Add doctests to the descriptor HowTo (GH-23500) (GH-23505)
This commit is contained in:
parent
15d42d7ec6
commit
543724b972
|
@ -43,21 +43,26 @@ Simple example: A descriptor that returns a constant
|
|||
----------------------------------------------------
|
||||
|
||||
The :class:`Ten` class is a descriptor that always returns the constant ``10``
|
||||
from its :meth:`__get__` method::
|
||||
from its :meth:`__get__` method:
|
||||
|
||||
.. testcode::
|
||||
|
||||
class Ten:
|
||||
def __get__(self, obj, objtype=None):
|
||||
return 10
|
||||
|
||||
To use the descriptor, it must be stored as a class variable in another class::
|
||||
To use the descriptor, it must be stored as a class variable in another class:
|
||||
|
||||
.. testcode::
|
||||
|
||||
class A:
|
||||
x = 5 # Regular class attribute
|
||||
y = Ten() # Descriptor instance
|
||||
|
||||
An interactive session shows the difference between normal attribute lookup
|
||||
and descriptor lookup::
|
||||
and descriptor lookup:
|
||||
|
||||
.. doctest::
|
||||
|
||||
>>> a = A() # Make an instance of class A
|
||||
>>> a.x # Normal attribute lookup
|
||||
|
@ -83,7 +88,9 @@ Dynamic lookups
|
|||
---------------
|
||||
|
||||
Interesting descriptors typically run computations instead of returning
|
||||
constants::
|
||||
constants:
|
||||
|
||||
.. testcode::
|
||||
|
||||
import os
|
||||
|
||||
|
@ -131,7 +138,9 @@ the public attribute is accessed.
|
|||
|
||||
In the following example, *age* is the public attribute and *_age* is the
|
||||
private attribute. When the public attribute is accessed, the descriptor logs
|
||||
the lookup or update::
|
||||
the lookup or update:
|
||||
|
||||
.. testcode::
|
||||
|
||||
import logging
|
||||
|
||||
|
@ -201,7 +210,9 @@ variable name was used.
|
|||
In this example, the :class:`Person` class has two descriptor instances,
|
||||
*name* and *age*. When the :class:`Person` class is defined, it makes a
|
||||
callback to :meth:`__set_name__` in *LoggedAccess* so that the field names can
|
||||
be recorded, giving each descriptor its own *public_name* and *private_name*::
|
||||
be recorded, giving each descriptor its own *public_name* and *private_name*:
|
||||
|
||||
.. testcode::
|
||||
|
||||
import logging
|
||||
|
||||
|
@ -236,7 +247,9 @@ be recorded, giving each descriptor its own *public_name* and *private_name*::
|
|||
|
||||
An interactive session shows that the :class:`Person` class has called
|
||||
:meth:`__set_name__` so that the field names would be recorded. Here
|
||||
we call :func:`vars` to look up the descriptor without triggering it::
|
||||
we call :func:`vars` to look up the descriptor without triggering it:
|
||||
|
||||
.. doctest::
|
||||
|
||||
>>> vars(vars(Person)['name'])
|
||||
{'public_name': 'name', 'private_name': '_name'}
|
||||
|
@ -307,7 +320,9 @@ restrictions. If those restrictions aren't met, it raises an exception to
|
|||
prevent data corruption at its source.
|
||||
|
||||
This :class:`Validator` class is both an :term:`abstract base class` and a
|
||||
managed attribute descriptor::
|
||||
managed attribute descriptor:
|
||||
|
||||
.. testcode::
|
||||
|
||||
from abc import ABC, abstractmethod
|
||||
|
||||
|
@ -347,7 +362,7 @@ Here are three practical data validation utilities:
|
|||
user-defined `predicate
|
||||
<https://en.wikipedia.org/wiki/Predicate_(mathematical_logic)>`_ as well.
