Load docs for sets.py
This commit is contained in:
parent
e399d08a4a
commit
584cb198f7
|
@ -122,6 +122,7 @@ and how to embed it in other applications.
|
|||
\input{libbisect}
|
||||
\input{libheapq}
|
||||
\input{libarray}
|
||||
\input{libsets}
|
||||
\input{libcfgparser}
|
||||
\input{libfileinput}
|
||||
\input{libxreadlines}
|
||||
|
|
|
@ -0,0 +1,219 @@
|
|||
\section{\module{sets} ---
|
||||
Unordered collections of unique elements}
|
||||
|
||||
\declaremodule{standard}{sets}
|
||||
\modulesynopsis{Implementation of sets of unique elements.}
|
||||
\moduleauthor{Greg V. Wilson}{gvwilson@nevex.com}
|
||||
\moduleauthor{Alex Martelli}{aleax@aleax.it}
|
||||
\moduleauthor{Guido van Rossum}{guido@python.org}
|
||||
\sectionauthor{Raymond D. Hettinger}{python@rcn.com}
|
||||
|
||||
\versionadded{2.3}
|
||||
|
||||
The \module{sets} module provides classes for constructing and manipulating
|
||||
unordered collections of unique elements. Common uses include membership
|
||||
testing, removing duplicates from a sequence, and computing standard math
|
||||
operations on sets such as intersection, union, difference, and symmetric
|
||||
difference.
|
||||
|
||||
Like other collections, sets support \code{x in s}, \code{len(s)}, and
|
||||
\code{for x in s}. Being an unordered collection, sets do not record element
|
||||
position or order of insertion. Accordingly, sets do not support indexing,
|
||||
slicing or other sequence-like behavior.
|
||||
|
||||
Most set applications use the \class{Set} class which provides every set
|
||||
method except for \method{__hash__()}. For advanced applications requiring
|
||||
a hash method, the \class{ImmutableSet} class adds a \method{__hash__()}
|
||||
method but omits methods which alter the contents of the set. Both
|
||||
\class{Set} and \class{ImmutableSet} derive from \class{BaseSet}, an
|
||||
abstract class useful for determining whether something is a set:
|
||||
\code{isinstance(x, BaseSet)}.
|
||||
|
||||
The set classes are implemented using dictionaries. As a result, sets cannot
|
||||
contain mutable elements such as lists or dictionaries. However, they can
|
||||
contain immutable collections such as tuples or instances of
|
||||
\class(ImmutableSet). For convenience in implementing sets of sets,
|
||||
inner sets are automatically converted to immutable form, for example,
|
||||
\code{Set([Set(['dog'])])} is transformed to
|
||||
\code{Set([ImmutableSet(['dog'])])}.
|
||||
|
||||
\begin{classdesc}{Set}{\optional{iterable}}
|
||||
Constructs a new empty \class{Set} object. If the optional \var{iterable}
|
||||
parameter is supplied, updates the set with elements obtained from iteration.
|
||||
All of the elements in \var{iterable} should be immutable or be transformable
|
||||
to an immutable using the protocol described at \ref{immutable-transforms}.
|
||||
\end{classdesc}
|
||||
|
||||
\begin{classdesc}{ImmutableSet}{\optional{iterable}}
|
||||
Constructs a new empty \class{ImmutableSet} object. If the optional
|
||||
\var{iterable} parameter is supplied, updates the set with elements obtained
|
||||
from iteration. All of the elements in \var{iterable} should be immutable or
|
||||
be transformable to an immutable using the protocol described at
|
||||
\ref{immutable-transforms}.
|
||||
|
||||
Because \class{ImmutableSet} objects provide a \method{__hash__()} method,
|
||||
they can be used as set elements or as dictionary keys. \class{ImmutableSet}
|
||||
objects do not have methods for adding or removing elements, so all of the
|
||||
elements must be known when the constructor is called.
