Merged revisions 77234 via svnmerge from
svn+ssh://pythondev@svn.python.org/python/trunk ........ r77234 | mark.dickinson | 2010-01-02 14:45:40 +0000 (Sat, 02 Jan 2010) | 7 lines Refactor some longobject internals: PyLong_AsDouble and _PyLong_AsScaledDouble (the latter renamed to _PyLong_Frexp) now use the same core code. The exponent produced by _PyLong_Frexp now has type Py_ssize_t instead of the previously used int, and no longer needs scaling by PyLong_SHIFT. This frees the math module from having to know anything about the PyLong implementation. This closes issue #5576. ........
This commit is contained in:
parent
01f748a832
commit
6ecd9e53ce
|
@ -44,13 +44,13 @@ PyAPI_FUNC(PyObject *) PyLong_GetInfo(void);
|
|||
/* For use by intobject.c only */
|
||||
PyAPI_DATA(unsigned char) _PyLong_DigitValue[256];
|
||||
|
||||
/* _PyLong_AsScaledDouble returns a double x and an exponent e such that
|
||||
the true value is approximately equal to x * 2**(SHIFT*e). e is >= 0.
|
||||
x is 0.0 if and only if the input is 0 (in which case, e and x are both
|
||||
zeroes). Overflow is impossible. Note that the exponent returned must
|
||||
be multiplied by SHIFT! There may not be enough room in an int to store
|
||||
e*SHIFT directly. */
|
||||
PyAPI_FUNC(double) _PyLong_AsScaledDouble(PyObject *vv, int *e);
|
||||
/* _PyLong_Frexp returns a double x and an exponent e such that the
|
||||
true value is approximately equal to x * 2**e. e is >= 0. x is
|
||||
0.0 if and only if the input is 0 (in which case, e and x are both
|
||||
zeroes); otherwise, 0.5 <= abs(x) < 1.0. On overflow, which is
|
||||
possible if the number of bits doesn't fit into a Py_ssize_t, sets
|
||||
OverflowError and returns -1.0 for x, 0 for e. */
|
||||
PyAPI_FUNC(double) _PyLong_Frexp(PyLongObject *a, Py_ssize_t *e);
|
||||
|
||||
PyAPI_FUNC(double) PyLong_AsDouble(PyObject *);
|
||||
PyAPI_FUNC(PyObject *) PyLong_FromVoidPtr(void *);
|
||||
|
|
|
@ -54,7 +54,6 @@ raised for division by zero and mod by zero.
|
|||
|
||||
#include "Python.h"
|
||||
#include "_math.h"
|
||||
#include "longintrepr.h" /* just for SHIFT */
|
||||
|
||||
#ifdef _OSF_SOURCE
|
||||
/* OSF1 5.1 doesn't make this available with XOPEN_SOURCE_EXTENDED defined */
|
||||
|
@ -1342,11 +1341,12 @@ PyDoc_STRVAR(math_modf_doc,
|
|||
|
||||
/* A decent logarithm is easy to compute even for huge longs, but libm can't
|
||||
do that by itself -- loghelper can. func is log or log10, and name is
|
||||
"log" or "log10". Note that overflow isn't possible: a long can contain
|
||||
no more than INT_MAX * SHIFT bits, so has value certainly less than
|
||||
2**(2**64 * 2**16) == 2**2**80, and log2 of that is 2**80, which is
|
||||
"log" or "log10". Note that overflow of the result isn't possible: a long
|
||||
can contain no more than INT_MAX * SHIFT bits, so has value certainly less
|
||||
than 2**(2**64 * 2**16) == 2**2**80, and log2 of that is 2**80, which is
|
||||
small enough to fit in an IEEE single. log and log10 are even smaller.
