Move test_math tests (GH-18098)

testPerm() and testComb() belong to MathTests, not to IsCloseTests().

test_nextafter() and test_ulp() now use assertIsNaN().
This commit is contained in:
Victor Stinner 2020-01-21 12:48:16 +01:00 committed by GitHub
parent 629023c05b
commit 59e2d26b25
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
1 changed files with 206 additions and 206 deletions

View File

@ -1746,212 +1746,6 @@ class MathTests(unittest.TestCase):
self.assertEqual(type(prod([1, decimal.Decimal(2.0), 3, 4, 5, 6])),
decimal.Decimal)
# Custom assertions.
def assertIsNaN(self, value):
if not math.isnan(value):
self.fail("Expected a NaN, got {!r}.".format(value))
def assertEqualSign(self, x, y):
"""Similar to assertEqual(), but compare also the sign.
Function useful to compare signed zeros.
"""
self.assertEqual(x, y)
self.assertEqual(math.copysign(1.0, x), math.copysign(1.0, y))
@requires_IEEE_754
def test_nextafter(self):
# around 2^52 and 2^63
self.assertEqual(math.nextafter(4503599627370496.0, -INF),
4503599627370495.5)
self.assertEqual(math.nextafter(4503599627370496.0, INF),
4503599627370497.0)
self.assertEqual(math.nextafter(9223372036854775808.0, 0.0),
9223372036854774784.0)
self.assertEqual(math.nextafter(-9223372036854775808.0, 0.0),
-9223372036854774784.0)
# around 1.0
self.assertEqual(math.nextafter(1.0, -INF),
float.fromhex('0x1.fffffffffffffp-1'))
self.assertEqual(math.nextafter(1.0, INF),
float.fromhex('0x1.0000000000001p+0'))
# x == y: y is returned
self.assertEqual(math.nextafter(2.0, 2.0), 2.0)
self.assertEqualSign(math.nextafter(-0.0, +0.0), +0.0)
self.assertEqualSign(math.nextafter(+0.0, -0.0), -0.0)
# around 0.0
smallest_subnormal = sys.float_info.min * sys.float_info.epsilon
self.assertEqual(math.nextafter(+0.0, INF), smallest_subnormal)
self.assertEqual(math.nextafter(-0.0, INF), smallest_subnormal)
self.assertEqual(math.nextafter(+0.0, -INF), -smallest_subnormal)
self.assertEqual(math.nextafter(-0.0, -INF), -smallest_subnormal)
self.assertEqualSign(math.nextafter(smallest_subnormal, +0.0), +0.0)
self.assertEqualSign(math.nextafter(-smallest_subnormal, +0.0), -0.0)
self.assertEqualSign(math.nextafter(smallest_subnormal, -0.0), +0.0)
self.assertEqualSign(math.nextafter(-smallest_subnormal, -0.0), -0.0)
# around infinity
largest_normal = sys.float_info.max
self.assertEqual(math.nextafter(INF, 0.0), largest_normal)
self.assertEqual(math.nextafter(-INF, 0.0), -largest_normal)
self.assertEqual(math.nextafter(largest_normal, INF), INF)
self.assertEqual(math.nextafter(-largest_normal, -INF), -INF)
# NaN
self.assertTrue(math.isnan(math.nextafter(NAN, 1.0)))
self.assertTrue(math.isnan(math.nextafter(1.0, NAN)))
self.assertTrue(math.isnan(math.nextafter(NAN, NAN)))
@requires_IEEE_754
def test_ulp(self):
self.assertEqual(math.ulp(1.0), sys.float_info.epsilon)
# use int ** int rather than float ** int to not rely on pow() accuracy
self.assertEqual(math.ulp(2 ** 52), 1.0)
self.assertEqual(math.ulp(2 ** 53), 2.0)
self.assertEqual(math.ulp(2 ** 64), 4096.0)
# min and max
self.assertEqual(math.ulp(0.0),
sys.float_info.min * sys.float_info.epsilon)
self.assertEqual(math.ulp(FLOAT_MAX),
FLOAT_MAX - math.nextafter(FLOAT_MAX, -INF))
# special cases
self.assertEqual(math.ulp(INF), INF)
self.assertTrue(math.isnan(math.ulp(math.nan)))
# negative number: ulp(-x) == ulp(x)
for x in (0.0, 1.0, 2 ** 52, 2 ** 64, INF):
with self.subTest(x=x):
self.assertEqual(math.ulp(-x), math.ulp(x))