|
||||
\end{classdesc}
|
||||
|
||||
|
||||
\subsection{set Objects}
|
||||
|
||||
Instances of \class{Set} and \class{ImmutableSet} both provide
|
||||
the following operations:
|
||||
|
||||
\begin{tableiii}{c|l|c}{code}{Operation}{Result}{Notes}
|
||||
\lineiii{len(\var{s})}{cardinality of set \var{s}}{}
|
||||
|
||||
\hline
|
||||
\lineiii{\var{x} in \var{s}}
|
||||
{test \var{x} for membership in \var{s}}{}
|
||||
\lineiii{\var{x} not in \var{s}}
|
||||
{test \var{x} for non-membership in \var{s}}{}
|
||||
\lineiii{\var{s}.issubset(\var{t})}
|
||||
{test whether every element in \var{s} is in \var{t}}{}
|
||||
\lineiii{\var{s}.issuperset(\var{t})}
|
||||
{test whether every element in \var{t} is in \var{s}}{}
|
||||
|
||||
\hline
|
||||
\lineiii{\var{s} | \var{t}}
|
||||
{new set with elements from both \var{s} and \var{t}}{}
|
||||
\lineiii{\var{s}.union(\var{t})}
|
||||
{new set with elements from both \var{s} and \var{t}}{}
|
||||
\lineiii{\var{s} & \var{t}}
|
||||
{new set with elements common to \var{s} and \var{t}}{}
|
||||
\lineiii{\var{s}.intersection(\var{t})}
|
||||
{new set with elements common to \var{s} and \var{t}}{}
|
||||
\lineiii{\var{s} - \var{t}}
|
||||
{new set with elements in \var{s} but not in \var{t}}{}
|
||||
\lineiii{\var{s}.difference(\var{t})}
|
||||
{new set with elements in \var{s} but not in \var{t}}{}
|
||||
\lineiii{\var{s} ^ \var{t}}
|
||||
{new set with elements in either \var{s} or \var{t} but not both}{}
|
||||
\lineiii{\var{s}.symmetric_difference(\var{t})}
|
||||
{new set with elements in either \var{s} or \var{t} but not both}{}
|
||||
\lineiii{\var{s}.copy()}
|
||||
{new set with a shallow copy of \var{s}}{}
|
||||
\end{tableiii}
|
||||
|
||||
In addition to the above operations, both \class{Set} and \class{ImmutableSet}
|
||||
support set to set comparison operators based on the contents of their
|
||||
internal dictionaries. Two sets are equal if and only if every element of
|
||||
each set is contained in the other.
|
||||
|
||||
The following table lists operations available in \class{ImmutableSet}
|
||||
but not found in \class{Set}:
|
||||
|
||||
\begin{tableiii}{c|l|c}{code}{Operation}{Result}{Notes}
|
||||
\lineiii{hash(\var{s})}{returns a hash value for \var{s}}{}
|
||||
\end{tableiii}
|
||||
|
||||
The following table lists operations available in \class{Set}
|
||||
but not found in \class{ImmutableSet}:
|
||||
|
||||
\begin{tableiii}{c|l|c}{code}{Operation}{Result}{Notes}
|
||||
\lineiii{\var{s} |= \var{t}}
|
||||
{return set \var{s} with elements added from \var{t}}{}
|
||||
\lineiii{\var{s}.union_update(\var{t})}
|
||||
{return set \var{s} with elements added from \var{t}}{}
|
||||
\lineiii{\var{s} &= \var{t}}
|
||||
{return set \var{s} keeping only elements also found in \var{t}}{}
|
||||
\lineiii{\var{s}.intersection_update(\var{t})}
|
||||
{return set \var{s} keeping only elements also found in \var{t}}{}
|
||||
\lineiii{\var{s} -= \var{t}}
|
||||
{return set \var{s} after removing elements found in \var{t}}{}
|
||||
\lineiii{\var{s}.difference_update(\var{t})}
|
||||
{return set \var{s} after removing elements found in \var{t}}{}
|
||||
\lineiii{\var{s} ^= \var{t}}
|
||||
{return set \var{s} with elements from \var{s} or \var{t} but not both}{}
|
||||
\lineiii{\var{s}.symmetric_difference_update(\var{t})}
|
||||
{return set \var{s} with elements from \var{s} or \var{t} but not both}{}
|
||||
|
||||
\hline
|
||||
\lineiii{\var{s}.add(\var{x})}
|
||||
{Add element \var{x} to set \var{s}}{}
|
||||
\lineiii{\var{s}.remove(\var{x})}
|
||||
{Remove element \var{x} from set \var{s}}{}
|
||||