|
||||
*/
|
||||
However, intermediate overflow is possible for a long if the number of bits
|
||||
in that long is larger than PY_SSIZE_T_MAX. */
|
||||
|
||||
static PyObject*
|
||||
loghelper(PyObject* arg, double (*func)(double), char *funcname)
|
||||
|
@ -1354,18 +1354,21 @@ loghelper(PyObject* arg, double (*func)(double), char *funcname)
|
|||
/* If it is long, do it ourselves. */
|
||||
if (PyLong_Check(arg)) {
|
||||
double x;
|
||||
int e;
|
||||
x = _PyLong_AsScaledDouble(arg, &e);
|
||||
Py_ssize_t e;
|
||||
x = _PyLong_Frexp((PyLongObject *)arg, &e);
|
||||
if (x == -1.0 && PyErr_Occurred())
|
||||
return NULL;
|
||||
if (x <= 0.0) {
|
||||
PyErr_SetString(PyExc_ValueError,
|
||||
"math domain error");
|
||||
return NULL;
|
||||
}
|
||||
/* Value is ~= x * 2**(e*PyLong_SHIFT), so the log ~=
|
||||
log(x) + log(2) * e * PyLong_SHIFT.
|
||||
CAUTION: e*PyLong_SHIFT may overflow using int arithmetic,
|
||||
so force use of double. */
|
||||
x = func(x) + (e * (double)PyLong_SHIFT) * func(2.0);
|
||||
/* Special case for log(1), to make sure we get an
|
||||
exact result there. */
|
||||
if (e == 1 && x == 0.5)
|
||||
return PyFloat_FromDouble(0.0);
|
||||
/* Value is ~= x * 2**e, so the log ~= log(x) + log(2) * e. */
|
||||
x = func(x) + func(2.0) * e;
|
||||
return PyFloat_FromDouble(x);
|
||||
}
|
||||
|
||||
|
|
|
@ -98,9 +98,6 @@ maybe_small_long(PyLongObject *v)
|
|||
#define SIGCHECK(PyTryBlock) \
|
||||
if (PyErr_CheckSignals()) PyTryBlock \
|
||||
|
||||
/* forward declaration */
|
||||
static int bits_in_digit(digit d);
|
||||
|
||||
/* Normalize (remove leading zeros from) a long int object.
|
||||
Doesn't attempt to free the storage--in most cases, due to the nature
|
||||
of the algorithms used, this could save at most be one word anyway. */
|
||||
|
@ -911,224 +908,6 @@ Overflow:
|
|||
|
||||
}
|
||||
|
||||
double
|
||||
_PyLong_AsScaledDouble(PyObject *vv, int *exponent)
|
||||
{
|
||||
/* NBITS_WANTED should be > the number of bits in a double's precision,
|
||||
but small enough so that 2**NBITS_WANTED is within the normal double
|
||||
range. nbitsneeded is set to 1 less than that because the most-significant
|
||||
Python digit contains at least 1 significant bit, but we don't want to
|
||||
bother counting them (catering to the worst case cheaply).
|
||||
|
||||
57 is one more than VAX-D double precision; I (Tim) don't know of a double
|
||||
format with more precision than that; it's 1 larger so that we add in at
|
||||
least one round bit to stand in for the ignored least-significant bits.
|
||||
*/
|
||||
#define NBITS_WANTED 57
|
||||
PyLongObject *v;
|
||||
double x;
|
||||
const double multiplier = (double)(1L << PyLong_SHIFT);
|
||||
Py_ssize_t i;
|
||||
int sign;
|
||||
int nbitsneeded;
|
||||
|
||||
if (vv == NULL || !PyLong_Check(vv)) {
|
||||
PyErr_BadInternalCall();
|
||||
return -1;
|
||||
}
|
||||
v = (PyLongObject *)vv;
|
||||
i = Py_SIZE(v);
|
||||
sign = 1;
|
||||
if (i < 0) {
|
||||
sign = -1;
|
||||
i = -(i);
|
||||
}
|
||||
else if (i == 0) {
|
||||
*exponent = 0;
|
||||
return 0.0;
|
||||
}
|
||||
--i;
|
||||
x = (double)v->ob_digit[i];
|
||||
nbitsneeded = NBITS_WANTED - 1;
|
||||
/* Invariant: i Python digits remain unaccounted for. */
|
||||
while (i > 0 && nbitsneeded > 0) {
|
||||
--i;
|
||||
x = x * multiplier + (double)v->ob_digit[i];
|
||||
nbitsneeded -= PyLong_SHIFT;
|
||||
}
|
||||
/* There are i digits we didn't shift in. Pretending they're all
|
||||
zeroes, the true value is x * 2**(i*PyLong_SHIFT). */
|
||||
*exponent = i;
|
||||
assert(x > 0.0);
|
||||
return x * sign;
|
||||
#undef NBITS_WANTED
|
||||
}
|
||||
|
||||
/* Get a C double from a long int object. Rounds to the nearest double,
|
||||
using the round-half-to-even rule in the case of a tie. */
|
||||
|
||||
double
|
||||
PyLong_AsDouble(PyObject *vv)
|
||||
{
|
||||
PyLongObject *v = (PyLongObject *)vv;
|
||||
Py_ssize_t rnd_digit, rnd_bit, m, n;
|
||||
digit lsb, *d;
|
||||
int round_up = 0;
|
||||
double x;
|
||||
|
||||
if (vv == NULL || !PyLong_Check(vv)) {
|
||||
PyErr_BadInternalCall();
|
||||
return -1.0;
|
||||
}
|
||||
|
||||
/* Notes on the method: for simplicity, assume v is positive and >=
|
||||
2**DBL_MANT_DIG. (For negative v we just ignore the sign until the
|
||||
end; for small v no rounding is necessary.) Write n for the number
|
||||
of bits in v, so that 2**(n-1) <= v < 2**n, and n > DBL_MANT_DIG.
|
||||
|
||||
Some terminology: the *rounding bit* of v is the 1st bit of v that
|
||||
will be rounded away (bit n - DBL_MANT_DIG - 1); the *parity bit*
|
||||
is the bit immediately above. The round-half-to-even rule says
|
||||
that we round up if the rounding bit is set, unless v is exactly
|
||||
halfway between two floats and the parity bit is zero.
|
||||
|
||||
Write d[0] ... d[m] for the digits of v, least to most significant.
|
||||
Let rnd_bit be the index of the rounding bit, and rnd_digit the
|
||||
index of the PyLong digit containing the rounding bit. Then the
|
||||
bits of the digit d[rnd_digit] look something like:
|
||||
|
||||
rounding bit
|
||||
|
|
||||
v
|
||||
msb -> sssssrttttttttt <- lsb
|
||||
^
|
||||
|
|
||||
parity bit
|
||||
|
||||
where 's' represents a 'significant bit' that will be included in
|
||||
the mantissa of the result, 'r' is the rounding bit, and 't'
|
||||
represents a 'trailing bit' following the rounding bit. Note that
|
||||
if the rounding bit is at the top of d[rnd_digit] then the parity
|
||||
bit will be the lsb of d[rnd_digit+1]. If we set
|
||||
|
||||
lsb = 1 << (rnd_bit % PyLong_SHIFT)
|
||||
|
||||
then d[rnd_digit] & (PyLong_BASE - 2*lsb) selects just the
|
||||
significant bits of d[rnd_digit], d[rnd_digit] & (lsb-1) gets the
|
||||
trailing bits, and d[rnd_digit] & lsb gives the rounding bit.
|
||||
|
||||
We initialize the double x to the integer given by digits
|
||||
d[rnd_digit:m-1], but with the rounding bit and trailing bits of
|
||||
d[rnd_digit] masked out. So the value of x comes from the top
|
||||
DBL_MANT_DIG bits of v, multiplied by 2*lsb. Note that in the loop
|
||||
that produces x, all floating-point operations are exact (assuming
|
||||
that FLT_RADIX==2). Now if we're rounding down, the value we want
|
||||
to return is simply
|
||||
|
||||
x * 2**(PyLong_SHIFT * rnd_digit).
|
||||
|
||||
and if we're rounding up, it's
|
||||
|
||||
(x + 2*lsb) * 2**(PyLong_SHIFT * rnd_digit).
|
||||
|
||||
Under the round-half-to-even rule, we round up if, and only
|
||||
if, the rounding bit is set *and* at least one of the
|
||||
following three conditions is satisfied:
|
||||
|
||||
(1) the parity bit is set, or
|
||||
(2) at least one of the trailing bits of d[rnd_digit] is set, or
|
||||
(3) at least one of the digits d[i], 0 <= i < rnd_digit
|
||||
is nonzero.
