Closes issue #19273: clean up the pcbuild readme.txt (Patch by Zachary Ware)

This commit is contained in:
Tim Golden 2013-10-25 08:58:16 +01:00
parent 5afe6d613a
commit 7d0523621c
1 changed files with 252 additions and 249 deletions

View File

@ -1,320 +1,320 @@
Building Python using VC++ 10.0
-------------------------------
Building Python using Microsoft Visual C++
------------------------------------------
This directory is used to build Python for Win32 and x64 platforms, e.g.
Windows 2000, XP, Vista and Windows Server 2008. In order to build 32-bit
debug and release executables, Microsoft Visual C++ 2010 Express Edition is
required at the very least. In order to build 64-bit debug and release
executables, Visual Studio 2010 Standard Edition is required at the very
least. In order to build all of the above, as well as generate release builds
that make use of Profile Guided Optimisation (PG0), Visual Studio 2010
Professional Edition is required at the very least. The official Python
releases are built with this version of Visual Studio.
This directory is used to build CPython for Microsoft Windows NT version
5.1 or higher (Windows XP, Windows Server 2003, or later) on 32 and 64
bit platforms. Using this directory requires an installation of
Microsoft Visual C++ 2010 (MSVC 10.0) of any edition. The specific
requirements are as follows:
Visual C++ 2010 Express Edition
Required for building 32-bit Debug and Release configuration builds.
This edition does not support "solution folders", which pcbuild.sln
uses; this will not prevent building.
Visual Studio 2010 Standard Edition
Required for building 64-bit Debug and Release configuration builds
Visual Studio 2010 Professional Edition
Required for building Release configuration builds that make use of
Profile Guided Optimization (PGO), on either platform. The official
Python releases are built with Professional Edition using PGO.
For other Windows platforms and compilers, see ../PC/readme.txt.
All you need to do to build is open the solution "pcbuild.sln" in Visual
Studio, select the desired combination of configuration and platform,
then build with "Build Solution" or the F7 keyboard shortcut. You can
also build from the command line using the "build.bat" script in this
directory. The solution is configured to build the projects in the
correct order.
All you need to do is open the workspace "pcbuild.sln" in Visual Studio,
select the desired combination of configuration and platform and eventually
build the solution. Unless you are going to debug a problem in the core or
you are going to create an optimized build you want to select "Release" as
configuration.
The solution currently supports two platforms. The Win32 platform is
used to build standard x86-compatible 32-bit binaries, output into this
directory. The x64 platform is used for building 64-bit AMD64 (aka
x86_64 or EM64T) binaries, output into the amd64 sub-directory which
will be created if it doesn't already exist. The Itanium (IA-64)
platform is no longer supported. See the "Building for AMD64" section
below for more information about 64-bit builds.
The PCbuild directory is compatible with all versions of Visual Studio from
VS C++ Express Edition over the standard edition up to the professional
edition. However the express edition does not support features like solution
folders or profile guided optimization (PGO). The missing bits and pieces
won't stop you from building Python.
Four configuration options are supported by the solution:
Debug
Used to build Python with extra debugging capabilities, equivalent
to using ./configure --with-pydebug on UNIX. All binaries built
using this configuration have "_d" added to their name:
python34_d.dll, python_d.exe, parser_d.pyd, and so on. Both the
build and rt (run test) batch files in this directory accept a -d
option for debug builds. If you are building Python to help with
development of CPython, you will most likely use this configuration.
PGInstrument, PGUpdate
Used to build Python in Release configuration using PGO, which
requires Professional Edition of Visual Studio. See the "Profile
Guided Optimization" section below for more information. Build
output from each of these configurations lands in its own
sub-directory of this directory. The official Python releases are
built using these configurations.
Release
Used to build Python as it is meant to be used in production
settings, though without PGO.
The solution is configured to build the projects in the correct order. "Build
Solution" or F7 takes care of dependencies except for x64 builds. To make
cross compiling x64 builds on a 32bit OS possible the x64 builds require a
32bit version of Python.
