bpo-37128: Add math.perm(). (GH-13731)
This commit is contained in:
parent
d71f3170ac
commit
5ae299ac78
|
@ -207,6 +207,19 @@ Number-theoretic and representation functions
|
|||
of *x* and are floats.
|
||||
|
||||
|
||||
.. function:: perm(n, k)
|
||||
|
||||
Return the number of ways to choose *k* items from *n* items
|
||||
without repetition and with order.
|
||||
|
||||
It is mathematically equal to the expression ``n! / (n - k)!``.
|
||||
|
||||
Raises :exc:`TypeError` if the arguments not integers.
|
||||
Raises :exc:`ValueError` if the arguments are negative or if *k* > *n*.
|
||||
|
||||
.. versionadded:: 3.8
|
||||
|
||||
|
||||
.. function:: prod(iterable, *, start=1)
|
||||
|
||||
Calculate the product of all the elements in the input *iterable*.
|
||||
|
|
|
@ -240,6 +240,9 @@ def result_check(expected, got, ulp_tol=5, abs_tol=0.0):
|
|||
else:
|
||||
return None
|
||||
|
||||
class IntSubclass(int):
|
||||
pass
|
||||
|
||||
# Class providing an __index__ method.
|
||||
class MyIndexable(object):
|
||||
def __init__(self, value):
|
||||
|
@ -1862,6 +1865,64 @@ class IsCloseTests(unittest.TestCase):
|
|||
self.assertAllClose(fraction_examples, rel_tol=1e-8)
|
||||
self.assertAllNotClose(fraction_examples, rel_tol=1e-9)
|
||||
|
||||
def testPerm(self):
|
||||
perm = math.perm
|
||||
factorial = math.factorial
|
||||
# Test if factorial defintion is satisfied
|
||||
for n in range(100):
|
||||
for k in range(n + 1):
|
||||
self.assertEqual(perm(n, k),
|
||||
factorial(n) // factorial(n - k))
|
||||
|
||||
# Test for Pascal's identity
|
||||
for n in range(1, 100):
|
||||
for k in range(1, n):
|
||||
self.assertEqual(perm(n, k), perm(n - 1, k - 1) * k + perm(n - 1, k))
|
||||
|
||||
# Test corner cases
|
||||
for n in range(1, 100):
|
||||
self.assertEqual(perm(n, 0), 1)
|
||||
self.assertEqual(perm(n, 1), n)
|
||||
self.assertEqual(perm(n, n), factorial(n))
|
||||
|
||||
# Raises TypeError if any argument is non-integer or argument count is
|
||||
# not 2
|
||||
self.assertRaises(TypeError, perm, 10, 1.0)
|
||||
self.assertRaises(TypeError, perm, 10, decimal.Decimal(1.0))
|
||||
self.assertRaises(TypeError, perm, 10, "1")
|
||||
self.assertRaises(TypeError, perm, 10.0, 1)
|
||||
self.assertRaises(TypeError, perm, decimal.Decimal(10.0), 1)
|
||||
self.assertRaises(TypeError, perm, "10", 1)
|
||||
|
||||
self.assertRaises(TypeError, perm, 10)
|
||||
self.assertRaises(TypeError, perm, 10, 1, 3)
|
||||
self.assertRaises(TypeError, perm)
|
||||
|
||||
# Raises Value error if not k or n are negative numbers
|
||||
self.assertRaises(ValueError, perm, -1, 1)
|
||||
self.assertRaises(ValueError, perm, -2**1000, 1)
|
||||
self.assertRaises(ValueError, perm, 1, -1)
|
||||
self.assertRaises(ValueError, perm, 1, -2**1000)
|
||||
|
||||
# Raises value error if k is greater than n
|
||||
self.assertRaises(ValueError, perm, 1, 2)
|
||||
self.assertRaises(ValueError, perm, 1, 2**1000)
|
||||
|
||||
n = 2**1000
|
||||
self.assertEqual(perm(n, 0), 1)
|
||||
self.assertEqual(perm(n, 1), n)
|
||||
self.assertEqual(perm(n, 2), n * (n-1))
|
||||
self.assertRaises((OverflowError, MemoryError), perm, n, n)
|
||||
|
||||
for n, k in (True, True), (True, False), (False, False):
|
||||
self.assertEqual(perm(n, k), 1)
|
||||
self.assertIs(type(perm(n, k)), int)
|
||||
self.assertEqual(perm(IntSubclass(5), IntSubclass(2)), 20)
|
||||
self.assertEqual(perm(MyIndexable(5), MyIndexable(2)), 20)
|
||||
for k in range(3):
|
||||
self.assertIs(type(perm(IntSubclass(5), IntSubclass(k))), int)
|
||||
self.assertIs(type(perm(MyIndexable(5), MyIndexable(k))), int)
|
||||
|
||||
def testComb(self):
|
||||
comb = math.comb
|
||||
factorial = math.factorial
|
||||
|
@ -1925,8 +1986,11 @@ class IsCloseTests(unittest.TestCase):
|
|||
for n, k in (True, True), (True, False), (False, False):
|
||||
self.assertEqual(comb(n, k), 1)
|
||||
self.assertIs(type(comb(n, k)), int)
|
||||
self.assertEqual(comb(IntSubclass(5), IntSubclass(2)), 10)
|
||||
self.assertEqual(comb(MyIndexable(5), MyIndexable(2)), 10)
|
||||
self.assertIs(type(comb(MyIndexable(5), MyIndexable(2))), int)
|
||||
for k in range(3):
|
||||
self.assertIs(type(comb(IntSubclass(5), IntSubclass(k))), int)
|
||||
self.assertIs(type(comb(MyIndexable(5), MyIndexable(k))), int)
|
||||
|
||||
|
||||
def test_main():
|
||||
|
|
|
@ -0,0 +1 @@
|
|||
Added :func:`math.perm`.