|
||||
|
||||
Finally, we have to worry about overflow. If v >= 2**DBL_MAX_EXP,
|
||||
or equivalently n > DBL_MAX_EXP, then overflow occurs. If v <
|
||||
2**DBL_MAX_EXP then we're usually safe, but there's a corner case
|
||||
to consider: if v is very close to 2**DBL_MAX_EXP then it's
|
||||
possible that v is rounded up to exactly 2**DBL_MAX_EXP, and then
|
||||
again overflow occurs.
|
||||
*/
|
||||
|
||||
if (Py_SIZE(v) == 0)
|
||||
return 0.0;
|
||||
m = ABS(Py_SIZE(v)) - 1;
|
||||
d = v->ob_digit;
|
||||
assert(d[m]); /* v should be normalized */
|
||||
|
||||
/* fast path for case where 0 < abs(v) < 2**DBL_MANT_DIG */
|
||||
if (m < DBL_MANT_DIG / PyLong_SHIFT ||
|
||||
(m == DBL_MANT_DIG / PyLong_SHIFT &&
|
||||
d[m] < (digit)1 << DBL_MANT_DIG%PyLong_SHIFT)) {
|
||||
x = d[m];
|
||||
while (--m >= 0)
|
||||
x = x*PyLong_BASE + d[m];
|
||||
return Py_SIZE(v) < 0 ? -x : x;
|
||||
}
|
||||
|
||||
/* if m is huge then overflow immediately; otherwise, compute the
|
||||
number of bits n in v. The condition below implies n (= #bits) >=
|
||||
m * PyLong_SHIFT + 1 > DBL_MAX_EXP, hence v >= 2**DBL_MAX_EXP. */
|
||||
if (m > (DBL_MAX_EXP-1)/PyLong_SHIFT)
|
||||
goto overflow;
|
||||
n = m * PyLong_SHIFT + bits_in_digit(d[m]);
|
||||
if (n > DBL_MAX_EXP)
|
||||
goto overflow;
|
||||
|
||||
/* find location of rounding bit */
|
||||
assert(n > DBL_MANT_DIG); /* dealt with |v| < 2**DBL_MANT_DIG above */
|
||||
rnd_bit = n - DBL_MANT_DIG - 1;
|
||||
rnd_digit = rnd_bit/PyLong_SHIFT;
|
||||
lsb = (digit)1 << (rnd_bit%PyLong_SHIFT);
|
||||
|
||||
/* Get top DBL_MANT_DIG bits of v. Assumes PyLong_SHIFT <
|
||||
DBL_MANT_DIG, so we'll need bits from at least 2 digits of v. */
|
||||
x = d[m];
|
||||
assert(m > rnd_digit);
|
||||
while (--m > rnd_digit)
|
||||
x = x*PyLong_BASE + d[m];
|
||||
x = x*PyLong_BASE + (d[m] & (PyLong_BASE-2*lsb));
|
||||
|
||||
/* decide whether to round up, using round-half-to-even */
|
||||
assert(m == rnd_digit);
|
||||
if (d[m] & lsb) { /* if (rounding bit is set) */
|
||||
digit parity_bit;
|
||||
if (lsb == PyLong_BASE/2)
|
||||
parity_bit = d[m+1] & 1;
|
||||
else
|
||||
parity_bit = d[m] & 2*lsb;
|
||||
if (parity_bit)
|
||||
round_up = 1;
|
||||
else if (d[m] & (lsb-1))
|
||||
round_up = 1;
|
||||
else {
|
||||
while (--m >= 0) {
|
||||
if (d[m]) {
|
||||
round_up = 1;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* and round up if necessary */
|
||||
if (round_up) {
|
||||
x += 2*lsb;
|
||||
if (n == DBL_MAX_EXP &&
|
||||
x == ldexp((double)(2*lsb), DBL_MANT_DIG)) {
|
||||
/* overflow corner case */
|
||||
goto overflow;
|
||||
}
|
||||
}
|
||||
|
||||
/* shift, adjust for sign, and return */
|
||||
x = ldexp(x, rnd_digit*PyLong_SHIFT);
|
||||
return Py_SIZE(v) < 0 ? -x : x;
|
||||
|
||||
overflow:
|
||||
PyErr_SetString(PyExc_OverflowError,
|
||||
"Python int too large to convert to C double");
|
||||
return -1.0;
|
||||
}
|
||||
|
||||
/* Create a new long (or int) object from a C pointer */
|
||||
|
||||
PyObject *
|
||||
|
@ -2442,6 +2221,152 @@ x_divrem(PyLongObject *v1, PyLongObject *w1, PyLongObject **prem)
|
|||
return long_normalize(a);
|
||||
}
|
||||
|
||||
/* For a nonzero PyLong a, express a in the form x * 2**e, with 0.5 <=
|
||||
abs(x) < 1.0 and e >= 0; return x and put e in *e. Here x is
|
||||
rounded to DBL_MANT_DIG significant bits using round-half-to-even.
