bpo-36957: Speed up math.isqrt (#13405)
* Add math.isqrt function computing the integer square root. * Code cleanup: remove redundant comments, rename some variables. * Tighten up code a bit more; use Py_XDECREF to simplify error handling. * Update Modules/mathmodule.c Co-Authored-By: Serhiy Storchaka <storchaka@gmail.com> * Update Modules/mathmodule.c Use real argument clinic type instead of an alias Co-Authored-By: Serhiy Storchaka <storchaka@gmail.com> * Add proof sketch * Updates from review. * Correct and expand documentation. * Fix bad reference handling on error; make some variables block-local; other tidying. * Style and consistency fixes. * Add missing error check; don't try to DECREF a NULL a * Simplify some error returns. * Another two test cases: - clarify that floats are rejected even if they happen to be squares of small integers - TypeError beats ValueError for a negative float * Add fast path for small inputs. Needs tests. * Speed up isqrt for n >= 2**64 as well; add extra tests. * Reduce number of test-cases to avoid dominating the run-time of test_math. * Don't perform unnecessary extra iterations when computing c_bit_length. * Abstract common uint64_t code out into a separate function. * Cleanup. * Add a missing Py_DECREF in an error branch. More cleanup. * Update Modules/mathmodule.c Add missing `static` declaration to helper function. Co-Authored-By: Serhiy Storchaka <storchaka@gmail.com> * Add missing backtick.
This commit is contained in:
parent
7c59362a15
commit
5c08ce9bf7
|
@ -917,6 +917,7 @@ class MathTests(unittest.TestCase):
|
||||||
test_values = (
|
test_values = (
|
||||||
list(range(1000))
|
list(range(1000))
|
||||||
+ list(range(10**6 - 1000, 10**6 + 1000))
|
+ list(range(10**6 - 1000, 10**6 + 1000))
|
||||||
|
+ [2**e + i for e in range(60, 200) for i in range(-40, 40)]
|
||||||
+ [3**9999, 10**5001]
|
+ [3**9999, 10**5001]
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
|
@ -1620,6 +1620,22 @@ completes the proof sketch.
|
||||||
|
|
||||||
*/
|
*/
|
||||||
|
|
||||||
|
|
||||||
|
/* Approximate square root of a large 64-bit integer.
|
||||||
|
|
||||||
|
Given `n` satisfying `2**62 <= n < 2**64`, return `a`
|
||||||
|
satisfying `(a - 1)**2 < n < (a + 1)**2`. */
|
||||||
|
|
||||||
|
static uint64_t
|
||||||
|
_approximate_isqrt(uint64_t n)
|
||||||
|
{
|
||||||
|
uint32_t u = 1U + (n >> 62);
|
||||||
|
u = (u << 1) + (n >> 59) / u;
|
||||||
|
u = (u << 3) + (n >> 53) / u;
|
||||||
|
u = (u << 7) + (n >> 41) / u;
|
||||||
|
return (u << 15) + (n >> 17) / u;
|
||||||
|
}
|
||||||
|
|
||||||
/*[clinic input]
|
/*[clinic input]
|
||||||
math.isqrt
|
math.isqrt
|
||||||
|
|
||||||
|
@ -1633,8 +1649,9 @@ static PyObject *
|
||||||
math_isqrt(PyObject *module, PyObject *n)
|
math_isqrt(PyObject *module, PyObject *n)
|
||||||
/*[clinic end generated code: output=35a6f7f980beab26 input=5b6e7ae4fa6c43d6]*/
|
/*[clinic end generated code: output=35a6f7f980beab26 input=5b6e7ae4fa6c43d6]*/
|
||||||
{
|
{
|
||||||
int a_too_large, s;
|
int a_too_large, c_bit_length;
|
||||||
size_t c, d;
|
size_t c, d;
|
||||||
|
uint64_t m, u;
|
||||||
PyObject *a = NULL, *b;
|
PyObject *a = NULL, *b;
|
||||||
|
|
||||||
n = PyNumber_Index(n);
|
n = PyNumber_Index(n);
|
||||||
|
@ -1653,24 +1670,55 @@ math_isqrt(PyObject *module, PyObject *n)
|
||||||
return PyLong_FromLong(0);
|
return PyLong_FromLong(0);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/* c = (n.bit_length() - 1) // 2 */
|
||||||
c = _PyLong_NumBits(n);
|
c = _PyLong_NumBits(n);
|
||||||
if (c == (size_t)(-1)) {
|
if (c == (size_t)(-1)) {
|
||||||
goto error;
|
goto error;
|
||||||
}
|
}
|
||||||
c = (c - 1U) / 2U;
|
c = (c - 1U) / 2U;
|
||||||
|
|
||||||
/* s = c.bit_length() */
|
/* Fast path: if c <= 31 then n < 2**64 and we can compute directly with a
|
||||||
s = 0;
|
fast, almost branch-free algorithm. In the final correction, we use `u*u
|
||||||
while ((c >> s) > 0) {
|
- 1 >= m` instead of the simpler `u*u > m` in order to get the correct
|
||||||
++s;
|
result in the corner case where `u=2**32`. */
|
||||||
|
if (c <= 31U) {
|
||||||
|
m = (uint64_t)PyLong_AsUnsignedLongLong(n);
|
||||||
|
Py_DECREF(n);
|
||||||
|
if (m == (uint64_t)(-1) && PyErr_Occurred()) {
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
|
u = _approximate_isqrt(m << (62U - 2U*c)) >> (31U - c);
|
||||||
|
u -= u * u - 1U >= m;
|
||||||
|
return PyLong_FromUnsignedLongLong((unsigned long long)u);
|
||||||
}
|
}
|
||||||
|
|
||||||
a = PyLong_FromLong(1);
|
/* Slow path: n >= 2**64. We perform the first five iterations in C integer
|
||||||
|
arithmetic, then switch to using Python long integers. */
|
||||||
|
|
||||||
|
/* From n >= 2**64 it follows that c.bit_length() >= 6. */
|
||||||
|
c_bit_length = 6;
|
||||||
|
while ((c >> c_bit_length) > 0U) {
|
||||||
|
++c_bit_length;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Initialise d and a. */
|
||||||
|
d = c >> (c_bit_length - 5);
|
||||||
|
b = _PyLong_Rshift(n, 2U*c - 62U);
|
||||||
|
if (b == NULL) {
|
||||||
|
goto error;
|
||||||
|
}
|
||||||
|
m = (uint64_t)PyLong_AsUnsignedLongLong(b);
|
||||||
|
Py_DECREF(b);
|
||||||
|
if (m == (uint64_t)(-1) && PyErr_Occurred()) {
|
||||||
|
goto error;
|
||||||
|
}
|
||||||
|
u = _approximate_isqrt(m) >> (31U - d);
|
||||||
|
a = PyLong_FromUnsignedLongLong((unsigned long long)u);
|
||||||
if (a == NULL) {
|
if (a == NULL) {
|
||||||
goto error;
|
goto error;
|
||||||
}
|
}
|
||||||
d = 0;
|
|
||||||
while (--s >= 0) {
|
for (int s = c_bit_length - 6; s >= 0; --s) {
|
||||||
PyObject *q;
|
PyObject *q;
|
||||||
size_t e = d;
|
size_t e = d;
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue