassable.
currentThread()
A function that returns the Thread object for the caller's thread.
activeCount()
A function that returns the number of currently active threads.
enumerate()
A function that returns a list of all currently active threads.
Detailed interfaces for each of these are documented below in the form
of pseudo class definitions. Note that the classes marked as ``do not
subclass'' are actually implemented as factory functions; classes are
shown here as a way to structure the documentation only.
The design of this module is loosely based on Java's threading model.
However, where Java makes locks and condition variables basic behavior
of every object, they are separate objects in Python. Python's Thread
class supports a subset of the behavior of Java's Thread class;
currently, there are no priorities, no thread groups, and threads
cannot be destroyed, stopped, suspended, resumed, or interrupted. The
static methods of Java's Thread class, when implemented, are mapped to
module-level functions.
All methods described below are executed atomically.
"""
class Lock:
"""Primitive lock object.
*** DO NOT SUBCLASS THIS CLASS ***
A primitive lock is a synchronization primitive that is not owned
by a particular thread when locked. In Python, it is currently
the lowest level synchronization primitive available, implemented
directly by the thread extension module.
A primitive lock is in one of two states, ``locked'' or
``unlocked''. It is created in the unlocked state. It has two
basic methods, acquire() and release(). When the state is
unlocked, acquire() changes the state to locked and returns
immediately. When the state is locked, acquire() blocks until a
call to release() in another thread changes it to unlocked, then
the acquire() call resets it to locked and returns. The release()
method should only be called in the locked state; it changes the
state to unlocked and returns immediately. When more than one
thread is blocked in acquire() waiting for the state to turn to
unlocked, only one thread proceeds when a release() call resets
the state to unlocked; which one of the waiting threads proceeds
is not defined, and may vary across implementations.
All methods are executed atomically.
"""
def acquire(self, blocking=1):
"""Acquire a lock, blocking or non-blocking.
When invoked without arguments, block until the lock is
unlocked, then set it to locked, and return. There is no
return value in this case.
When invoked with the 'blocking' argument set to true, do the
same thing as when called without arguments, and return true.
When invoked with the 'blocking' argument set to false, do not
block. If a call without argument would block, return false
immediately; otherwise, do the same thing as when called
without arguments, and return true.
"""
def release(self):
"""Release a lock.
When the lock is locked, reset it to unlocked, and return. If
any other threads are blocked waiting for the lock to become
unlocked, allow exactly one of them to proceed.
Do not call this method when the lock is unlocked.
There is no return value.
"""
class RLock:
"""Reentrant lock object.
*** DO NOT SUBCLASS THIS CLASS ***
A reentrant lock is a synchronization primitive that may be
acquired multiple times by the same thread. Internally, it uses
the concepts of ``owning thread'' and ``recursion level'' in
addition to the locked/unlocked state used by primitive locks. In
the locked state, some thread owns the lock; in the unlocked
state, no thread owns it.
To lock the lock, a thread calls its acquire() method; this
returns once the thread owns the lock. To unlock the lock, a
thread calls its release() method. acquire()/release() call pairs
may be nested; only the final release() (i.e. the release() of the
outermost pair) resets the lock to unlocked and allows another
thread blocked in acquire() to proceed.
"""
def acquire(self, blocking=1):
"""Acquire a lock, blocking or non-blocking.
When invoked without arguments: if this thread already owns
the lock, increment the recursion level by one, and return
immediately. Otherwise, if another thread owns the lock,
block until the lock is unlocked. Once the lock is unlocked
(not owned by any thread), then grab ownership, set the
recursion level to one, and return. If more than one thread
is blocked waiting until the lock is unlocked, only one at a
time will be able to grab ownership of the lock. There is no
return value in this case.
When invoked with the 'blocking' argument set to true, do the
same thing as when called without arguments, and return true.
When invoked with the 'blocking' argument set to false, do not
block. If a call without argument would block, return false
immediately; otherwise, do the same thing as when called
without arguments, and return true.
"""
def release(self):
"""Release a lock.
Only call this method when the calling thread owns the lock.
Decrement the recursion level. If after the decrement it is
zero, reset the lock to unlocked (not owned by any thread),
and if any other threads are blocked waiting for the lock to
become unlocked, allow exactly one of them to proceed. If
after the decrement the recursion level is still nonzero, the
lock remains locked and owned by the calling thread.
Do not call this method when the lock is unlocked.
There is no return value.
"""
class Condition:
"""Synchronized condition variable object.
*** DO NOT SUBCLASS THIS CLASS ***
A condition variable is always associated with some kind of lock;
this can be passed in or one will be created by default. (Passing
one in is useful when several condition variables must share the
same lock.)
A condition variable has acquire() and release() methods that call
the corresponding methods of the associated lock.
It also has a wait() method, and notify() and notifyAll() methods.
These three must only be called when the calling thread has
acquired the lock.
The wait() method releases the lock, and then blocks until it is
awakened by a notifiy() or notifyAll() call for the same condition
variable in another thread. Once awakened, it re-acquires the
lock and returns. It is also possible to specify a timeout.