NOTE:
You probably don't want to build most of the other subprojects, unless
you're building an entire Python distribution from scratch, or
specifically making changes to the subsystems they implement, or are
running a Python core buildbot test slave; see SUBPROJECTS below)
When using the Debug setting, the output files have a _d added to
their name: python34_d.dll, python_d.exe, parser_d.pyd, and so on. Both
the build and rt batch files accept a -d option for debug builds.
The 32bit builds end up in the solution folder PCbuild while the x64 builds
land in the amd64 subfolder. The PGI and PGO builds for profile guided
optimization end up in their own folders, too.
Legacy support
--------------
You can find build directories for older versions of Visual Studio and
Visual C++ in the PC directory. The legacy build directories are no longer
actively maintained and may not work out of the box.
You can find build directories for older versions of Visual Studio and
Visual C++ in the PC directory. The legacy build directories are no
longer actively maintained and may not work out of the box.
PC/VC6/
Visual C++ 6.0
PC/VS7.1/
Visual Studio 2003 (7.1)
PC/VS8.0/
Visual Studio 2005 (8.0)
PC/VS9.0/
Visual Studio 2008 (9.0)
Currently, the only legacy build directory is PC\VS9.0, for Visual
Studio 2008 (9.0).
C RUNTIME
C Runtime
---------
Visual Studio 2010 uses version 10 of the C runtime (MSVCRT9). The executables
no longer use the "Side by Side" assemblies used in previous versions of the
compiler. This simplifies distribution of applications.
The run time libraries are avalible under the VC/Redist folder of your visual studio
distribution. For more info, see the Readme in the VC/Redist folder.
Visual Studio 2010 uses version 10 of the C runtime (MSVCRT10). The
executables no longer use the "Side by Side" assemblies used in previous
versions of the compiler. This simplifies distribution of applications.
SUBPROJECTS
-----------
These subprojects should build out of the box. Subprojects other than the
main ones (pythoncore, python, pythonw) generally build a DLL (renamed to
.pyd) from a specific module so that users don't have to load the code
supporting that module unless they import the module.
The run time libraries are available under the VC/Redist folder of your
Visual Studio distribution. For more info, see the Readme in the
VC/Redist folder.
Sub-Projects
------------
The CPython project is split up into several smaller sub-projects which
are managed by the pcbuild.sln solution file. Each sub-project is
represented by a .vcxproj and a .vcxproj.filters file starting with the
name of the sub-project. These sub-projects fall into a few general
categories:
The following sub-projects represent the bare minimum required to build
a functioning CPython interpreter. If nothing else builds but these,
you'll have a very limited but usable python.exe:
pythoncore
.dll and .lib
python
.exe
kill_python
kill_python.exe, a small program designed to kill any instances of
python(_d).exe that are running and live in the build output
directory; this is meant to avoid build issues due to locked files
make_buildinfo, make_versioninfo
helpers to provide necessary information to the build process
These sub-projects provide extra executables that are useful for running
CPython in different ways:
pythonw
pythonw.exe, a variant of python.exe that doesn't pop up a DOS box
pythonw.exe, a variant of python.exe that doesn't open a Command
Prompt window
pylauncher
py.exe, the Python Launcher for Windows, see
http://docs.python.org/3/using/windows.html#launcher
pywlauncher
pyw.exe, a variant of py.exe that doesn't open a Command Prompt
window
These are miscellaneous sub-projects that don't really fit the other
categories. By default, these projects do not build in Debug
configuration:
_freeze_importlib
_freeze_importlib.exe, used to regenerate Python\importlib.h after
changes have been made to Lib\importlib\_bootstrap.py
bdist_wininst
..\Lib\distutils\command\wininst-10.0[-amd64].exe, the base
executable used by the distutils bdist_wininst command
python3dll
python3.dll, the PEP 384 Stable ABI dll
xxlimited
builds an example module that makes use of the PEP 384 Stable ABI,
see Modules\xxlimited.c
The following sub-projects are for individual modules of the standard
library which are implemented in C; each one builds a DLL (renamed to
.pyd) of the same name as the project:
_ctypes
_ctypes_test
_decimal
_elementtree
_hashlib
_msi
_multiprocessing
_overlapped
_sha3
_socket
socketmodule.c
_testcapi
tests of the Python C API, run via Lib/test/test_capi.py, and
implemented by module Modules/_testcapimodule.c
_testbuffer
buffer protocol tests, run via Lib/test/test_buffer.py, and
implemented by module Modules/_testbuffer.c
_testimportmultiple
pyexpat
Python wrapper for accelerated XML parsing, which incorporates stable
code from the Expat project: http://sourceforge.net/projects/expat/
select
selectmodule.c
unicodedata
large tables of Unicode data
winsound
play sounds (typically .wav files) under Windows
Python-controlled subprojects that wrap external projects:
_sqlite3
Wraps SQLite 3.7.4, which is currently built by sqlite3.vcproj (see below).