|
||||
If a == 0, return 0.0 and set *e = 0. If the resulting exponent
|
||||
e is larger than PY_SSIZE_T_MAX, raise OverflowError and return
|
||||
-1.0. */
|
||||
|
||||
/* attempt to define 2.0**DBL_MANT_DIG as a compile-time constant */
|
||||
#if DBL_MANT_DIG == 53
|
||||
#define EXP2_DBL_MANT_DIG 9007199254740992.0
|
||||
#else
|
||||
#define EXP2_DBL_MANT_DIG (ldexp(1.0, DBL_MANT_DIG))
|
||||
#endif
|
||||
|
||||
double
|
||||
_PyLong_Frexp(PyLongObject *a, Py_ssize_t *e)
|
||||
{
|
||||
Py_ssize_t a_size, a_bits, shift_digits, shift_bits, x_size;
|
||||
/* See below for why x_digits is always large enough. */
|
||||
digit rem, x_digits[2 + (DBL_MANT_DIG + 1) / PyLong_SHIFT];
|
||||
double dx;
|
||||
/* Correction term for round-half-to-even rounding. For a digit x,
|
||||
"x + half_even_correction[x & 7]" gives x rounded to the nearest
|
||||
multiple of 4, rounding ties to a multiple of 8. */
|
||||
static const int half_even_correction[8] = {0, -1, -2, 1, 0, -1, 2, 1};
|
||||
|
||||
a_size = ABS(Py_SIZE(a));
|
||||
if (a_size == 0) {
|
||||
/* Special case for 0: significand 0.0, exponent 0. */
|
||||
*e = 0;
|
||||
return 0.0;
|
||||
}
|
||||
a_bits = bits_in_digit(a->ob_digit[a_size-1]);
|
||||
/* The following is an overflow-free version of the check
|
||||
"if ((a_size - 1) * PyLong_SHIFT + a_bits > PY_SSIZE_T_MAX) ..." */
|
||||
if (a_size >= (PY_SSIZE_T_MAX - 1) / PyLong_SHIFT + 1 &&
|
||||
(a_size > (PY_SSIZE_T_MAX - 1) / PyLong_SHIFT + 1 ||
|
||||
a_bits > (PY_SSIZE_T_MAX - 1) % PyLong_SHIFT + 1))
|
||||
goto overflow;
|
||||
a_bits = (a_size - 1) * PyLong_SHIFT + a_bits;
|
||||
|
||||
/* Shift the first DBL_MANT_DIG + 2 bits of a into x_digits[0:x_size]
|
||||
(shifting left if a_bits <= DBL_MANT_DIG + 2).
|
||||
|
||||
Number of digits needed for result: write // for floor division.
|
||||
Then if shifting left, we end up using
|
||||
|
||||
1 + a_size + (DBL_MANT_DIG + 2 - a_bits) // PyLong_SHIFT
|
||||
|
||||
digits. If shifting right, we use
|
||||
|
||||
a_size - (a_bits - DBL_MANT_DIG - 2) // PyLong_SHIFT
|
||||
|
||||
digits. Using a_size = 1 + (a_bits - 1) // PyLong_SHIFT along with
|
||||
the inequalities
|
||||
|
||||
m // PyLong_SHIFT + n // PyLong_SHIFT <= (m + n) // PyLong_SHIFT
|
||||
m // PyLong_SHIFT - n // PyLong_SHIFT <=
|
||||
1 + (m - n - 1) // PyLong_SHIFT,
|
||||
|
||||
valid for any integers m and n, we find that x_size satisfies
|
||||
|
||||
x_size <= 2 + (DBL_MANT_DIG + 1) // PyLong_SHIFT
|
||||
|
||||
in both cases.