|
||||
|
||||
::
|
||||
.. testcode::
|
||||
|
||||
class OneOf(Validator):
|
||||
|
||||
|
@ -400,10 +415,12 @@ Here are three practical data validation utilities:
|
|||
)
|
||||
|
||||
|
||||
Practical use
|
||||
-------------
|
||||
Practical application
|
||||
---------------------
|
||||
|
||||
Here's how the data validators can be used in a real class::
|
||||
Here's how the data validators can be used in a real class:
|
||||
|
||||
.. testcode::
|
||||
|
||||
class Component:
|
||||
|
||||
|
@ -418,11 +435,26 @@ Here's how the data validators can be used in a real class::
|
|||
|
||||
The descriptors prevent invalid instances from being created::
|
||||
|
||||
Component('WIDGET', 'metal', 5) # Allowed.
|
||||
Component('Widget', 'metal', 5) # Blocked: 'Widget' is not all uppercase
|
||||
Component('WIDGET', 'metle', 5) # Blocked: 'metle' is misspelled
|
||||
Component('WIDGET', 'metal', -5) # Blocked: -5 is negative
|
||||
Component('WIDGET', 'metal', 'V') # Blocked: 'V' isn't a number
|
||||
>>> Component('Widget', 'metal', 5) # Blocked: 'Widget' is not all uppercase
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: Expected <method 'isupper' of 'str' objects> to be true for 'Widget'
|
||||
|
||||
>>> Component('WIDGET', 'metle', 5) # Blocked: 'metle' is misspelled
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: Expected 'metle' to be one of {'metal', 'plastic', 'wood'}
|
||||
|
||||
>>> Component('WIDGET', 'metal', -5) # Blocked: -5 is negative
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: Expected -5 to be at least 0
|
||||
>>> Component('WIDGET', 'metal', 'V') # Blocked: 'V' isn't a number
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
TypeError: Expected 'V' to be an int or float
|
||||
|
||||
>>> c = Component('WIDGET', 'metal', 5) # Allowed: The inputs are valid
|
||||
|
||||
|
||||
Technical Tutorial
|
||||
|
@ -526,7 +558,9 @@ If a descriptor is found for ``a.x``, then it is invoked with:
|
|||
``desc.__get__(a, type(a))``.
|
||||
|
||||
The logic for a dotted lookup is in :meth:`object.__getattribute__`. Here is
|
||||
a pure Python equivalent::
|
||||
a pure Python equivalent:
|
||||
|
||||
.. testcode::
|
||||
|
||||
def object_getattribute(obj, name):
|
||||
"Emulate PyObject_GenericGetAttr() in Objects/object.c"
|
||||
|
@ -546,9 +580,108 @@ a pure Python equivalent::
|
|||
return cls_var # class variable
|
||||
raise AttributeError(name)
|
||||
|
||||
|
||||
.. testcode::
|
||||
:hide:
|
||||
|
||||
# Test the fidelity of object_getattribute() by comparing it with the
|
||||
# normal object.__getattribute__(). The former will be accessed by
|
||||
# square brackets and the latter by the dot operator.
|
||||
|
||||
class Object:
|
||||
|
||||
def __getitem__(obj, name):
|
||||
try:
|
||||
return object_getattribute(obj, name)
|
||||
except AttributeError:
|
||||
if not hasattr(type(obj), '__getattr__'):
|
||||
raise
|
||||
return type(obj).__getattr__(obj, name) # __getattr__
|
||||
|
||||
class DualOperator(Object):
|
||||
|
||||
x = 10
|
||||
|
||||
def __init__(self, z):
|
||||
self.z = z
|
||||
|
||||
@property
|
||||
def p2(self):
|
||||
return 2 * self.x
|
||||
|
||||
@property
|
||||
def p3(self):
|
||||
return 3 * self.x
|
||||
|
||||
def m5(self, y):
|
||||
return 5 * y
|
||||
|
||||
def m7(self, y):
|
||||
return 7 * y
|
||||
|
||||
def __getattr__(self, name):
|
||||
return ('getattr_hook', self, name)
|
||||
|
||||
class DualOperatorWithSlots:
|
||||
|
||||
__getitem__ = Object.__getitem__
|
||||
|
||||
__slots__ = ['z']
|
||||
|
||||
x = 15
|
||||
|
||||
def __init__(self, z):
|
||||
self.z = z
|
||||
|
||||
@property
|
||||
def p2(self):
|
||||
return 2 * self.x
|
||||
|
||||
def m5(self, y):
|
||||
return 5 * y
|
||||
|
||||
def __getattr__(self, name):
|
||||
return ('getattr_hook', self, name)
|
||||
|
||||
|
||||
.. doctest::
|
||||
:hide:
|
||||
|
||||
>>> a = DualOperator(11)
|
||||
>>> vars(a).update(p3 = '_p3', m7 = '_m7')
|
||||
>>> a.x == a['x'] == 10
|
||||
True
|
||||
>>> a.z == a['z'] == 11
|
||||
True
|
||||
>>> a.p2 == a['p2'] == 20
|
||||
True
|
||||
>>> a.p3 == a['p3'] == 30
|
||||
True
|
||||
>>> a.m5(100) == a.m5(100) == 500
|
||||
True
|
||||
>>> a.m7 == a['m7'] == '_m7'
|
||||
True
|
||||
>>> a.g == a['g'] == ('getattr_hook', a, 'g')
|
||||
True
|
||||
|
||||
>>> b = DualOperatorWithSlots(22)
|
||||
>>> b.x == b['x'] == 15
|
||||
True
|
||||
>>> b.z == b['z'] == 22
|
||||
True
|
||||
>>> b.p2 == b['p2'] == 30
|
||||
True
|
||||
>>> b.m5(200) == b['m5'](200) == 1000
|
||||
True
|
||||
>>> b.g == b['g'] == ('getattr_hook', b, 'g')
|
||||
True
|
||||
|
||||
|
||||
Interestingly, attribute lookup doesn't call :meth:`object.__getattribute__`
|
||||
directly. Instead, both the dot operator and the :func:`getattr` function
|
||||
perform attribute lookup by way of a helper function::
|
||||
perform attribute lookup by way of a helper function:
|
||||
|
||||
.. testcode::
|
||||
|
||||
def getattr_hook(obj, name):
|
||||
"Emulate slot_tp_getattr_hook() in Objects/typeobject.c"
|
||||
|
@ -650,7 +783,9 @@ be used to implement an `object relational mapping
|
|||
|
||||
The essential idea is that the data is stored in an external database. The
|
||||
Python instances only hold keys to the database's tables. Descriptors take
|
||||
care of lookups or updates::
|
||||
care of lookups or updates:
|
||||
|
||||
.. testcode::
|
||||
|
||||
class Field:
|
||||
|
||||
|
@ -665,8 +800,11 @@ care of lookups or updates::
|
|||
conn.execute(self.store, [value, obj.key])
|
||||
conn.commit()
|
||||
|
||||
We can use the :class:`Field` class to define "models" that describe the schema
|
||||
for each table in a database::
|
||||
We can use the :class:`Field` class to define `models
|
||||
<https://en.wikipedia.org/wiki/Database_model>`_ that describe the schema for
|
||||
each table in a database:
|
||||
|
||||
.. testcode::
|
||||
|
||||
class Movie:
|
||||
table = 'Movies' # Table name
|
||||
|
@ -687,12 +825,41 @@ for each table in a database::
|
|||
def __init__(self, key):
|
||||
self.key = key
|
||||
|
||||