_tkinter
Wraps the Tk windowing system. Unlike _sqlite3, there's no
corresponding tcltk.vcproj-type project that builds Tcl/Tk from vcproj's
within our pcbuild.sln, which means this module expects to find a
pre-built Tcl/Tk in either ..\..\tcltk for 32-bit or ..\..\tcltk64 for
64-bit (relative to this directory). See below for instructions to build
Tcl/Tk.
The following Python-controlled sub-projects wrap external projects.
Note that these external libraries are not necessary for a working
interpreter, but they do implement several major features. See the
"Getting External Sources" section below for additional information
about getting the source for building these libraries. The sub-projects
are:
_bz2
Python wrapper for the libbzip2 compression library. Homepage
Python wrapper for version 1.0.6 of the libbzip2 compression library
Homepage:
http://www.bzip.org/
Download the source from the python.org copy into the dist
directory:
svn export http://svn.python.org/projects/external/bzip2-1.0.6
** NOTE: if you use the Tools\buildbot\external(-amd64).bat approach for
obtaining external sources then you don't need to manually get the source
above via subversion. **
A custom pre-link step in the bz2 project settings should manage to
build bzip2-1.0.6\libbz2.lib by magic before bz2.pyd (or bz2_d.pyd) is
linked in PCbuild\.
However, the bz2 project is not smart enough to remove anything under
bzip2-1.0.6\ when you do a clean, so if you want to rebuild bzip2.lib
you need to clean up bzip2-1.0.6\ by hand.
All of this managed to build libbz2.lib in
bzip2-1.0.6\$platform-$configuration\, which the Python project links in.
_lzma
Python wrapper for the liblzma compression library.
Download the pre-built Windows binaries from http://tukaani.org/xz/, and
extract to ..\xz-5.0.3. If you are using a more recent version of liblzma,
it will be necessary to rename the directory from xz-<VERSION> to xz-5.0.3.
Python wrapper for the liblzma compression library, using pre-built
binaries of XZ Utils version 5.0.3
Homepage:
http://tukaani.org/xz/
_ssl
Python wrapper for the secure sockets library.
Python wrapper for version 1.0.1e of the OpenSSL secure sockets
library, which is built by ssl.vcxproj
Homepage:
http://www.openssl.org/
Get the source code through
Building OpenSSL requires nasm.exe (the Netwide Assembler), version
2.10 or newer from
http://www.nasm.us/
to be somewhere on your PATH. More recent versions of OpenSSL may
need a later version of NASM. If OpenSSL's self tests don't pass,
you should first try to update NASM and do a full rebuild of
OpenSSL.
svn export http://svn.python.org/projects/external/openssl-1.0.1e
** NOTE: if you use the Tools\buildbot\external(-amd64).bat approach for
obtaining external sources then you don't need to manually get the source
above via subversion. **
Alternatively, get the latest version from http://www.openssl.org.
You can (theoretically) use any version of OpenSSL you like - the
build process will automatically select the latest version.
You must install the NASM assembler 2.10 or newer from
http://nasm.sf.net
for x86 builds. Put nasmw.exe anywhere in your PATH. More recent
versions of OpenSSL may need a later version of NASM. If OpenSSL's self
tests don't pass, you should first try to update NASM and do a full
rebuild of OpenSSL.
Note: recent releases of nasm only have nasm.exe. Just rename it to
nasmw.exe.