|
|
@ -638,6 +638,41 @@ exit:
|
|||
return return_value;
|
||||
}
|
||||
|
||||
PyDoc_STRVAR(math_perm__doc__,
|
||||
"perm($module, n, k, /)\n"
|
||||
"--\n"
|
||||
"\n"
|
||||
"Number of ways to choose k items from n items without repetition and with order.\n"
|
||||
"\n"
|
||||
"It is mathematically equal to the expression n! / (n - k)!.\n"
|
||||
"\n"
|
||||
"Raises TypeError if the arguments are not integers.\n"
|
||||
"Raises ValueError if the arguments are negative or if k > n.");
|
||||
|
||||
#define MATH_PERM_METHODDEF \
|
||||
{"perm", (PyCFunction)(void(*)(void))math_perm, METH_FASTCALL, math_perm__doc__},
|
||||
|
||||
static PyObject *
|
||||
math_perm_impl(PyObject *module, PyObject *n, PyObject *k);
|
||||
|
||||
static PyObject *
|
||||
math_perm(PyObject *module, PyObject *const *args, Py_ssize_t nargs)
|
||||
{
|
||||
PyObject *return_value = NULL;
|
||||
PyObject *n;
|
||||
PyObject *k;
|
||||
|
||||
if (!_PyArg_CheckPositional("perm", nargs, 2, 2)) {
|
||||
goto exit;
|
||||
}
|
||||
n = args[0];
|
||||
k = args[1];
|
||||
return_value = math_perm_impl(module, n, k);
|
||||
|
||||
exit:
|
||||
return return_value;
|
||||
}
|
||||
|
||||
PyDoc_STRVAR(math_comb__doc__,
|
||||
"comb($module, n, k, /)\n"
|
||||
"--\n"
|
||||
|
@ -674,4 +709,4 @@ math_comb(PyObject *module, PyObject *const *args, Py_ssize_t nargs)
|
|||
exit:
|
||||
return return_value;
|
||||
}
|
||||
/*[clinic end generated code: output=6709521e5e1d90ec input=a9049054013a1b77]*/
|
||||
/*[clinic end generated code: output=a82b0e705b6d0ec0 input=a9049054013a1b77]*/
|
||||
|
|
|
@ -2998,6 +2998,120 @@ math_prod_impl(PyObject *module, PyObject *iterable, PyObject *start)
|
|||
}
|
||||
|
||||
|
||||
/*[clinic input]
|
||||
math.perm
|
||||
|
||||
n: object
|
||||
k: object
|
||||
/
|
||||
|
||||
Number of ways to choose k items from n items without repetition and with order.
|
||||
|
||||
It is mathematically equal to the expression n! / (n - k)!.
|
||||
|
||||
Raises TypeError if the arguments are not integers.
|
||||
Raises ValueError if the arguments are negative or if k > n.