class IsCloseTests(unittest.TestCase):
isclose = math.isclose # subclasses should override this
def assertIsClose(self, a, b, *args, **kwargs):
self.assertTrue(self.isclose(a, b, *args, **kwargs),
msg="%s and %s should be close!" % (a, b))
def assertIsNotClose(self, a, b, *args, **kwargs):
self.assertFalse(self.isclose(a, b, *args, **kwargs),
msg="%s and %s should not be close!" % (a, b))
def assertAllClose(self, examples, *args, **kwargs):
for a, b in examples:
self.assertIsClose(a, b, *args, **kwargs)
def assertAllNotClose(self, examples, *args, **kwargs):
for a, b in examples:
self.assertIsNotClose(a, b, *args, **kwargs)
def test_negative_tolerances(self):
# ValueError should be raised if either tolerance is less than zero
with self.assertRaises(ValueError):
self.assertIsClose(1, 1, rel_tol=-1e-100)
with self.assertRaises(ValueError):
self.assertIsClose(1, 1, rel_tol=1e-100, abs_tol=-1e10)
def test_identical(self):
# identical values must test as close
identical_examples = [(2.0, 2.0),
(0.1e200, 0.1e200),
(1.123e-300, 1.123e-300),
(12345, 12345.0),
(0.0, -0.0),
(345678, 345678)]
self.assertAllClose(identical_examples, rel_tol=0.0, abs_tol=0.0)
def test_eight_decimal_places(self):
# examples that are close to 1e-8, but not 1e-9
eight_decimal_places_examples = [(1e8, 1e8 + 1),
(-1e-8, -1.000000009e-8),
(1.12345678, 1.12345679)]
self.assertAllClose(eight_decimal_places_examples, rel_tol=1e-8)
self.assertAllNotClose(eight_decimal_places_examples, rel_tol=1e-9)
def test_near_zero(self):
# values close to zero
near_zero_examples = [(1e-9, 0.0),
(-1e-9, 0.0),
(-1e-150, 0.0)]
# these should not be close to any rel_tol
self.assertAllNotClose(near_zero_examples, rel_tol=0.9)
# these should be close to abs_tol=1e-8
self.assertAllClose(near_zero_examples, abs_tol=1e-8)
def test_identical_infinite(self):
# these are close regardless of tolerance -- i.e. they are equal
self.assertIsClose(INF, INF)
self.assertIsClose(INF, INF, abs_tol=0.0)
self.assertIsClose(NINF, NINF)
self.assertIsClose(NINF, NINF, abs_tol=0.0)
def test_inf_ninf_nan(self):
# these should never be close (following IEEE 754 rules for equality)
not_close_examples = [(NAN, NAN),
(NAN, 1e-100),
(1e-100, NAN),
(INF, NAN),
(NAN, INF),
(INF, NINF),
(INF, 1.0),
(1.0, INF),
(INF, 1e308),
(1e308, INF)]
# use largest reasonable tolerance
self.assertAllNotClose(not_close_examples, abs_tol=0.999999999999999)
def test_zero_tolerance(self):
# test with zero tolerance
zero_tolerance_close_examples = [(1.0, 1.0),
(-3.4, -3.4),
(-1e-300, -1e-300)]
self.assertAllClose(zero_tolerance_close_examples, rel_tol=0.0)
zero_tolerance_not_close_examples = [(1.0, 1.000000000000001),
(0.99999999999999, 1.0),
(1.0e200, .999999999999999e200)]
self.assertAllNotClose(zero_tolerance_not_close_examples, rel_tol=0.0)
def test_asymmetry(self):
# test the asymmetry example from PEP 485
self.assertAllClose([(9, 10), (10, 9)], rel_tol=0.1)
def test_integers(self):
# test with integer values
integer_examples = [(100000001, 100000000),
(123456789, 123456788)]
self.assertAllClose(integer_examples, rel_tol=1e-8)
self.assertAllNotClose(integer_examples, rel_tol=1e-9)
def test_decimals(self):
# test with Decimal values
from decimal import Decimal
decimal_examples = [(Decimal('1.00000001'), Decimal('1.0')),
(Decimal('1.00000001e-20'), Decimal('1.0e-20')),
(Decimal('1.00000001e-100'), Decimal('1.0e-100')),
(Decimal('1.00000001e20'), Decimal('1.0e20'))]
self.assertAllClose(decimal_examples, rel_tol=1e-8)
