From 4c8bbe69e5d75faea4a15d76d1fb075dad46507c Mon Sep 17 00:00:00 2001 From: Georg Brandl Date: Sat, 22 Mar 2008 21:06:20 +0000 Subject: [PATCH] Make collections' doctests executable. (The s will be stripped from presentation output.) --- Doc/library/collections.rst | 94 ++++++++++++++++++++----------------- 1 file changed, 51 insertions(+), 43 deletions(-) diff --git a/Doc/library/collections.rst b/Doc/library/collections.rst index add16efd964..f07ac2535b9 100644 --- a/Doc/library/collections.rst +++ b/Doc/library/collections.rst @@ -7,12 +7,17 @@ .. moduleauthor:: Raymond Hettinger .. sectionauthor:: Raymond Hettinger - .. versionadded:: 2.4 +.. testsetup:: * + + from collections import * + import itertools + __name__ = '' + This module implements high-performance container datatypes. Currently, there are two datatypes, :class:`deque` and :class:`defaultdict`, and -one datatype factory function, :func:`namedtuple`. +one datatype factory function, :func:`namedtuple`. .. versionchanged:: 2.5 Added :class:`defaultdict`. @@ -21,17 +26,17 @@ one datatype factory function, :func:`namedtuple`. Added :func:`namedtuple`. The specialized containers provided in this module provide alternatives -to Python's general purpose built-in containers, :class:`dict`, +to Python's general purpose built-in containers, :class:`dict`, :class:`list`, :class:`set`, and :class:`tuple`. Besides the containers provided here, the optional :mod:`bsddb` -module offers the ability to create in-memory or file based ordered +module offers the ability to create in-memory or file based ordered dictionaries with string keys using the :meth:`bsddb.btopen` method. In addition to containers, the collections module provides some ABCs -(abstract base classes) that can be used to test whether a class +(abstract base classes) that can be used to test whether a class provides a particular interface, for example, is it hashable or -a mapping. +a mapping. .. versionchanged:: 2.6 Added abstract base classes. @@ -113,15 +118,15 @@ The ABC supplies the remaining methods such as :meth:`__and__` and Notes on using :class:`Set` and :class:`MutableSet` as a mixin: -(1) +(1) Since some set operations create new sets, the default mixin methods need - a way to create new instances from an iterable. The class constructor is - assumed to have a signature in the form ``ClassName(iterable)``. + a way to create new instances from an iterable. The class constructor is + assumed to have a signature in the form ``ClassName(iterable)``. That assumption is factored-out to a singleinternal classmethod called :meth:`_from_iterable` which calls ``cls(iterable)`` to produce a new set. If the :class:`Set` mixin is being used in a class with a different - constructor signature, you will need to override :meth:`from_iterable` - with a classmethod that can construct new instances from + constructor signature, you will need to override :meth:`from_iterable` + with a classmethod that can construct new instances from an iterable argument. (2) @@ -235,12 +240,14 @@ In addition to the above, deques support iteration, pickling, ``len(d)``, ``reversed(d)``, ``copy.copy(d)``, ``copy.deepcopy(d)``, membership testing with the :keyword:`in` operator, and subscript references such as ``d[-1]``. -Example:: +Example: + +.. doctest:: >>> from collections import deque >>> d = deque('ghi') # make a new deque with three items >>> for elem in d: # iterate over the deque's elements - ... print elem.upper() + ... print elem.upper() G H I @@ -319,7 +326,7 @@ a reduction function, and calling :meth:`append` to add the result back to the deque. For example, building a balanced binary tree of nested lists entails reducing -two adjacent nodes into one by grouping them in a list:: +two adjacent nodes into one by grouping them in a list: >>> def maketree(iterable): ... d = deque(iterable) @@ -393,7 +400,7 @@ standard :class:`dict` operations: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Using :class:`list` as the :attr:`default_factory`, it is easy to group a -sequence of key-value pairs into a dictionary of lists:: +sequence of key-value pairs into a dictionary of lists: >>> s = [('yellow', 1), ('blue', 2), ('yellow', 3), ('blue', 4), ('red', 1)] >>> d = defaultdict(list) @@ -409,7 +416,7 @@ function which returns an empty :class:`list`. The :meth:`list.append` operation then attaches the value to the new list. When keys are encountered again, the look-up proceeds normally (returning the list for that key) and the :meth:`list.append` operation adds another value to the list. This technique is -simpler and faster than an equivalent technique using :meth:`dict.setdefault`:: +simpler and faster than an equivalent technique using :meth:`dict.setdefault`: >>> d = {} >>> for k, v in s: @@ -420,7 +427,7 @@ simpler and faster than an equivalent technique using :meth:`dict.setdefault`:: Setting the :attr:`default_factory` to :class:`int` makes the :class:`defaultdict` useful for counting (like a bag or multiset in other -languages):: +languages): >>> s = 'mississippi' >>> d = defaultdict(int) @@ -437,7 +444,7 @@ zero. The increment operation then builds up the count for each letter. The function :func:`int` which always returns zero is just a special case of constant functions. A faster and more flexible way to create constant functions is to use :func:`itertools.repeat` which can supply any constant value (not just -zero):: +zero): >>> def constant_factory(value): ... return itertools.repeat(value).next @@ -447,7 +454,7 @@ zero):: 'John ran to ' Setting the :attr:`default_factory` to :class:`set` makes the -:class:`defaultdict` useful for building a dictionary of sets:: +:class:`defaultdict` useful for building a dictionary of sets: >>> s = [('red', 1), ('blue', 2), ('red', 3), ('blue', 4), ('red', 1), ('blue', 4)] >>> d = defaultdict(set) @@ -492,41 +499,44 @@ they add the ability to access fields by name instead of position index. .. versionadded:: 2.6 -Example:: +Example: + +.. doctest:: + :options: +NORMALIZE_WHITESPACE >>> Point = namedtuple('Point', 'x y', verbose=True) class Point(tuple): 'Point(x, y)' - + __slots__ = () - + _fields = ('x', 'y') - + def __new__(cls, x, y): return tuple.__new__(cls, (x, y)) - + @classmethod - def _make(cls, iterable): + def _make(cls, iterable, new=tuple.__new__, len=len): 'Make a new Point object from a sequence or iterable' - result = tuple.__new__(cls, iterable) + result = new(cls, iterable) if len(result) != 2: raise TypeError('Expected 2 arguments, got %d' % len(result)) return result - + def __repr__(self): return 'Point(x=%r, y=%r)' % self - + def _asdict(t): 'Return a new dict which maps field names to their values' return {'x': t[0], 'y': t[1]} - + def _replace(self, **kwds): 'Return a new Point object replacing specified fields with new values' result = self._make(map(kwds.pop, ('x', 'y'), self)) if kwds: raise ValueError('Got unexpected field names: %r' % kwds.keys()) return result - + x = property(itemgetter(0)) y = property(itemgetter(1)) @@ -565,7 +575,7 @@ field names, the method and attribute names start with an underscore. Class method that makes a new instance from an existing sequence or iterable. -:: +.. doctest:: >>> t = [11, 22] >>> Point._make(t) @@ -573,16 +583,15 @@ field names, the method and attribute names start with an underscore. .. method:: somenamedtuple._asdict() - Return a new dict which maps field names to their corresponding values: - -:: + Return a new dict which maps field names to their corresponding values:: >>> p._asdict() {'x': 11, 'y': 22} - + .. method:: somenamedtuple._replace(kwargs) - Return a new instance of the named tuple replacing specified fields with new values: + Return a new instance of the named tuple replacing specified fields with new + values: :: @@ -598,7 +607,7 @@ field names, the method and attribute names start with an underscore. Tuple of strings listing the field names. Useful for introspection and for creating new named tuple types from existing named tuples. -:: +.. doctest:: >>> p._fields # view the field names ('x', 'y') @@ -609,12 +618,12 @@ field names, the method and attribute names start with an underscore. Pixel(x=11, y=22, red=128, green=255, blue=0) To retrieve a field whose name is stored in a string, use the :func:`getattr` -function:: +function: >>> getattr(p, 'x') 11 -To convert a dictionary to a named tuple, use the double-star-operator [#]_:: +To convert a dictionary to a named tuple, use the double-star-operator [#]_: >>> d = {'x': 11, 'y': 22} >>> Point(**d) @@ -622,7 +631,7 @@ To convert a dictionary to a named tuple, use the double-star-operator [#]_:: Since a named tuple is a regular Python class, it is easy to add or change functionality with a subclass. Here is how to add a calculated field and -a fixed-width print format:: +a fixed-width print format: >>> class Point(namedtuple('Point', 'x y')): ... __slots__ = () @@ -634,7 +643,6 @@ a fixed-width print format:: >>> for p in Point(3, 4), Point(14, 5/7.): ... print p - Point: x= 3.000 y= 4.000 hypot= 5.000 Point: x=14.000 y= 0.714 hypot=14.018 @@ -642,12 +650,12 @@ The subclass shown above sets ``__slots__`` to an empty tuple. This keeps keep memory requirements low by preventing the creation of instance dictionaries. Subclassing is not useful for adding new, stored fields. Instead, simply -create a new named tuple type from the :attr:`_fields` attribute:: +create a new named tuple type from the :attr:`_fields` attribute: >>> Point3D = namedtuple('Point3D', Point._fields + ('z',)) Default values can be implemented by using :meth:`_replace` to -customize a prototype instance:: +customize a prototype instance: >>> Account = namedtuple('Account', 'owner balance transaction_count') >>> default_account = Account('', 0.0, 0)