You can also install ActivePerl from
If you like to use the official sources instead of the files from
python.org's subversion repository, Perl is required to build the
necessary makefiles and assembly files. ActivePerl is available
from
http://www.activestate.com/activeperl/
if you like to use the official sources instead of the files from
python's subversion repository. The svn version contains pre-build
makefiles and assembly files.
The svn.python.org version contains pre-built makefiles and assembly
files.
The build process makes sure that no patented algorithms are included.
For now RC5, MDC2 and IDEA are excluded from the build. You may have
to manually remove $(OBJ_D)\i_*.obj from ms\nt.mak if the build process
complains about missing files or forbidden IDEA. Again the files provided
in the subversion repository are already fixed.
The build process makes sure that no patented algorithms are
included. For now RC5, MDC2 and IDEA are excluded from the build.
You may have to manually remove $(OBJ_D)\i_*.obj from ms\nt.mak if
using official sources; the svn.python.org-hosted version is already
fixed.
The MSVC project simply invokes PCBuild/build_ssl.py to perform
the build. This Python script locates and builds your OpenSSL
installation, then invokes a simple makefile to build the final .pyd.
The ssl.vcxproj sub-project simply invokes PCbuild/build_ssl.py,
which locates and builds OpenSSL.
build_ssl.py attempts to catch the most common errors (such as not
being able to find OpenSSL sources, or not being able to find a Perl
that works with OpenSSL) and give a reasonable error message.
If you have a problem that doesn't seem to be handled correctly
(eg, you know you have ActivePerl but we can't find it), please take
a peek at build_ssl.py and suggest patches. Note that build_ssl.py
that works with OpenSSL) and give a reasonable error message. If
you have a problem that doesn't seem to be handled correctly (e.g.,
you know you have ActivePerl but we can't find it), please take a
peek at build_ssl.py and suggest patches. Note that build_ssl.py
should be able to be run directly from the command-line.
build_ssl.py/MSVC isn't clever enough to clean OpenSSL - you must do
this by hand.
The ssl sub-project does not have the ability to clean the OpenSSL
build; if you need to rebuild, you'll have to clean it by hand.
_sqlite3
Wraps SQLite 3.7.12, which is itself built by sqlite3.vcxproj
Homepage:
http://www.sqlite.org/
_tkinter
Wraps version 8.5.11 of the Tk windowing system.
Homepage:
http://www.tcl.tk/
The subprojects above wrap external projects Python doesn't control, and as
such, a little more work is required in order to download the relevant source
files for each project before they can be built. The buildbots do this each
time they're built, so the easiest approach is to run either external.bat or
external-amd64.bat in the ..\Tools\buildbot directory from ..\, i.e.:
Unlike the other external libraries listed above, Tk must be built
separately before the _tkinter module can be built. This means that
a pre-built Tcl/Tk installation is expected in ..\..\tcltk (tcltk64
for 64-bit) relative to this directory. See "Getting External
Sources" below for the easiest method to ensure Tcl/Tk is built.
C:\..\svn.python.org\projects\python\trunk\PCbuild>cd ..
C:\..\svn.python.org\projects\python\trunk>Tools\buildbot\external.bat
This extracts all the external subprojects from http://svn.python.org/external
via Subversion (so you'll need an svn.exe on your PATH) and places them in
..\.. (relative to this directory). The external(-amd64).bat scripts will
also build a debug build of Tcl/Tk; there aren't any equivalent batch files
for building release versions of Tcl/Tk lying around in the Tools\buildbot
directory. If you need to build a release version of Tcl/Tk it isn't hard
though, take a look at the relevant external(-amd64).bat file and find the
two nmake lines, then call each one without the 'DEBUG=1' parameter, i.e.:
Getting External Sources
------------------------
The last category of sub-projects listed above wrap external projects
Python doesn't control, and as such a little more work is required in
order to download the relevant source files for each project before they
can be built. The buildbots must ensure that all libraries are present
before building, so the easiest approach is to run either external.bat
or external-amd64.bat (depending on platform) in the ..\Tools\buildbot
directory from ..\, i.e.:
C:\python\cpython\PCbuild>cd ..
C:\python\cpython>Tools\buildbot\external.bat
This extracts all the external sub-projects from
http://svn.python.org/projects/external
via Subversion (so you'll need an svn.exe on your PATH) and places them
in ..\.. (relative to this directory).