An interactive session shows how data is retrieved from the database and how
|
||||
it can be updated::
|
||||
To use the models, first connect to the database::
|
||||
|
||||
>>> import sqlite3
|
||||
>>> conn = sqlite3.connect('entertainment.db')
|
||||
|
||||
An interactive session shows how data is retrieved from the database and how
|
||||
it can be updated:
|
||||
|
||||
.. testsetup::
|
||||
|
||||
song_data = [
|
||||
('Country Roads', 'John Denver', 1972),
|
||||
('Me and Bobby McGee', 'Janice Joplin', 1971),
|
||||
('Coal Miners Daughter', 'Loretta Lynn', 1970),
|
||||
]
|
||||
|
||||
movie_data = [
|
||||
('Star Wars', 'George Lucas', 1977),
|
||||
('Jaws', 'Steven Spielberg', 1975),
|
||||
('Aliens', 'James Cameron', 1986),
|
||||
]
|
||||
|
||||
import sqlite3
|
||||
|
||||
conn = sqlite3.connect(':memory:')
|
||||
conn.execute('CREATE TABLE Music (title text, artist text, year integer);')
|
||||
conn.execute('CREATE INDEX MusicNdx ON Music (title);')
|
||||
conn.executemany('INSERT INTO Music VALUES (?, ?, ?);', song_data)
|
||||
conn.execute('CREATE TABLE Movies (title text, director text, year integer);')
|
||||
conn.execute('CREATE INDEX MovieNdx ON Music (title);')
|
||||
conn.executemany('INSERT INTO Movies VALUES (?, ?, ?);', movie_data)
|
||||
conn.commit()
|
||||
|
||||
.. doctest::
|
||||
|
||||
>>> Movie('Star Wars').director
|
||||
'George Lucas'
|
||||
>>> jaws = Movie('Jaws')
|
||||
|
@ -724,7 +891,9 @@ triggers a function call upon access to an attribute. Its signature is::
|
|||
|
||||
property(fget=None, fset=None, fdel=None, doc=None) -> property
|
||||
|
||||
The documentation shows a typical use to define a managed attribute ``x``::
|
||||
The documentation shows a typical use to define a managed attribute ``x``:
|
||||
|
||||
.. testcode::
|
||||
|
||||
class C:
|
||||
def getx(self): return self.__x
|
||||
|
@ -733,7 +902,9 @@ The documentation shows a typical use to define a managed attribute ``x``::
|
|||
x = property(getx, setx, delx, "I'm the 'x' property.")
|
||||
|
||||
To see how :func:`property` is implemented in terms of the descriptor protocol,
|
||||
here is a pure Python equivalent::
|
||||
here is a pure Python equivalent:
|
||||
|
||||
.. testcode::
|
||||
|
||||
class Property:
|
||||
"Emulate PyProperty_Type() in Objects/descrobject.c"
|
||||
|
@ -772,6 +943,57 @@ here is a pure Python equivalent::
|
|||
def deleter(self, fdel):
|
||||
return type(self)(self.fget, self.fset, fdel, self.__doc__)
|
||||
|
||||
.. testcode::
|
||||
:hide:
|
||||
|
||||
# Verify the Property() emulation
|
||||
|
||||
class CC:
|
||||
def getx(self):
|
||||
return self.__x
|
||||
def setx(self, value):
|
||||
self.__x = value
|
||||
def delx(self):
|
||||
del self.__x
|
||||
x = Property(getx, setx, delx, "I'm the 'x' property.")
|
||||
|
||||
# Now do it again but use the decorator style
|
||||
|
||||
class CCC:
|
||||
@Property
|
||||
def x(self):
|
||||
return self.__x
|
||||
@x.setter
|
||||
def x(self, value):
|
||||
self.__x = value
|
||||
@x.deleter
|
||||
def x(self):
|
||||
del self.__x
|
||||
|
||||
|
||||
.. doctest::
|
||||
:hide:
|
||||
|
||||
>>> cc = CC()
|
||||
>>> hasattr(cc, 'x')
|
||||
False
|
||||
>>> cc.x = 33
|
||||
>>> cc.x
|
||||
33
|
||||
>>> del cc.x
|
||||
>>> hasattr(cc, 'x')
|
||||
False
|
||||
|
||||
>>> ccc = CCC()
|
||||
>>> hasattr(ccc, 'x')
|
||||
False
|
||||
>>> ccc.x = 333
|
||||
>>> ccc.x == 333
|
||||
True
|
||||
>>> del ccc.x
|
||||
>>> hasattr(ccc, 'x')
|
||||
False
|
||||
|
||||
The :func:`property` builtin helps whenever a user interface has granted
|
||||
attribute access and then subsequent changes require the intervention of a
|
||||
method.
