Issue #8692: Improve performance of math.factorial:

(1) use a different algorithm that roughly halves the total number of
    multiplications required and results in more balanced multiplications
(2) use a lookup table for small arguments
(3) fast accumulation of products in C integer arithmetic rather than
    PyLong arithmetic when possible.

Typical speedup, from unscientific testing on a 64-bit laptop, is 4.5x
to 6.5x for arguments in the range 100 - 10000.

Patch by Daniel Stutzbach; extensive reviews by Alexander Belopolsky.
This commit is contained in:
Mark Dickinson 2010-05-15 17:02:38 +00:00
parent ae6265f8d0
commit 4c8a9a2df3
3 changed files with 307 additions and 30 deletions

View File

@ -60,6 +60,56 @@ def ulps_check(expected, got, ulps=20):
return "error = {} ulps; permitted error = {} ulps".format(ulps_error,
ulps)
# Here's a pure Python version of the math.factorial algorithm, for
# documentation and comparison purposes.
#
# Formula:
#
# factorial(n) = factorial_odd_part(n) << (n - count_set_bits(n))
#
# where
#
# factorial_odd_part(n) = product_{i >= 0} product_{0 < j <= n >> i; j odd} j
#
# The outer product above is an infinite product, but once i >= n.bit_length,
# (n >> i) < 1 and the corresponding term of the product is empty. So only the
# finitely many terms for 0 <= i < n.bit_length() contribute anything.
#
# We iterate downwards from i == n.bit_length() - 1 to i == 0. The inner
# product in the formula above starts at 1 for i == n.bit_length(); for each i
# < n.bit_length() we get the inner product for i from that for i + 1 by
# multiplying by all j in {n >> i+1 < j <= n >> i; j odd}. In Python terms,
# this set is range((n >> i+1) + 1 | 1, (n >> i) + 1 | 1, 2).
def count_set_bits(n):
"""Number of '1' bits in binary expansion of a nonnnegative integer."""
return 1 + count_set_bits(n & n - 1) if n else 0
def partial_product(start, stop):
"""Product of integers in range(start, stop, 2), computed recursively.
start and stop should both be odd, with start <= stop.
"""
numfactors = (stop - start) >> 1
if not numfactors:
return 1
elif numfactors == 1:
return start
else:
mid = (start + numfactors) | 1
return partial_product(start, mid) * partial_product(mid, stop)
def py_factorial(n):
"""Factorial of nonnegative integer n, via "Binary Split Factorial Formula"
described at http://www.luschny.de/math/factorial/binarysplitfact.html
"""
inner = outer = 1
for i in reversed(range(n.bit_length())):
inner *= partial_product((n >> i + 1) + 1 | 1, (n >> i) + 1 | 1)
outer *= inner
return outer << (n - count_set_bits(n))
def acc_check(expected, got, rel_err=2e-15, abs_err = 5e-323):
"""Determine whether non-NaN floats a and b are equal to within a
(small) rounding error. The default values for rel_err and
@ -365,18 +415,19 @@ class MathTests(unittest.TestCase):
self.ftest('fabs(1)', math.fabs(1), 1)
def testFactorial(self):
def fact(n):
result = 1
for i in range(1, int(n)+1):
result *= i
return result
values = list(range(10)) + [50, 100, 500]
random.shuffle(values)
for x in values:
for cast in (int, float):
self.assertEqual(math.factorial(cast(x)), fact(x), (x, fact(x), math.factorial(x)))
self.assertEqual(math.factorial(0), 1)
self.assertEqual(math.factorial(0.0), 1)
total = 1
for i in range(1, 1000):
total *= i
self.assertEqual(math.factorial(i), total)
self.assertEqual(math.factorial(float(i)), total)
self.assertEqual(math.factorial(i), py_factorial(i))
self.assertRaises(ValueError, math.factorial, -1)
self.assertRaises(ValueError, math.factorial, -1.0)
self.assertRaises(ValueError, math.factorial, math.pi)
self.assertRaises(OverflowError, math.factorial, sys.maxsize+1)
self.assertRaises(OverflowError, math.factorial, 10e100)
def testFloor(self):
self.assertRaises(TypeError, math.floor)

View File

@ -1132,6 +1132,12 @@ Library
Extension Modules
-----------------
- Issue #8692: Optimize math.factorial: replace the previous naive
algorithm with an improved 'binary-split' algorithm that uses fewer
multiplications and allows many of the multiplications to be
performed using plain C integer arithmetic instead of PyLong
arithmetic. Also uses a lookup table for small arguments.
- Issue #8674: Fixed a number of incorrect or undefined-behaviour-inducing
overflow checks in the audioop module.