|
||||
[clinic start generated code]*/
|
||||
|
||||
static PyObject *
|
||||
math_perm_impl(PyObject *module, PyObject *n, PyObject *k)
|
||||
/*[clinic end generated code: output=e021a25469653e23 input=f71ee4f6ff26be24]*/
|
||||
{
|
||||
PyObject *result = NULL, *factor = NULL;
|
||||
int overflow, cmp;
|
||||
long long i, factors;
|
||||
|
||||
n = PyNumber_Index(n);
|
||||
if (n == NULL) {
|
||||
return NULL;
|
||||
}
|
||||
if (!PyLong_CheckExact(n)) {
|
||||
Py_SETREF(n, _PyLong_Copy((PyLongObject *)n));
|
||||
if (n == NULL) {
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
k = PyNumber_Index(k);
|
||||
if (k == NULL) {
|
||||
Py_DECREF(n);
|
||||
return NULL;
|
||||
}
|
||||
if (!PyLong_CheckExact(k)) {
|
||||
Py_SETREF(k, _PyLong_Copy((PyLongObject *)k));
|
||||
if (k == NULL) {
|
||||
Py_DECREF(n);
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
|
||||
if (Py_SIZE(n) < 0) {
|
||||
PyErr_SetString(PyExc_ValueError,
|
||||
"n must be a non-negative integer");
|
||||
goto error;
|
||||
}
|
||||
cmp = PyObject_RichCompareBool(n, k, Py_LT);
|
||||
if (cmp != 0) {
|
||||
if (cmp > 0) {
|
||||
PyErr_SetString(PyExc_ValueError,
|
||||
"k must be an integer less than or equal to n");
|
||||
}
|
||||
goto error;
|
||||
}
|
||||
|
||||
factors = PyLong_AsLongLongAndOverflow(k, &overflow);
|
||||
if (overflow > 0) {
|
||||
PyErr_Format(PyExc_OverflowError,
|
||||
"k must not exceed %lld",
|
||||
LLONG_MAX);
|
||||
goto error;
|
||||
}
|
||||
else if (overflow < 0 || factors < 0) {
|
||||
if (!PyErr_Occurred()) {
|
||||
PyErr_SetString(PyExc_ValueError,
|
||||
"k must be a non-negative integer");
|
||||
}
|
||||
goto error;
|
||||
}
|
||||
|
||||
if (factors == 0) {
|
||||
result = PyLong_FromLong(1);
|
||||
goto done;
|
||||
}
|
||||
|
||||
result = n;
|
||||
Py_INCREF(result);
|
||||
if (factors == 1) {
|
||||
goto done;
|
||||
}
|
||||
|
||||
factor = n;
|
||||
Py_INCREF(factor);
|
||||
for (i = 1; i < factors; ++i) {
|
||||
Py_SETREF(factor, PyNumber_Subtract(factor, _PyLong_One));
|
||||
if (factor == NULL) {
|
||||
goto error;
|
||||
}
|
||||
Py_SETREF(result, PyNumber_Multiply(result, factor));
|
||||
if (result == NULL) {
|
||||
goto error;
|
||||
}
|
||||
}
|
||||
Py_DECREF(factor);
|
||||
|
||||
done:
|
||||
Py_DECREF(n);
|
||||
Py_DECREF(k);
|
||||
return result;
|
||||
|
||||
error:
|
||||
Py_XDECREF(factor);
|
||||
Py_XDECREF(result);
|
||||
Py_DECREF(n);
|
||||
Py_DECREF(k);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
|
||||
/*[clinic input]
|
||||
math.comb
|
||||
|
||||
|
@ -3028,11 +3142,24 @@ math_comb_impl(PyObject *module, PyObject *n, PyObject *k)
|
|||
if (n == NULL) {
|
||||
return NULL;
|
||||
}
|
||||
if (!PyLong_CheckExact(n)) {
|
||||
Py_SETREF(n, _PyLong_Copy((PyLongObject *)n));
|
||||
if (n == NULL) {
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
k = PyNumber_Index(k);
|
||||
if (k == NULL) {
|
||||
Py_DECREF(n);
|
||||
return NULL;
|
||||
}
|
||||
if (!PyLong_CheckExact(k)) {
|
||||
Py_SETREF(k, _PyLong_Copy((PyLongObject *)k));
|
||||
if (k == NULL) {
|
||||
Py_DECREF(n);
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
|
||||
if (Py_SIZE(n) < 0) {
|
||||
PyErr_SetString(PyExc_ValueError,
|
||||
|
@ -3050,7 +3177,7 @@ math_comb_impl(PyObject *module, PyObject *n, PyObject *k)
|
|||
"k must be an integer less than or equal to n");
|
||||
goto error;
|
||||
}
|
||||
cmp = PyObject_RichCompareBool(k, temp, Py_GT);
|
||||
cmp = PyObject_RichCompareBool(temp, k, Py_LT);
|
||||
if (cmp > 0) {
|
||||
Py_SETREF(k, temp);
|
||||
}
|
||||
|
@ -3174,6 +3301,7 @@ static PyMethodDef math_methods[] = {
|
|||
{"tanh", math_tanh, METH_O, math_tanh_doc},
|
||||
MATH_TRUNC_METHODDEF
|
||||
MATH_PROD_METHODDEF
|
||||
MATH_PERM_METHODDEF
|
||||
MATH_COMB_METHODDEF
|
||||
{NULL, NULL} /* sentinel */
|
||||
};
|
||||
|
|
Loading…
Reference in New Issue