|
||||
*/
|
||||
if (a_bits <= DBL_MANT_DIG + 2) {
|
||||
shift_digits = (DBL_MANT_DIG + 2 - a_bits) / PyLong_SHIFT;
|
||||
shift_bits = (DBL_MANT_DIG + 2 - a_bits) % PyLong_SHIFT;
|
||||
x_size = 0;
|
||||
while (x_size < shift_digits)
|
||||
x_digits[x_size++] = 0;
|
||||
rem = v_lshift(x_digits + x_size, a->ob_digit, a_size,
|
||||
shift_bits);
|
||||
x_size += a_size;
|
||||
x_digits[x_size++] = rem;
|
||||
}
|
||||
else {
|
||||
shift_digits = (a_bits - DBL_MANT_DIG - 2) / PyLong_SHIFT;
|
||||
shift_bits = (a_bits - DBL_MANT_DIG - 2) % PyLong_SHIFT;
|
||||
rem = v_rshift(x_digits, a->ob_digit + shift_digits,
|
||||
a_size - shift_digits, shift_bits);
|
||||
x_size = a_size - shift_digits;
|
||||
/* For correct rounding below, we need the least significant
|
||||
bit of x to be 'sticky' for this shift: if any of the bits
|
||||
shifted out was nonzero, we set the least significant bit
|
||||
of x. */
|
||||
if (rem)
|
||||
x_digits[0] |= 1;
|
||||
else
|
||||
while (shift_digits > 0)
|
||||
if (a->ob_digit[--shift_digits]) {
|
||||
x_digits[0] |= 1;
|
||||
break;
|
||||
}
|
||||
}
|
||||
assert(1 <= x_size && x_size <= sizeof(x_digits)/sizeof(digit));
|
||||
|
||||
/* Round, and convert to double. */
|
||||
x_digits[0] += half_even_correction[x_digits[0] & 7];
|
||||
dx = x_digits[--x_size];
|
||||
while (x_size > 0)
|
||||
dx = dx * PyLong_BASE + x_digits[--x_size];
|
||||
|
||||
/* Rescale; make correction if result is 1.0. */
|
||||
dx /= 4.0 * EXP2_DBL_MANT_DIG;
|
||||
if (dx == 1.0) {
|
||||
if (a_bits == PY_SSIZE_T_MAX)
|
||||
goto overflow;
|
||||
dx = 0.5;
|
||||
a_bits += 1;
|
||||
}
|
||||
|
||||
*e = a_bits;
|
||||
return Py_SIZE(a) < 0 ? -dx : dx;
|
||||
|
||||
overflow:
|
||||
/* exponent > PY_SSIZE_T_MAX */
|
||||
PyErr_SetString(PyExc_OverflowError,
|
||||
"huge integer: number of bits overflows a Py_ssize_t");
|
||||
*e = 0;
|
||||
return -1.0;
|
||||
}
|
||||
|
||||
/* Get a C double from a long int object. Rounds to the nearest double,
|
||||
using the round-half-to-even rule in the case of a tie. */
|
||||
|
||||
double
|
||||
PyLong_AsDouble(PyObject *v)
|
||||
{
|
||||
Py_ssize_t exponent;
|
||||
double x;
|
||||
|
||||
if (v == NULL || !PyLong_Check(v)) {
|
||||
PyErr_BadInternalCall();
|
||||
return -1.0;
|
||||
}
|
||||
x = _PyLong_Frexp((PyLongObject *)v, &exponent);
|
||||
if ((x == -1.0 && PyErr_Occurred()) || exponent > DBL_MAX_EXP) {
|
||||
PyErr_SetString(PyExc_OverflowError,
|
||||
"long int too large to convert to float");
|
||||
return -1.0;
|
||||
}
|
||||
return ldexp(x, exponent);
|
||||
}
|
||||
|
||||
/* Methods */
|
||||
|
||||
static void
|
||||
|
|
Loading…
Reference in New Issue