The notify() method wakes up one of the threads waiting for the
condition variable, if any are waiting. The notifyAll() method
wakes up all threads waiting for the condition variable.
Note: the notify() and notifyAll() methods don't release the
lock; this means that the thread or threads awakened will not
return from their wait() call immediately, but only when the
thread that called notify() or notifyAll() finally relinquishes
ownership of the lock.
Tip: the typical programming style using condition variables uses
the lock to synchronize access to some shared state; threads that
are interested in a particular change of state call wait()
repeatedly until they see the desired state, while threads that
modify the state call notify() or notifyAll() when they change the
state in such a way that it could possibly be a desired state for
one of the waiters. For example, the following code is a generic
producer-consumer situation with unlimited buffer capacity:
# Consume one item
cv.acquire()
while not an_item_is_available():
cv.wait()
get_an_available_item()
cv.release()
# Produce one item
cv.acquire()
make_an_item_available()
cv.notify()
cv.release()
To choose between notify() and notifyAll(), consider whether one
state change can be interesting for only one or several waiting
threads. E.g. in a typical producer-consumer situation, adding
one item to the buffer only needs to wake up one consumer thread.
"""
def __init__(self, lock=None):
"""Constructor.
If the lock argument is given and not None, it must be a Lock
or RLock object, and it is used as the underlying lock.
Otherwise, a new RLock object is created and used as the
underlying lock.
"""
def acquire(self, *args):
"""Acquire the underlying lock.
This method calls the corresponding method on the underlying
lock; the return value is whatever that method returns.
"""
def release(self):
"""Release the underlying lock.
This method calls the corresponding method on the underlying
lock; there is no return value.
"""
def wait(self, timeout=None):
"""Wait until notified or until a timeout occurs.
This must only be called when the calling thread has acquired
the lock.
This method releases the underlying lock, and then blocks
until it is awakened by a notify() or notifyAll() call for the
same condition variable in another thread, or until the
optional timeout occurs. Once awakened or timed out, it
re-acquires the lock and returns.
When the timeout argument is present and not None, it should
be a floating point number specifying a timeout for the
operation in seconds (or fractions thereof).
When the underlying lock is an RLock, it is not released using
its release() method, since this may not actually unlock the
lock when it was acquired() multiple times recursively.
Instead, an internal interface of the RLock class is used,
which really unlocks it even when it has been recursively
acquired several times. Another internal interface is then
used to restore the recursion level when the lock is
reacquired.
"""
def notify(self):
"""Wake up a thread waiting on this condition, if any.
This must only be called when the calling thread has acquired
the lock.
This method wakes up one of the threads waiting for the
condition variable, if any are waiting; it is a no-op if no
threads are waiting.
The current implementation wakes up exactly one thread, if any
are waiting. However, it's not safe to rely on this behavior.
A future, optimized implementation may occasionally wake up
more than one thread.
Note: the awakened thread does not actually return from its
wait() call until it can reacquire the lock. Since notify()
does not release the lock, its caller should.
"""
def notifyAll(self):
"""Wake up all threads waiting on this condition.
This method acts like notify(), but wakes up all waiting
threads instead of one.
"""
class Semaphore:
"""Semaphore object.
This is one of the oldest synchronization primitives in the
history of computer science, invented by the early Dutch computer
scientist Edsger W. Dijkstra (he used P() and V() instead of
acquire() and release()).
A semaphore manages an internal counter which is decremented by
each acquire() call and incremented by each release() call. The
counter can never go below zero; when acquire() finds that it is
zero, it blocks, waiting until some other thread calls release().
"""
def __init__(self, value=1):
"""Constructor.
The optional argument gives the initial value for the internal
counter; it defaults to 1.
"""
def acquire(self, blocking=1):
"""Acquire a semaphore.
When invoked without arguments: if the internal counter is
larger than zero on entry, decrement it by one and return
immediately. If it is zero on entry, block, waiting until
some other thread has called release() to make it larger than
zero. This is done with proper interlocking so that if
multiple acquire() calls are blocked, release() will wake
exactly one of them up. The implementation may pick one at
random, so the order in which blocked threads are awakened
should not be relied on. There is no return value in this
case.
When invoked with the 'blocking' argument set to true, do the
same thing as when called without arguments, and return true.
When invoked with the 'blocking' argument set to false, do not
block. If a call without argument would block, return false
immediately; otherwise, do the same thing as when called
without arguments, and return true.
"""
def release(self):
"""Release a semaphore.
Increment the internal counter by one. When it was zero on
entry and another thread is waiting for it to become larger
than zero again, wake up that thread.
"""
class Event:
"""Event object.
This is one of the simplest mechanisms for communication between
threads: one thread signals an event and another thread, or
threads, wait for it.
An event object manages an internal flag that can be set to true
with the set() method and reset to false with the clear() method.
The wait() method blocks until the flag is true.
"""
def __init__(self):
"""Constructor.
The internal flag is initially false.
"""
def isSet(self):
"""Return true iff the internal flag is true."""
def set(self):
"""Set the internal flag to true.