|
||||
|
@ -780,7 +1002,9 @@ For instance, a spreadsheet class may grant access to a cell value through
|
|||
``Cell('b10').value``. Subsequent improvements to the program require the cell
|
||||
to be recalculated on every access; however, the programmer does not want to
|
||||
affect existing client code accessing the attribute directly. The solution is
|
||||
to wrap access to the value attribute in a property data descriptor::
|
||||
to wrap access to the value attribute in a property data descriptor:
|
||||
|
||||
.. testcode::
|
||||
|
||||
class Cell:
|
||||
...
|
||||
|
@ -791,6 +1015,9 @@ to wrap access to the value attribute in a property data descriptor::
|
|||
self.recalc()
|
||||
return self._value
|
||||
|
||||
Either the built-in :func:`property` or our :func:`Property` equivalent would
|
||||
work in this example.
|
||||
|
||||
|
||||
Functions and methods
|
||||
---------------------
|
||||
|
@ -804,7 +1031,9 @@ prepended to the other arguments. By convention, the instance is called
|
|||
*self* but could be called *this* or any other variable name.
|
||||
|
||||
Methods can be created manually with :class:`types.MethodType` which is
|
||||
roughly equivalent to::
|
||||
roughly equivalent to:
|
||||
|
||||
.. testcode::
|
||||
|
||||
class MethodType:
|
||||
"Emulate Py_MethodType in Objects/classobject.c"
|
||||
|
@ -821,7 +1050,9 @@ roughly equivalent to::
|
|||
To support automatic creation of methods, functions include the
|
||||
:meth:`__get__` method for binding methods during attribute access. This
|
||||
means that functions are non-data descriptors that return bound methods
|
||||
during dotted lookup from an instance. Here's how it works::
|
||||
during dotted lookup from an instance. Here's how it works:
|
||||
|
||||
.. testcode::
|
||||
|
||||
class Function:
|
||||
...
|
||||
|
@ -833,13 +1064,17 @@ during dotted lookup from an instance. Here's how it works::
|
|||
return MethodType(self, obj)
|
||||
|
||||
Running the following class in the interpreter shows how the function
|
||||
descriptor works in practice::
|
||||
descriptor works in practice:
|
||||
|
||||
.. testcode::
|
||||
|
||||
class D:
|
||||
def f(self, x):
|
||||
return x
|
||||
|
||||
The function has a :term:`qualified name` attribute to support introspection::
|
||||
The function has a :term:`qualified name` attribute to support introspection:
|
||||
|
||||
.. doctest::
|
||||
|
||||
>>> D.f.__qualname__
|
||||
'D.f'
|
||||
|
@ -867,7 +1102,7 @@ Internally, the bound method stores the underlying function and the bound
|
|||
instance::
|
||||
|
||||
>>> d.f.__func__
|
||||
<function D.f at 0x1012e5ae8>
|
||||
<function D.f at 0x00C45070>
|
||||
|
||||
>>> d.f.__self__
|
||||
<__main__.D object at 0x1012e1f98>
|
||||
|
@ -919,20 +1154,26 @@ It can be called either from an object or the class: ``s.erf(1.5) --> .9332`` o
|
|||
``Sample.erf(1.5) --> .9332``.
