[ 1113421 ] New tutorial tests in test_generators.py

This commit is contained in:
Georg Brandl 2005-08-24 09:02:29 +00:00
parent d35edda682
commit 52715f69e7
1 changed files with 78 additions and 0 deletions

View File

@ -649,6 +649,84 @@ Ye olde Fibonacci generator, LazyList style.
>>> firstn(iter(fib), 17)
[1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584]
>>> fib.close()
Running after your tail with itertools.tee (new in version 2.4)
The algorithms "m235" (Hamming) and Fibonacci presented above are both
examples of a whole family of FP (functional programming) algorithms
where a function produces and returns a list while the production algorithm
suppose the list as already produced by recursively calling itself.
For these algorithms to work, they must:
- produce at least a first element without presupposing the existence of
the rest of the list
- produce their elements in a lazy manner
To work efficiently, the beginning of the list must not be recomputed over
and over again. This is ensured in most FP languages as a built-in feature.
In python, we have to explicitly maintain a list of already computed results
and abandon genuine recursivity.
This is what had been attempted above with the LazyList class. One problem
with that class is that it keeps a list of all of the generated results and
therefore continually grows. This partially defeats the goal of the generator
concept, viz. produce the results only as needed instead of producing them
all and thereby wasting memory.
Thanks to itertools.tee, it is now clear "how to get the internal uses of
m235 to share a single generator".
>>> from itertools import tee
>>> def m235():
... def _m235():
... yield 1
... for n in merge(times(2, m2),
... merge(times(3, m3),
... times(5, m5))):
... yield n
... m2, m3, m5, mRes = tee(_m235(), 4)
... return mRes
>>> it = m235()
>>> for i in range(5):
... print firstn(it, 15)
[1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24]
[25, 27, 30, 32, 36, 40, 45, 48, 50, 54, 60, 64, 72, 75, 80]
[81, 90, 96, 100, 108, 120, 125, 128, 135, 144, 150, 160, 162, 180, 192]
[200, 216, 225, 240, 243, 250, 256, 270, 288, 300, 320, 324, 360, 375, 384]
[400, 405, 432, 450, 480, 486, 500, 512, 540, 576, 600, 625, 640, 648, 675]
The "tee" function does just what we want. It internally keeps a generated
result for as long as it has not been "consumed" from all of the duplicated
iterators, whereupon it is deleted. You can therefore print the hamming
sequence during hours without increasing memory usage, or very little.
The beauty of it is that recursive running after their tail FP algorithms
are quite straightforwardly expressed with this Python idiom.
Ye olde Fibonacci generator, tee style.
>>> def fib():
...
... def _isum(g, h):
... while 1:
... yield g.next() + h.next()
...
... def _fib():
... yield 1
... yield 2
... fibTail.next() # throw first away
... for res in _isum(fibHead, fibTail):
... yield res
...
... fibHead, fibTail, fibRes = tee(_fib(), 3)
... return fibRes
>>> firstn(fib(), 17)
[1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584]
"""
# syntax_tests mostly provokes SyntaxErrors. Also fiddling with #if 0