It is also possible to download sources from each project's homepage,
though you may have to change the names of some folders in order to make
things work. For instance, if you were to download a version 5.0.5 of
XZ Utils, you would need to extract the archive into ..\..\xz-5.0.3
anyway, since that is where the solution is set to look for xz. The
same is true for all other external projects.
The external(-amd64).bat scripts will also build a debug build of
Tcl/Tk, but there aren't any equivalent batch files for building release
versions of Tcl/Tk currently available. If you need to build a release
version of Tcl/Tk, just take a look at the relevant external(-amd64).bat
file and find the two nmake lines, then call each one without the
'DEBUG=1' parameter, i.e.:
The external-amd64.bat file contains this for tcl:
nmake -f makefile.vc COMPILERFLAGS=-DWINVER=0x0500 DEBUG=1 MACHINE=AMD64 INSTALLDIR=..\..\tcltk64 clean all install
nmake -f makefile.vc DEBUG=1 MACHINE=AMD64 INSTALLDIR=..\..\tcltk64 clean all install
So for a release build, you'd call it as:
nmake -f makefile.vc COMPILERFLAGS=-DWINVER=0x0500 MACHINE=AMD64 INSTALLDIR=..\..\tcltk64 clean all install
nmake -f makefile.vc MACHINE=AMD64 INSTALLDIR=..\..\tcltk64 clean all install
XXX Should we compile with OPTS=threads?
XXX Our installer copies a lot of stuff out of the Tcl/Tk install
XXX directory. Is all of that really needed for Python use of Tcl/Tk?
Note that the above command is called from within ..\..\tcl-8.5.11.0\win
(relative to this directory); don't forget to build Tk as well as Tcl!
This will be cleaned up in the future; ideally Tcl/Tk will be brought into our
pcbuild.sln as custom .vcproj files, just as we've recently done with the
sqlite3.vcproj file, which will remove the need for Tcl/Tk to be built
separately via a batch file.
This will be cleaned up in the future; http://bugs.python.org/issue15968
tracks adding a new tcltk.vcxproj file that will build Tcl/Tk and Tix
the same way the other external projects listed above are built.
XXX trent.nelson 02-Apr-08:
Having the external subprojects in ..\.. relative to this directory is a
bit of a nuisance when you're working on py3k and trunk in parallel and
your directory layout mimics that of Python's subversion layout, e.g.:
C:\..\svn.python.org\projects\python\trunk
C:\..\svn.python.org\projects\python\branches\py3k
C:\..\svn.python.org\projects\python\branches\release25-maint
I'd like to change things so that external subprojects are fetched from
..\external instead of ..\.., then provide some helper scripts or batch
files that would set up a new ..\external directory with svn checkouts of
the relevant branches in http://svn.python.org/projects/external/, or
alternatively, use junctions to link ..\external with a pre-existing
externals directory being used by another branch. i.e. if I'm usually
working on trunk (and have previously created trunk\external via the
provided batch file), and want to do some work on py3k, I'd set up a
junction as follows (using the directory structure above as an example):
C:\..\python\trunk\external <- already exists and has built versions
of the external subprojects
C:\..\python\branches\py3k>linkd.exe external ..\..\trunk\external
Link created at: external
Only a slight tweak would be needed to the buildbots such that bots
building trunk and py3k could make use of the same facility. (2.5.x
builds need to be kept separate as they're using Visual Studio 7.1.)
/XXX trent.nelson 02-Apr-08
Building for Itanium
--------------------
NOTE:
Official support for Itanium builds have been dropped from the build. Please
contact us and provide patches if you are interested in Itanium builds.
The project files support a ReleaseItanium configuration which creates
Win64/Itanium binaries. For this to work, you need to install the Platform
SDK, in particular the 64-bit support. This includes an Itanium compiler
(future releases of the SDK likely include an AMD64 compiler as well).
In addition, you need the Visual Studio plugin for external C compilers,
from http://sf.net/projects/vsextcomp. The plugin will wrap cl.exe, to
locate the proper target compiler, and convert compiler options
accordingly. The project files require at least version 0.9.