self.assertAllNotClose(decimal_examples, rel_tol=1e-9)
def test_fractions(self):
# test with Fraction values
from fractions import Fraction
fraction_examples = [
(Fraction(1, 100000000) + 1, Fraction(1)),
(Fraction(100000001), Fraction(100000000)),
(Fraction(10**8 + 1, 10**28), Fraction(1, 10**20))]
self.assertAllClose(fraction_examples, rel_tol=1e-8)
self.assertAllNotClose(fraction_examples, rel_tol=1e-9)
def testPerm(self):
perm = math.perm
factorial = math.factorial
@ -2086,6 +1880,212 @@ class IsCloseTests(unittest.TestCase):
self.assertIs(type(comb(IntSubclass(5), IntSubclass(k))), int)
self.assertIs(type(comb(MyIndexable(5), MyIndexable(k))), int)
@requires_IEEE_754
def test_nextafter(self):
# around 2^52 and 2^63
self.assertEqual(math.nextafter(4503599627370496.0, -INF),
4503599627370495.5)
self.assertEqual(math.nextafter(4503599627370496.0, INF),
4503599627370497.0)
self.assertEqual(math.nextafter(9223372036854775808.0, 0.0),
9223372036854774784.0)
self.assertEqual(math.nextafter(-9223372036854775808.0, 0.0),
-9223372036854774784.0)
# around 1.0
self.assertEqual(math.nextafter(1.0, -INF),
float.fromhex('0x1.fffffffffffffp-1'))
self.assertEqual(math.nextafter(1.0, INF),
float.fromhex('0x1.0000000000001p+0'))
# x == y: y is returned
self.assertEqual(math.nextafter(2.0, 2.0), 2.0)
self.assertEqualSign(math.nextafter(-0.0, +0.0), +0.0)
self.assertEqualSign(math.nextafter(+0.0, -0.0), -0.0)
# around 0.0
smallest_subnormal = sys.float_info.min * sys.float_info.epsilon
self.assertEqual(math.nextafter(+0.0, INF), smallest_subnormal)
self.assertEqual(math.nextafter(-0.0, INF), smallest_subnormal)
self.assertEqual(math.nextafter(+0.0, -INF), -smallest_subnormal)
self.assertEqual(math.nextafter(-0.0, -INF), -smallest_subnormal)
self.assertEqualSign(math.nextafter(smallest_subnormal, +0.0), +0.0)
self.assertEqualSign(math.nextafter(-smallest_subnormal, +0.0), -0.0)
self.assertEqualSign(math.nextafter(smallest_subnormal, -0.0), +0.0)
self.assertEqualSign(math.nextafter(-smallest_subnormal, -0.0), -0.0)
# around infinity
largest_normal = sys.float_info.max
self.assertEqual(math.nextafter(INF, 0.0), largest_normal)
self.assertEqual(math.nextafter(-INF, 0.0), -largest_normal)
self.assertEqual(math.nextafter(largest_normal, INF), INF)
self.assertEqual(math.nextafter(-largest_normal, -INF), -INF)
# NaN
self.assertIsNaN(math.nextafter(NAN, 1.0))
self.assertIsNaN(math.nextafter(1.0, NAN))
self.assertIsNaN(math.nextafter(NAN, NAN))
@requires_IEEE_754
def test_ulp(self):
self.assertEqual(math.ulp(1.0), sys.float_info.epsilon)
# use int ** int rather than float ** int to not rely on pow() accuracy
self.assertEqual(math.ulp(2 ** 52), 1.0)
self.assertEqual(math.ulp(2 ** 53), 2.0)
self.assertEqual(math.ulp(2 ** 64), 4096.0)
# min and max
self.assertEqual(math.ulp(0.0),
sys.float_info.min * sys.float_info.epsilon)
self.assertEqual(math.ulp(FLOAT_MAX),
FLOAT_MAX - math.nextafter(FLOAT_MAX, -INF))
# special cases
self.assertEqual(math.ulp(INF), INF)
self.assertIsNaN(math.ulp(math.nan))
# negative number: ulp(-x) == ulp(x)
for x in (0.0, 1.0, 2 ** 52, 2 ** 64, INF):
with self.subTest(x=x):
self.assertEqual(math.ulp(-x), math.ulp(x))
# Custom assertions.
def assertIsNaN(self, value):
if not math.isnan(value):
self.fail("Expected a NaN, got {!r}.".format(value))
def assertEqualSign(self, x, y):
"""Similar to assertEqual(), but compare also the sign with copysign().
Function useful to compare signed zeros.