\lineiii{\var{s}.discard(\var{x})}
|
||||
{Removes element \var{x} from set \var{s} like \var{s}.remove(\var{x})
|
||||
but does not raise a KeyError if \var{x} is not in \var{s}}{}
|
||||
\lineiii{\var{s}.pop()}
|
||||
{Remove and return a randomly-chosen element from \var{s}}{}
|
||||
\lineiii{\var{s}.update(\var{t})}
|
||||
{Add elements from \var{t} to set \var{s}}{}
|
||||
\lineiii{\var{s}.clear()}
|
||||
{Remove all elements from set \var{s}}{}
|
||||
\end{tableiii}
|
||||
|
||||
|
||||
\subsection{Example}
|
||||
|
||||
\begin{verbatim}
|
||||
>>> from sets import Set
|
||||
>>> engineers = Set(['John', 'Jane', 'Jack', 'Janice'])
|
||||
>>> programmers = Set(['Jack', 'Sam', 'Susan', 'Janice'])
|
||||
>>> management = Set(['Jane', 'Jack', 'Susan', 'Zack'])
|
||||
>>> employees = engineers | programmers | management # union
|
||||
>>> engineering_management = engineers & programmers # intersection
|
||||
>>> fulltime_management = management - engineers - programmers # difference
|
||||
>>> engineers.add('Marvin') # add element
|
||||
>>> print engineers
|
||||
Set(['Jane', 'Marvin', 'Janice', 'John', 'Jack'])
|
||||
>>> employees.issuperset(engineers) # superset test
|
||||
False
|
||||
>>> employees.update(engineers) # update from another set
|
||||
>>> employees.issuperset(engineers)
|
||||
True
|
||||
>>> for group in [engineers, programmers, management, employees]:
|
||||
group.discard('Susan') # unconditionally remove element
|
||||
print group
|
||||
|
||||
Set(['Jane', 'Marvin', 'Janice', 'John', 'Jack'])
|
||||
Set(['Janice', 'Jack', 'Sam'])
|
||||
Set(['Jane', 'Zack', 'Jack'])
|
||||
Set(['Jack', 'Sam', 'Jane', 'Marvin', 'Janice', 'John', 'Zack'])
|
||||
\end{verbatim}
|
||||
|
||||
|
||||
\subsection{Protocol for automatic conversion to immutable
|
||||
\label{immutable-transforms}}
|
||||
|
||||
Sets can only contain immutable elements. For convenience, mutable
|
||||
\class{Set} objects are automatically copied to an \class{ImmutableSet}
|
||||
before being added as a set element.
|
||||
|
||||
The mechanism is to always add a hashable element, or if it is not hashable,
|
||||
the element is checked to see if it has an \method{_as_immutable()} method
|
||||
which returns an immutable equivalent.
|
||||
|
||||
Since \class{Set} objects have a \method{_as_immutable()} method
|
||||
returning an instance of \class{ImmutableSet}, it is possible to
|
||||
construct sets of sets.
|
||||
|
||||
A similar mechanism is needed by the \method{__contains__()} and
|
||||
\method{remove()} methods which need to hash an element to check
|
||||
for membership in a set. Those methods check an element for hashability
|
||||
and, if not, check for a \method{_as_Temporarily_Immutable} method
|
||||
which returns the element wrapped by a class that provides temporary
|
||||
methods for \method{__hash__()}, \method{__eq__()}, and \method{__ne__()}.
|
||||
|
||||
The alternate mechanism spares the need to build a separate copy of
|
||||
the original mutable object.
|
||||
|
||||
\class{Set} objects implement the \method{_as_Temporarily_Immutable} method
|
||||
which returns the \class{Set} object wrapped by a new class
|
||||
\class{_TemporarilyImmutableSet}.
|
||||
|
||||
The two mechanisms for adding hashability are normally invisible to the
|
||||
user; however, a conflict can arise in a multi-threaded environment
|
||||
where one thread is updating a Set while another has temporarily wrapped it
|
||||
in \class{_TemporarilyImmutableSet}. In other words, sets of mutable sets
|
||||
are not thread-safe.
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue