Initial revision
This commit is contained in:
parent
b5e05e95c3
commit
762c39e9d2
|
@ -0,0 +1,35 @@
|
|||
# module 'fnmatch' -- filename matching with shell patterns
|
||||
|
||||
# XXX [] patterns are not supported (but recognized)
|
||||
|
||||
def fnmatch(name, pat):
|
||||
if '*' in pat or '?' in pat or '[' in pat:
|
||||
return fnmatch1(name, pat)
|
||||
return name = pat
|
||||
|
||||
def fnmatch1(name, pat):
|
||||
for i in range(len(pat)):
|
||||
c = pat[i]
|
||||
if c = '*':
|
||||
restpat = pat[i+1:]
|
||||
if '*' in restpat or '?' in restpat or '[' in restpat:
|
||||
for i in range(i, len(name)):
|
||||
if fnmatch1(name[i:], restpat):
|
||||
return 1
|
||||
return 0
|
||||
else:
|
||||
return name[len(name)-len(restpat):] = restpat
|
||||
elif c = '?':
|
||||
if len(name) <= i : return 0
|
||||
elif c = '[':
|
||||
return 0 # XXX
|
||||
else:
|
||||
if name[i:i+1] <> c:
|
||||
return 0
|
||||
return 1
|
||||
|
||||
def fnmatchlist(names, pat):
|
||||
res = []
|
||||
for name in names:
|
||||
if fnmatch(name, pat): res.append(name)
|
||||
return res
|
|
@ -0,0 +1,94 @@
|
|||
# module 'zmod'
|
||||
|
||||
# Compute properties of mathematical "fields" formed by taking
|
||||
# Z/n (the whole numbers modulo some whole number n) and an
|
||||
# irreducible polynomial (i.e., a polynomial with only complex zeros),
|
||||
# e.g., Z/5 and X**2 + 2.
|
||||
#
|
||||
# The field is formed by taking all possible linear combinations of
|
||||
# a set of d base vectors (where d is the degree of the polynomial).
|
||||
#
|
||||
# Note that this procedure doesn't yield a field for all combinations
|
||||
# of n and p: it may well be that some numbers have more than one
|
||||
# inverse and others have none. This is what we check.
|
||||
#
|
||||
# Remember that a field is a ring where each element has an inverse.
|
||||
# A ring has commutative addition and multiplication, a zero and a one:
|
||||
# 0*x = x*0 = 0, 0+x = x+0 = x, 1*x = x*1 = x. Also, the distributive
|
||||
# property holds: a*(b+c) = a*b + b*c.
|
||||
# (XXX I forget if this is an axiom or follows from the rules.)
|
||||
|
||||
import poly
|
||||
|
||||
|
||||
# Example N and polynomial
|
||||
|
||||
N = 5
|
||||
P = poly.plus(poly.one(0, 2), poly.one(2, 1)) # 2 + x**2
|
||||
|
||||
|
||||
# Return x modulo y. Returns >= 0 even if x < 0.
|
||||
|
||||
def mod(x, y):
|
||||
return divmod(x, y)[1]
|
||||
|
||||
|
||||
# Normalize a polynomial modulo n and modulo p.
|
||||
|
||||
def norm(a, n, p):
|
||||
a = poly.modulo(a, p)
|
||||
a = a[:]
|
||||
for i in range(len(a)): a[i] = mod(a[i], n)
|
||||
a = poly.normalize(a)
|
||||
return a
|
||||
|
||||
|
||||
# Make a list of all n^d elements of the proposed field.
|
||||
|
||||
def make_all(mat):
|
||||
all = []
|
||||
for row in mat:
|
||||
for a in row:
|
||||
all.append(a)
|
||||
return all
|
||||
|
||||
def make_elements(n, d):
|
||||
if d = 0: return [poly.one(0, 0)]
|
||||
sub = make_elements(n, d-1)
|
||||
all = []
|
||||
for a in sub:
|
||||
for i in range(n):
|
||||
all.append(poly.plus(a, poly.one(d-1, i)))
|
||||
return all
|
||||
|
||||
def make_inv(all, n, p):
|
||||
x = poly.one(1, 1)
|
||||
inv = []
|
||||
for a in all:
|
||||
inv.append(norm(poly.times(a, x), n, p))
|
||||
return inv
|
||||
|
||||
def checkfield(n, p):
|
||||
all = make_elements(n, len(p)-1)
|
||||
inv = make_inv(all, n, p)
|
||||
all1 = all[:]
|
||||
inv1 = inv[:]
|
||||
all1.sort()
|
||||
inv1.sort()
|
||||
if all1 = inv1: print 'BINGO!'
|
||||
else:
|
||||
print 'Sorry:', n, p
|
||||
print all
|
||||
print inv
|
||||
|
||||
def rj(s, width):
|
||||
if type(s) <> type(''): s = `s`
|
||||
n = len(s)
|
||||
if n >= width: return s
|
||||
return ' '*(width - n) + s
|
||||
|
||||
def lj(s, width):
|
||||
if type(s) <> type(''): s = `s`
|
||||
n = len(s)
|
||||
if n >= width: return s
|
||||
return s + ' '*(width - n)
|
Loading…
Reference in New Issue