|
||||
|
||||
Since static methods return the underlying function with no changes, the
|
||||
example calls are unexciting::
|
||||
example calls are unexciting:
|
||||
|
||||
.. testcode::
|
||||
|
||||
class E:
|
||||
@staticmethod
|
||||
def f(x):
|
||||
print(x)
|
||||
|
||||
.. doctest::
|
||||
|
||||
>>> E.f(3)
|
||||
3
|
||||
>>> E().f(3)
|
||||
3
|
||||
|
||||
Using the non-data descriptor protocol, a pure Python version of
|
||||
:func:`staticmethod` would look like this::
|
||||
:func:`staticmethod` would look like this:
|
||||
|
||||
.. doctest::
|
||||
|
||||
class StaticMethod:
|
||||
"Emulate PyStaticMethod_Type() in Objects/funcobject.c"
|
||||
|
@ -949,27 +1190,31 @@ Class methods
|
|||
|
||||
Unlike static methods, class methods prepend the class reference to the
|
||||
argument list before calling the function. This format is the same
|
||||
for whether the caller is an object or a class::
|
||||
for whether the caller is an object or a class:
|
||||
|
||||
.. testcode::
|
||||
|
||||
class F:
|
||||
@classmethod
|
||||
def f(cls, x):
|
||||
return cls.__name__, x
|
||||
|
||||
>>> print(F.f(3))
|
||||
.. doctest::
|
||||
|
||||
>>> F.f(3)
|
||||
('F', 3)
|
||||
>>> print(F().f(3))
|
||||
>>> F().f(3)
|
||||
('F', 3)
|
||||
|
||||
This behavior is useful whenever the method only needs to have a class
|
||||
reference and does rely on data stored in a specific instance. One use for
|
||||
class methods is to create alternate class constructors. For example, the
|
||||
classmethod :func:`dict.fromkeys` creates a new dictionary from a list of
|
||||
keys. The pure Python equivalent is::
|
||||
keys. The pure Python equivalent is:
|
||||
|
||||
class Dict:
|
||||
...
|
||||
.. testcode::
|
||||
|
||||
class Dict(dict):
|
||||
@classmethod
|
||||
def fromkeys(cls, iterable, value=None):
|
||||
"Emulate dict_fromkeys() in Objects/dictobject.c"
|
||||
|
@ -978,13 +1223,17 @@ keys. The pure Python equivalent is::
|
|||
d[key] = value
|
||||
return d
|
||||
|
||||
Now a new dictionary of unique keys can be constructed like this::
|
||||
Now a new dictionary of unique keys can be constructed like this:
|
||||
|
||||
.. doctest::
|
||||
|
||||
>>> Dict.fromkeys('abracadabra')
|
||||
{'a': None, 'r': None, 'b': None, 'c': None, 'd': None}
|
||||
{'a': None, 'b': None, 'r': None, 'c': None, 'd': None}
|
||||
|
||||
Using the non-data descriptor protocol, a pure Python version of
|
||||
:func:`classmethod` would look like this::
|
||||
:func:`classmethod` would look like this:
|
||||
|
||||
.. testcode::
|
||||
|
||||
class ClassMethod:
|
||||
"Emulate PyClassMethod_Type() in Objects/funcobject.c"
|
||||
|
@ -999,9 +1248,31 @@ Using the non-data descriptor protocol, a pure Python version of
|
|||
return self.f.__get__(cls)
|
||||
return MethodType(self.f, cls)
|
||||
|
||||
.. testcode::
|
||||
:hide:
|
||||
|
||||
# Verify the emulation works
|
||||
class T:
|
||||
@ClassMethod
|
||||
def cm(cls, x, y):
|
||||
return (cls, x, y)
|
||||
|
||||
.. doctest::
|
||||
:hide:
|
||||
|
||||
>>> T.cm(11, 22)
|
||||
(<class 'T'>, 11, 22)
|
||||
|
||||
# Also call it from an instance
|
||||
>>> t = T()
|
||||
>>> t.cm(11, 22)
|
||||
(<class 'T'>, 11, 22)
|
||||
|
||||
The code path for ``hasattr(obj, '__get__')`` was added in Python 3.9 and
|
||||
makes it possible for :func:`classmethod` to support chained decorators.
