bpo-40290: Add zscore() to statistics.NormalDist. (GH-19547)
This commit is contained in:
parent
518835f335
commit
70f027dd22
|
@ -696,6 +696,16 @@ of applications in statistics.
|
|||
Set *n* to 100 for percentiles which gives the 99 cuts points that
|
||||
separate the normal distribution into 100 equal sized groups.
|
||||
|
||||
.. method:: NormalDist.zscore(x)
|
||||
|
||||
Compute the
|
||||
`Standard Score <https://www.statisticshowto.com/probability-and-statistics/z-score/>`_
|
||||
describing *x* in terms of the number of standard deviations
|
||||
above or below the mean of the normal distribution:
|
||||
``(x - mean) / stdev``.
|
||||
|
||||
.. versionadded:: 3.9
|
||||
|
||||
Instances of :class:`NormalDist` support addition, subtraction,
|
||||
multiplication and division by a constant. These operations
|
||||
are used for translation and scaling. For example:
|
||||
|
|
|
@ -999,6 +999,17 @@ class NormalDist:
|
|||
x2 = (a - b) / dv
|
||||
return 1.0 - (fabs(Y.cdf(x1) - X.cdf(x1)) + fabs(Y.cdf(x2) - X.cdf(x2)))
|
||||
|
||||
def zscore(self, x):
|
||||
"""Compute the Standard Score. (x - mean) / stdev
|
||||
|
||||
Describes *x* in terms of the number of standard deviations
|
||||
above or below the mean of the normal distribution.
|
||||
"""
|
||||
# https://www.statisticshowto.com/probability-and-statistics/z-score/
|
||||
if not self._sigma:
|
||||
raise StatisticsError('zscore() not defined when sigma is zero')
|
||||
return (x - self._mu) / self._sigma
|
||||
|
||||
@property
|
||||
def mean(self):
|
||||
"Arithmetic mean of the normal distribution."
|
||||
|
|
|
@ -2602,6 +2602,21 @@ class TestNormalDist:
|
|||
with self.assertRaises(self.module.StatisticsError):
|
||||
NormalDist(1, 0).overlap(X) # left operand sigma is zero
|
||||
|
||||
def test_zscore(self):
|
||||
NormalDist = self.module.NormalDist
|
||||
X = NormalDist(100, 15)
|
||||
self.assertEqual(X.zscore(142), 2.8)
|
||||
self.assertEqual(X.zscore(58), -2.8)
|
||||
self.assertEqual(X.zscore(100), 0.0)
|
||||
with self.assertRaises(TypeError):
|
||||
X.zscore() # too few arguments
|
||||
with self.assertRaises(TypeError):
|
||||
X.zscore(1, 1) # too may arguments
|
||||
with self.assertRaises(TypeError):
|
||||
X.zscore(None) # non-numeric type
|
||||
with self.assertRaises(self.module.StatisticsError):
|
||||
NormalDist(1, 0).zscore(100) # sigma is zero
|
||||
|
||||
def test_properties(self):
|
||||
X = self.module.NormalDist(100, 15)
|
||||
self.assertEqual(X.mean, 100)
|
||||
|
|
|
@ -0,0 +1 @@
|
|||
Added zscore() to statistics.NormalDist().
|
Loading…
Reference in New Issue