Building for AMD64
------------------
The build process for AMD64 / x64 is very similar to standard builds. You just
have to set x64 as platform. In addition, the HOST_PYTHON environment variable
must point to a Python interpreter (at least 2.4), to support cross-compilation.
The build process for AMD64 / x64 is very similar to standard builds,
you just have to set x64 as platform. In addition, the HOST_PYTHON
environment variable must point to a Python interpreter (at least 2.4),
to support cross-compilation from Win32. Note that Visual Studio
requires either Standard Edition or better, or Express Edition with the
Windows SDK 64-bit compilers to be available in order to build 64-bit
binaries.
Building Python Using the free MS Toolkit Compiler
--------------------------------------------------
Microsoft has withdrawn the free MS Toolkit Compiler, so this can no longer
be considered a supported option. Instead you can use the free VS C++ Express
Edition.
Profile Guided Optimization
---------------------------
The solution has two configurations for PGO. The PGInstrument
configuration must be build first. The PGInstrument binaries are
lniked against a profiling library and contain extra debug
information. The PGUpdate configuration takes the profiling data and
generates optimized binaries.
configuration must be built first. The PGInstrument binaries are linked
against a profiling library and contain extra debug information. The
PGUpdate configuration takes the profiling data and generates optimized
binaries.
The build_pgo.bat script automates the creation of optimized binaries. It
creates the PGI files, runs the unit test suite or PyBench with the PGI
python and finally creates the optimized files.
The build_pgo.bat script automates the creation of optimized binaries.
It creates the PGI files, runs the unit test suite or PyBench with the
PGI python, and finally creates the optimized files.
See
http://msdn.microsoft.com/en-us/library/e7k32f4k(VS.100).aspx
for more on this topic.
http://msdn2.microsoft.com/en-us/library/e7k32f4k(VS.90).aspx
Static library
--------------
The solution has no configuration for static libraries. However it is easy
it build a static library instead of a DLL. You simply have to set the
"Configuration Type" to "Static Library (.lib)" and alter the preprocessor
macro "Py_ENABLE_SHARED" to "Py_NO_ENABLE_SHARED". You may also have to
change the "Runtime Library" from "Multi-threaded DLL (/MD)" to
"Multi-threaded (/MT)".
The solution has no configuration for static libraries. However it is
easy to build a static library instead of a DLL. You simply have to set
the "Configuration Type" to "Static Library (.lib)" and alter the
preprocessor macro "Py_ENABLE_SHARED" to "Py_NO_ENABLE_SHARED". You may
also have to change the "Runtime Library" from "Multi-threaded DLL
(/MD)" to "Multi-threaded (/MT)".
Visual Studio properties
------------------------
The PCbuild solution makes heavy use of Visual Studio property files
(*.vsprops). The properties can be viewed and altered in the Property
The PCbuild solution makes heavy use of Visual Studio property files
(*.props). The properties can be viewed and altered in the Property
Manager (View -> Other Windows -> Property Manager).
The property files used are (+-- = "also imports"):
* debug (debug macro: _DEBUG)
* pginstrument (PGO)
* pgupdate (PGO)
@ -327,15 +327,18 @@ Manager (View -> Other Windows -> Property Manager).
+-- pyproject
* pyproject (base settings for all projects, user macros like PyDllName)
* release (release macro: NDEBUG)
* sqlite3 (used only by sqlite3.vcxproj)
* x64 (AMD64 / x64 platform specific settings)
The pyproject propertyfile defines _WIN32 and x64 defines _WIN64 and _M_X64
although the macros are set by the compiler, too. The GUI doesn't always know
about the macros and confuse the user with false information.
The pyproject property file defines _WIN32 and x64 defines _WIN64 and
_M_X64 although the macros are set by the compiler, too. The GUI doesn't
always know about the macros and confuse the user with false
information.
YOUR OWN EXTENSION DLLs
Your Own Extension DLLs
-----------------------
If you want to create your own extension module DLL, there's an example
with easy-to-follow instructions in ../PC/example/; read the file
readme.txt there first.
If you want to create your own extension module DLL (.pyd), there's an
example with easy-to-follow instructions in ..\PC\example\; read the
file readme.txt there first.