|
||||
For example, a classmethod and property could be chained together::
|
||||
For example, a classmethod and property could be chained together:
|
||||
|
||||
.. testcode::
|
||||
|
||||
class G:
|
||||
@classmethod
|
||||
|
@ -1009,6 +1280,12 @@ For example, a classmethod and property could be chained together::
|
|||
def __doc__(cls):
|
||||
return f'A doc for {cls.__name__!r}'
|
||||
|
||||
.. doctest::
|
||||
|
||||
>>> G.__doc__
|
||||
"A doc for 'G'"
|
||||
|
||||
|
||||
Member objects and __slots__
|
||||
----------------------------
|
||||
|
||||
|
@ -1017,11 +1294,15 @@ fixed-length array of slot values. From a user point of view that has
|
|||
several effects:
|
||||
|
||||
1. Provides immediate detection of bugs due to misspelled attribute
|
||||
assignments. Only attribute names specified in ``__slots__`` are allowed::
|
||||
assignments. Only attribute names specified in ``__slots__`` are allowed:
|
||||
|
||||
.. testcode::
|
||||
|
||||
class Vehicle:
|
||||
__slots__ = ('id_number', 'make', 'model')
|
||||
|
||||
.. doctest::
|
||||
|
||||
>>> auto = Vehicle()
|
||||
>>> auto.id_nubmer = 'VYE483814LQEX'
|
||||
Traceback (most recent call last):
|
||||
|
@ -1029,7 +1310,9 @@ assignments. Only attribute names specified in ``__slots__`` are allowed::
|
|||
AttributeError: 'Vehicle' object has no attribute 'id_nubmer'
|
||||
|
||||
2. Helps create immutable objects where descriptors manage access to private
|
||||
attributes stored in ``__slots__``::
|
||||
attributes stored in ``__slots__``:
|
||||
|
||||
.. testcode::
|
||||
|
||||
class Immutable:
|
||||
|
||||
|
@ -1047,7 +1330,19 @@ attributes stored in ``__slots__``::
|
|||
def name(self): # Read-only descriptor
|
||||
return self._name
|
||||
|
||||
mark = Immutable('Botany', 'Mark Watney') # Create an immutable instance
|
||||
.. doctest::
|
||||
|
||||
>>> mark = Immutable('Botany', 'Mark Watney')
|
||||
>>> mark.dept
|
||||
'Botany'
|
||||
>>> mark.dept = 'Space Pirate'
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
AttributeError: can't set attribute
|
||||
>>> mark.location = 'Mars'
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
AttributeError: 'Immutable' object has no attribute 'location'
|
||||
|
||||
3. Saves memory. On a 64-bit Linux build, an instance with two attributes
|
||||
takes 48 bytes with ``__slots__`` and 152 bytes without. This `flyweight
|
||||
|
@ -1055,7 +1350,9 @@ design pattern <https://en.wikipedia.org/wiki/Flyweight_pattern>`_ likely only
|
|||
matters when a large number of instances are going to be created.
|
||||
|
||||
4. Blocks tools like :func:`functools.cached_property` which require an
|
||||
instance dictionary to function correctly::
|
||||
instance dictionary to function correctly:
|
||||
|
||||
.. testcode::
|
||||
|
||||
from functools import cached_property
|
||||
|
||||
|
@ -1067,17 +1364,21 @@ instance dictionary to function correctly::
|
|||
return 4 * sum((-1.0)**n / (2.0*n + 1.0)
|
||||
for n in reversed(range(100_000)))
|
||||
|
||||
.. doctest::
|
||||
|
||||
>>> CP().pi
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
TypeError: No '__dict__' attribute on 'CP' instance to cache 'pi' property.
