Incorporate documentation suggestions from feedback on comp.lang.python.
* Positive wording for the description of why < and > and = can all be False. * Move to a three column table format that puts long method names side-by-side with their operator equivalents * Mention that KeyError can be raised by Set.pop() and Set.remove(). * Minor tweaks to the examples. Will backport as soon as Fred rebuilds the docs so I can confirm the tables formatted properly
This commit is contained in:
parent
ee562fc084
commit
7ceb29e4a5
|
@ -65,41 +65,31 @@ elements must be known when the constructor is called.
|
|||
Instances of \class{Set} and \class{ImmutableSet} both provide
|
||||
the following operations:
|
||||
|
||||
\begin{tableii}{c|l}{code}{Operation}{Result}
|
||||
\lineii{len(\var{s})}{cardinality of set \var{s}}
|
||||
\begin{tableiii}{c|c|l}{code}{Operation}{Equivalent}{Result}
|
||||
\lineiii{len(\var{s})}{}{cardinality of set \var{s}}
|
||||
|
||||
\hline
|
||||
\lineii{\var{x} in \var{s}}
|
||||
\lineiii{\var{x} in \var{s}}{}
|
||||
{test \var{x} for membership in \var{s}}
|
||||
\lineii{\var{x} not in \var{s}}
|
||||
\lineiii{\var{x} not in \var{s}}{}
|
||||
{test \var{x} for non-membership in \var{s}}
|
||||
\lineii{\var{s}.issubset(\var{t})}
|
||||
{test whether every element in \var{s} is in \var{t};
|
||||
\code{\var{s} <= \var{t}} is equivalent}
|
||||
\lineii{\var{s}.issuperset(\var{t})}
|
||||
{test whether every element in \var{t} is in \var{s};
|
||||
\code{\var{s} >= \var{t}} is equivalent}
|
||||
\lineiii{\var{s}.issubset(\var{t})}{\code{\var{s} <= \var{t}}}
|
||||
{test whether every element in \var{s} is in \var{t}}
|
||||
\lineiii{\var{s}.issuperset(\var{t})}{\code{\var{s} >= \var{t}}}
|
||||
{test whether every element in \var{t} is in \var{s}}
|
||||
|
||||
\hline
|
||||
\lineii{\var{s} | \var{t}}
|
||||
\lineiii{\var{s}.union(\var{t})}{\var{s} | \var{t}}
|
||||
{new set with elements from both \var{s} and \var{t}}
|
||||
\lineii{\var{s}.union(\var{t})}
|
||||
{new set with elements from both \var{s} and \var{t}}
|
||||
\lineii{\var{s} \&\ \var{t}}
|
||||
\lineiii{\var{s}.intersection(\var{t})}{\var{s} \&\ \var{t}}
|
||||
{new set with elements common to \var{s} and \var{t}}
|
||||
\lineii{\var{s}.intersection(\var{t})}
|
||||
{new set with elements common to \var{s} and \var{t}}
|
||||
\lineii{\var{s} - \var{t}}
|
||||
\lineiii{\var{s}.difference(\var{t})}{\var{s} - \var{t}}
|
||||
{new set with elements in \var{s} but not in \var{t}}
|
||||
\lineii{\var{s}.difference(\var{t})}
|
||||
{new set with elements in \var{s} but not in \var{t}}
|
||||
\lineii{\var{s} \^\ \var{t}}
|
||||
\lineiii{\var{s}.symmetric_difference(\var{t})}{\var{s} \^\ \var{t}}
|
||||
{new set with elements in either \var{s} or \var{t} but not both}
|
||||
\lineii{\var{s}.symmetric_difference(\var{t})}
|
||||
{new set with elements in either \var{s} or \var{t} but not both}
|
||||
\lineii{\var{s}.copy()}
|
||||
\lineiii{\var{s}.copy()}{}
|
||||
{new set with a shallow copy of \var{s}}
|
||||
\end{tableii}
|
||||
\end{tableiii}
|
||||
|
||||
In addition, both \class{Set} and \class{ImmutableSet}
|
||||
support set to set comparisons. Two sets are equal if and only if
|
||||
|
@ -112,8 +102,9 @@ superset of the second set (is a superset, but is not equal).
|
|||
|
||||
The subset and equality comparisons do not generalize to a complete
|
||||
ordering function. For example, any two disjoint sets are not equal and
|
||||
are not subsets of each other, so \emph{none} of the following are true:
|
||||
\code{\var{a}<\var{b}}, \code{\var{a}==\var{b}}, or \code{\var{a}>\var{b}}.
|
||||
are not subsets of each other, so \emph{all} of the following return
|
||||
\code{False}: \code{\var{a}<\var{b}}, \code{\var{a}==\var{b}}, or
|
||||
\code{\var{a}>\var{b}}.
|
||||
Accordingly, sets do not implement the \method{__cmp__} method.
|
||||
|
||||
Since sets only define partial ordering (subset relationships), the output
|
||||
|
@ -122,47 +113,43 @@ of the \method{list.sort()} method is undefined for lists of sets.
|
|||
The following table lists operations available in \class{ImmutableSet}
|
||||
but not found in \class{Set}:
|
||||
|
||||
\begin{tableii}{c|l|c}{code}{Operation}{Result}
|
||||
\begin{tableii}{c|l}{code}{Operation}{Result}
|
||||
\lineii{hash(\var{s})}{returns a hash value for \var{s}}
|
||||
\end{tableii}
|
||||
|
||||
The following table lists operations available in \class{Set}
|
||||
but not found in \class{ImmutableSet}:
|
||||
|
||||
\begin{tableii}{c|l}{code}{Operation}{Result}
|
||||
\lineii{\var{s} |= \var{t}}
|
||||
\begin{tableiii}{c|c|l}{code}{Operation}{Equivalent}{Result}
|
||||
\lineiii{\var{s}.union_update(\var{t})}
|
||||
{\var{s} |= \var{t}}
|
||||
{return set \var{s} with elements added from \var{t}}
|
||||
\lineii{\var{s}.union_update(\var{t})}
|
||||
{return set \var{s} with elements added from \var{t}}
|
||||
\lineii{\var{s} \&= \var{t}}
|
||||
\lineiii{\var{s}.intersection_update(\var{t})}
|
||||
{\var{s} \&= \var{t}}
|
||||
{return set \var{s} keeping only elements also found in \var{t}}
|
||||
\lineii{\var{s}.intersection_update(\var{t})}
|
||||
{return set \var{s} keeping only elements also found in \var{t}}
|
||||
\lineii{\var{s} -= \var{t}}
|
||||
\lineiii{\var{s}.difference_update(\var{t})}
|
||||
{\var{s} -= \var{t}}
|
||||
{return set \var{s} after removing elements found in \var{t}}
|
||||
\lineii{\var{s}.difference_update(\var{t})}
|
||||
{return set \var{s} after removing elements found in \var{t}}
|
||||
\lineii{\var{s} \textasciicircum= \var{t}}
|
||||
{return set \var{s} with elements from \var{s} or \var{t}
|
||||
but not both}
|
||||
\lineii{\var{s}.symmetric_difference_update(\var{t})}
|
||||
\lineiii{\var{s}.symmetric_difference_update(\var{t})}
|
||||
{\var{s} \textasciicircum= \var{t}}
|
||||
{return set \var{s} with elements from \var{s} or \var{t}
|
||||
but not both}
|
||||
|
||||
\hline
|
||||
\lineii{\var{s}.add(\var{x})}
|
||||
\lineiii{\var{s}.add(\var{x})}{}
|
||||
{add element \var{x} to set \var{s}}
|
||||
\lineii{\var{s}.remove(\var{x})}
|
||||
{remove \var{x} from set \var{s}}
|
||||
\lineii{\var{s}.discard(\var{x})}
|
||||
\lineiii{\var{s}.remove(\var{x})}{}
|
||||
{remove \var{x} from set \var{s}; raises KeyError if not present}
|
||||
\lineiii{\var{s}.discard(\var{x})}{}
|
||||
{removes \var{x} from set \var{s} if present}
|
||||
\lineii{\var{s}.pop()}
|
||||
{remove and return an arbitrary element from \var{s}}
|
||||
\lineii{\var{s}.update(\var{t})}
|
||||
\lineiii{\var{s}.pop()}{}
|
||||
{remove and return an arbitrary element from \var{s}; raises
|
||||
KeyError if empty}
|
||||
\lineiii{\var{s}.update(\var{t})}{}
|
||||
{add elements from \var{t} to set \var{s}}
|
||||
\lineii{\var{s}.clear()}
|
||||
\lineiii{\var{s}.clear()}{}
|
||||
{remove all elements from set \var{s}}
|
||||
\end{tableii}
|
||||
\end{tableiii}
|
||||
|
||||
|
||||
\subsection{Example \label{set-example}}
|
||||
|
@ -171,11 +158,11 @@ but not found in \class{ImmutableSet}:
|
|||
>>> from sets import Set
|
||||
>>> engineers = Set(['John', 'Jane', 'Jack', 'Janice'])
|
||||
>>> programmers = Set(['Jack', 'Sam', 'Susan', 'Janice'])
|
||||
>>> management = Set(['Jane', 'Jack', 'Susan', 'Zack'])
|
||||
>>> employees = engineers | programmers | management # union
|
||||
>>> engineering_management = engineers & programmers # intersection
|
||||
>>> fulltime_management = management - engineers - programmers # difference
|
||||
>>> engineers.add('Marvin') # add element
|
||||
>>> managers = Set(['Jane', 'Jack', 'Susan', 'Zack'])
|
||||
>>> employees = engineers | programmers | managers # union
|
||||
>>> engineering_management = engineers & managers # intersection
|
||||
>>> fulltime_management = managers - engineers - programmers # difference
|
||||
>>> engineers.add('Marvin') # add element
|
||||
>>> print engineers
|
||||
Set(['Jane', 'Marvin', 'Janice', 'John', 'Jack'])
|
||||
>>> employees.issuperset(engineers) # superset test
|
||||
|
|
Loading…
Reference in New Issue