"""
self.assertEqual(x, y)
self.assertEqual(math.copysign(1.0, x), math.copysign(1.0, y))
class IsCloseTests(unittest.TestCase):
isclose = math.isclose # subclasses should override this
def assertIsClose(self, a, b, *args, **kwargs):
self.assertTrue(self.isclose(a, b, *args, **kwargs),
msg="%s and %s should be close!" % (a, b))
def assertIsNotClose(self, a, b, *args, **kwargs):
self.assertFalse(self.isclose(a, b, *args, **kwargs),
msg="%s and %s should not be close!" % (a, b))
def assertAllClose(self, examples, *args, **kwargs):
for a, b in examples:
self.assertIsClose(a, b, *args, **kwargs)
def assertAllNotClose(self, examples, *args, **kwargs):
for a, b in examples:
self.assertIsNotClose(a, b, *args, **kwargs)
def test_negative_tolerances(self):
# ValueError should be raised if either tolerance is less than zero
with self.assertRaises(ValueError):
self.assertIsClose(1, 1, rel_tol=-1e-100)
with self.assertRaises(ValueError):
self.assertIsClose(1, 1, rel_tol=1e-100, abs_tol=-1e10)
def test_identical(self):
# identical values must test as close
identical_examples = [(2.0, 2.0),
(0.1e200, 0.1e200),
(1.123e-300, 1.123e-300),
(12345, 12345.0),
(0.0, -0.0),
(345678, 345678)]
self.assertAllClose(identical_examples, rel_tol=0.0, abs_tol=0.0)
def test_eight_decimal_places(self):
# examples that are close to 1e-8, but not 1e-9
eight_decimal_places_examples = [(1e8, 1e8 + 1),
(-1e-8, -1.000000009e-8),
(1.12345678, 1.12345679)]
self.assertAllClose(eight_decimal_places_examples, rel_tol=1e-8)
self.assertAllNotClose(eight_decimal_places_examples, rel_tol=1e-9)
def test_near_zero(self):
# values close to zero
near_zero_examples = [(1e-9, 0.0),
(-1e-9, 0.0),
(-1e-150, 0.0)]
# these should not be close to any rel_tol
self.assertAllNotClose(near_zero_examples, rel_tol=0.9)
# these should be close to abs_tol=1e-8
self.assertAllClose(near_zero_examples, abs_tol=1e-8)
def test_identical_infinite(self):
# these are close regardless of tolerance -- i.e. they are equal
self.assertIsClose(INF, INF)
self.assertIsClose(INF, INF, abs_tol=0.0)
self.assertIsClose(NINF, NINF)
self.assertIsClose(NINF, NINF, abs_tol=0.0)
def test_inf_ninf_nan(self):
# these should never be close (following IEEE 754 rules for equality)
not_close_examples = [(NAN, NAN),
(NAN, 1e-100),
(1e-100, NAN),
(INF, NAN),
(NAN, INF),
(INF, NINF),
(INF, 1.0),
(1.0, INF),
(INF, 1e308),
(1e308, INF)]
# use largest reasonable tolerance
self.assertAllNotClose(not_close_examples, abs_tol=0.999999999999999)
def test_zero_tolerance(self):
# test with zero tolerance
zero_tolerance_close_examples = [(1.0, 1.0),
(-3.4, -3.4),
(-1e-300, -1e-300)]
self.assertAllClose(zero_tolerance_close_examples, rel_tol=0.0)
zero_tolerance_not_close_examples = [(1.0, 1.000000000000001),
(0.99999999999999, 1.0),
(1.0e200, .999999999999999e200)]
self.assertAllNotClose(zero_tolerance_not_close_examples, rel_tol=0.0)
def test_asymmetry(self):
# test the asymmetry example from PEP 485
self.assertAllClose([(9, 10), (10, 9)], rel_tol=0.1)
def test_integers(self):
# test with integer values
integer_examples = [(100000001, 100000000),
(123456789, 123456788)]
self.assertAllClose(integer_examples, rel_tol=1e-8)
self.assertAllNotClose(integer_examples, rel_tol=1e-9)
def test_decimals(self):
# test with Decimal values
from decimal import Decimal
decimal_examples = [(Decimal('1.00000001'), Decimal('1.0')),
(Decimal('1.00000001e-20'), Decimal('1.0e-20')),
(Decimal('1.00000001e-100'), Decimal('1.0e-100')),
(Decimal('1.00000001e20'), Decimal('1.0e20'))]
self.assertAllClose(decimal_examples, rel_tol=1e-8)
self.assertAllNotClose(decimal_examples, rel_tol=1e-9)
def test_fractions(self):
# test with Fraction values
from fractions import Fraction
fraction_examples = [
(Fraction(1, 100000000) + 1, Fraction(1)),
(Fraction(100000001), Fraction(100000000)),
(Fraction(10**8 + 1, 10**28), Fraction(1, 10**20))]
self.assertAllClose(fraction_examples, rel_tol=1e-8)
self.assertAllNotClose(fraction_examples, rel_tol=1e-9)
def test_main():
from doctest import DocFileSuite