|
||||
|
||||
It's not possible to create an exact drop-in pure Python version of
|
||||
It is not possible to create an exact drop-in pure Python version of
|
||||
``__slots__`` because it requires direct access to C structures and control
|
||||
over object memory allocation. However, we can build a mostly faithful
|
||||
simulation where the actual C structure for slots is emulated by a private
|
||||
``_slotvalues`` list. Reads and writes to that private structure are managed
|
||||
by member descriptors::
|
||||
by member descriptors:
|
||||
|
||||
.. testcode::
|
||||
|
||||
null = object()
|
||||
|
||||
|
@ -1114,7 +1415,9 @@ by member descriptors::
|
|||
return f'<Member {self.name!r} of {self.clsname!r}>'
|
||||
|
||||
The :meth:`type.__new__` method takes care of adding member objects to class
|
||||
variables::
|
||||
variables:
|
||||
|
||||
.. testcode::
|
||||
|
||||
class Type(type):
|
||||
'Simulate how the type metaclass adds member objects for slots'
|
||||
|
@ -1129,7 +1432,9 @@ variables::
|
|||
|
||||
The :meth:`object.__new__` method takes care of creating instances that have
|
||||
slots instead of an instance dictionary. Here is a rough simulation in pure
|
||||
Python::
|
||||
Python:
|
||||
|
||||
.. testcode::
|
||||
|
||||
class Object:
|
||||
'Simulate how object.__new__() allocates memory for __slots__'
|
||||
|
@ -1161,7 +1466,9 @@ Python::
|
|||
super().__delattr__(name)
|
||||
|
||||
To use the simulation in a real class, just inherit from :class:`Object` and
|
||||
set the :term:`metaclass` to :class:`Type`::
|
||||
set the :term:`metaclass` to :class:`Type`:
|
||||
|
||||
.. testcode::
|
||||
|
||||
class H(Object, metaclass=Type):
|
||||
'Instance variables stored in slots'
|
||||
|
@ -1174,8 +1481,8 @@ set the :term:`metaclass` to :class:`Type`::
|
|||
|
||||
At this point, the metaclass has loaded member objects for *x* and *y*::
|
||||
|
||||
>>> import pprint
|
||||
>>> pprint.pp(dict(vars(H)))
|
||||
>>> from pprint import pp
|
||||
>>> pp(dict(vars(H)))
|
||||
{'__module__': '__main__',
|
||||
'__doc__': 'Instance variables stored in slots',
|
||||
'slot_names': ['x', 'y'],
|
||||
|
@ -1183,8 +1490,20 @@ At this point, the metaclass has loaded member objects for *x* and *y*::
|
|||
'x': <Member 'x' of 'H'>,
|
||||
'y': <Member 'y' of 'H'>}
|
||||
|
||||
.. doctest::
|
||||
:hide:
|
||||
|
||||
# We test this separately because the preceding section is not
|
||||
# doctestable due to the hex memory address for the __init__ function
|
||||
>>> isinstance(vars(H)['x'], Member)
|
||||
True
|
||||
>>> isinstance(vars(H)['y'], Member)
|
||||
True
|
||||
|
||||
When instances are created, they have a ``slot_values`` list where the
|
||||
attributes are stored::
|
||||
attributes are stored:
|
||||
|
||||
.. doctest::
|
||||
|
||||
>>> h = H(10, 20)
|
||||
>>> vars(h)
|
||||
|
@ -1193,9 +1512,30 @@ attributes are stored::
|
|||
>>> vars(h)
|
||||
{'_slotvalues': [55, 20]}
|
||||
|
||||
Misspelled or unassigned attributes will raise an exception::
|
||||
Misspelled or unassigned attributes will raise an exception:
|
||||
|
||||
.. doctest::
|
||||
|
||||
>>> h.xz
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
AttributeError: 'H' object has no attribute 'xz'
|
||||
|
||||
.. doctest::
|
||||
:hide:
|
||||
|
||||
# Examples for deleted attributes are not shown because this section
|
||||
# is already a bit lengthy. We still test that code here.
|
||||
>>> del h.x
|
||||
>>> hasattr(h, 'x')
|
||||
False
|
||||
|
||||
# Also test the code for uninitialized slots
|
||||
>>> class HU(Object, metaclass=Type):
|
||||
... slot_names = ['x', 'y']
|
||||
...
|
||||
>>> hu = HU()
|
||||
>>> hasattr(hu, 'x')
|
||||
False
|
||||
>>> hasattr(hu, 'y')
|
||||
False
|
||||
|
|
Loading…
Reference in New Issue