All threads waiting for it to become true are awakened.
Threads that call wait() once the flag is true will not block
at all.
"""
def clear(self):
"""Reset the internal flag to false.
Subsequently, threads calling wait() will block until set() is
called to set the internal flag to true again.
"""
def wait(self, timeout=None):
"""Block until the internal flag is true.
If the internal flag is true on entry, return immediately.
Otherwise, block until another thread calls set() to set the
flag to true, or until the optional timeout occurs.
When the timeout argument is present and not None, it should
be a floating point number specifying a timeout for the
operation in seconds (or fractions thereof).
"""
class Thread:
"""Thread class.
*** ONLY OVERRIDE THE __init__() AND run() METHODS OF THIS CLASS ***
This class represents an activity that is run in a separate thread
of control. There are two ways to specify the activity: by
passing a callable object to the constructor, or by overriding the
run() method in a subclass. No other methods (except for the
constructor) should be overridden in a subclass.
Once a thread object is created, its activity must be started by
calling the thread's start() method. This invokes the run()
method in a separate thread of control.
Once the thread's activity is started, the thread is considered
'alive' and 'active' (these concepts are almost, but not quite
exactly, the same; their definition is intentionally somewhat
vague). It stops being alive and active when its run() method
terminates -- either normally, or by raising an unhandled
exception. The isAlive() method tests whether the thread is
alive.
Other threads can call a thread's join() method. This blocks the
calling thread until the thread whose join() method is called
is terminated.
A thread has a name. The name can be passed to the constructor,
set with the setName() method, and retrieved with the getName()
method.
A thread can be flagged as a ``daemon thread''. The significance
of this flag is that the entire Python program exits when only
daemon threads are left. The initial value is inherited from the
creating thread. The flag can be set with the setDaemon() method
and retrieved with the getDaemon() method.
There is a ``main thread'' object; this corresponds to the
initial thread of control in the Python program. It is not a
daemon thread.
There is the possibility that ``dummy thread objects'' are
created. These are thread objects corresponding to ``alien
threads''. These are threads of control started outside the
threading module, e.g. directly from C code. Dummy thread objects
have limited functionality; they are always considered alive,
active, and daemonic, and cannot be join()ed. They are never
deleted, since it is impossible to detect the termination of alien
threads.
"""
def __init__(self, group=None, target=None, name=None,
args=(), kwargs={}):
"""Thread constructor.
This constructor should always be called with keyword
arguments. Arguments are:
group
Should be None; reserved for future extension when a
ThreadGroup class is implemented.
target
Callable object to be invoked by the run() method.
Defaults to None, meaning nothing is called.
name
The thread name. By default, a unique name is constructed
of the form ``Thread-N'' where N is a small decimal
number.
args
Argument tuple for the target invocation. Defaults to ().
kwargs
Keyword argument dictionary for the target invocation.
Defaults to {}.
If the subclass overrides the constructor, it must make sure
to invoke the base class constructor (Thread.__init__())
before doing anything else to the thread.
"""
def start(self):
"""Start the thread's activity.
This must be called at most once per thread object. It
arranges for the object's run() method to be invoked in a
separate thread of control.
"""
def run(self):
"""Method representing the thread's activity.
You may override this method in a subclass. The standard
run() method invokes the callable object passed as the
'target' argument, if any, with sequential and keyword
arguments taken from the 'args' and 'kwargs' arguments,
respectively.
"""
def join(self, timeout=None):
"""Wait until the thread terminates.
This blocks the calling thread until the thread whose join()
method is called terminates -- either normally or through an
unhandled exception -- or until the optional timeout occurs.
When the timeout argument is present and not None, it should
be a floating point number specifying a timeout for the
operation in seconds (or fractions thereof).
A thread can be join()ed many times.
A thread cannot join itself because this would cause a
deadlock.
It is an error to attempt to join() a thread before it has
been started.
"""
def getName(self):
"""Return the thread's name."""
def setName(self, name):
"""Set the thread's name.
The name is a string used for identification purposes only.
It has no semantics. Multiple threads may be given the same
name. The initial name is set by the constructor.
"""
def isAlive(self):
"""Return whether the thread is alive.
Roughly, a thread is alive from the moment the start() method
returns until its run() method terminates.
"""
def isDaemon(self):
"""Return the thread's daemon flag."""
def setDaemon(self):
"""Set the thread's daemon flag.
This must be called before start() is called.
The initial value is inherited from the creating thread.
The entire Python program exits when no active non-daemon
threads are left.
"""
# Module-level functions:
def currentThread():
"""Return the current Thread object.
This function returns the Thread object corresponding to the
caller's thread of control.
If the caller's thread of control was not created through the
threading module, a dummy thread object with limited functionality
is returned.
"""
def activeCount():
"""Return the number of currently active Thread objects.
The returned count is equal to the length of the list returned by
enumerate().
"""
def enumerate():
"""Return a list of all currently active Thread objects.
The list includes daemonic threads, dummy thread objects created
by currentThread(), and the main thread. It excludes terminated
threads and threads that have not yet been started.
"""