View File

@ -1129,11 +1129,232 @@ PyDoc_STRVAR(math_fsum_doc,
Return an accurate floating point sum of values in the iterable.\n\
Assumes IEEE-754 floating point arithmetic.");
/* Return the smallest integer k such that n < 2**k, or 0 if n == 0.
* Equivalent to floor(lg(x))+1. Also equivalent to: bitwidth_of_type -
* count_leading_zero_bits(x)
*/
/* XXX: This routine does more or less the same thing as
* bits_in_digit() in Objects/longobject.c. Someday it would be nice to
* consolidate them. On BSD, there's a library function called fls()
* that we could use, and GCC provides __builtin_clz().
*/
static unsigned long
bit_length(unsigned long n)
{
unsigned long len = 0;
while (n != 0) {
++len;
n >>= 1;
}
return len;
}
static unsigned long
count_set_bits(unsigned long n)
{
unsigned long count = 0;
while (n != 0) {
++count;
n &= n - 1; /* clear least significant bit */
}
return count;
}
/* Divide-and-conquer factorial algorithm
*
* Based on the formula and psuedo-code provided at:
* http://www.luschny.de/math/factorial/binarysplitfact.html
*
* Faster algorithms exist, but they're more complicated and depend on
* a fast prime factoriazation algorithm.
*
* Notes on the algorithm
* ----------------------
*
* factorial(n) is written in the form 2**k * m, with m odd. k and m are
* computed separately, and then combined using a left shift.
*
* The function factorial_odd_part computes the odd part m (i.e., the greatest
* odd divisor) of factorial(n), using the formula:
*
* factorial_odd_part(n) =
*
* product_{i >= 0} product_{0 < j <= n / 2**i, j odd} j
*
* Example: factorial_odd_part(20) =
*
* (1) *
* (1) *
* (1 * 3 * 5) *
* (1 * 3 * 5 * 7 * 9)
* (1 * 3 * 5 * 7 * 9 * 11 * 13 * 15 * 17 * 19)
*
* Here i goes from large to small: the first term corresponds to i=4 (any
* larger i gives an empty product), and the last term corresponds to i=0.
* Each term can be computed from the last by multiplying by the extra odd
* numbers required: e.g., to get from the penultimate term to the last one,
* we multiply by (11 * 13 * 15 * 17 * 19).
*
* To see a hint of why this formula works, here are the same numbers as above
* but with the even parts (i.e., the appropriate powers of 2) included. For
* each subterm in the product for i, we multiply that subterm by 2**i:
*
* factorial(20) =
*
* (16) *
* (8) *
* (4 * 12 * 20) *
* (2 * 6 * 10 * 14 * 18) *
* (1 * 3 * 5 * 7 * 9 * 11 * 13 * 15 * 17 * 19)
*
* The factorial_partial_product function computes the product of all odd j in
* range(start, stop) for given start and stop. It's used to compute the
* partial products like (11 * 13 * 15 * 17 * 19) in the example above. It
* operates recursively, repeatedly splitting the range into two roughly equal
* pieces until the subranges are small enough to be computed using only C
* integer arithmetic.
*
* The two-valuation k (i.e., the exponent of the largest power of 2 dividing
* the factorial) is computed independently in the main math_factorial
* function. By standard results, its value is:
*
* two_valuation = n//2 + n//4 + n//8 + ....
*
* It can be shown (e.g., by complete induction on n) that two_valuation is
* equal to n - count_set_bits(n), where count_set_bits(n) gives the number of
* '1'-bits in the binary expansion of n.
*/
/* factorial_partial_product: Compute product(range(start, stop, 2)) using
* divide and conquer. Assumes start and stop are odd and stop > start.
* max_bits must be >= bit_length(stop - 2). */
static PyObject *
factorial_partial_product(unsigned long start, unsigned long stop,
unsigned long max_bits)
{
unsigned long midpoint, num_operands;
PyObject *left = NULL, *right = NULL, *result = NULL;
/* If the return value will fit an unsigned long, then we can
* multiply in a tight, fast loop where each multiply is O(1).
* Compute an upper bound on the number of bits required to store
* the answer.
*
* Storing some integer z requires floor(lg(z))+1 bits, which is
* conveniently the value returned by bit_length(z). The
* product x*y will require at most
* bit_length(x) + bit_length(y) bits to store, based
* on the idea that lg product = lg x + lg y.
*
* We know that stop - 2 is the largest number to be multiplied. From
* there, we have: bit_length(answer) <= num_operands *
* bit_length(stop - 2)
*/
num_operands = (stop - start) / 2;
/* The "num_operands <= 8 * SIZEOF_LONG" check guards against the
* unlikely case of an overflow in num_operands * max_bits. */
if (num_operands <= 8 * SIZEOF_LONG &&
num_operands * max_bits <= 8 * SIZEOF_LONG) {
unsigned long j, total;
for (total = start, j = start + 2; j < stop; j += 2)
total *= j;
return PyLong_FromUnsignedLong(total);
}
/* find midpoint of range(start, stop), rounded up to next odd number. */
midpoint = (start + num_operands) | 1;
left = factorial_partial_product(start, midpoint,
bit_length(midpoint - 2));
if (left == NULL)
goto error;
right = factorial_partial_product(midpoint, stop, max_bits);
if (right == NULL)
goto error;
result = PyNumber_Multiply(left, right);
error:
Py_XDECREF(left);
Py_XDECREF(right);
return result;
}
/* factorial_odd_part: compute the odd part of factorial(n). */
static PyObject *
factorial_odd_part(unsigned long n)
{
long i;
unsigned long v, lower, upper;
PyObject *partial, *tmp, *inner, *outer;
inner = PyLong_FromLong(1);
if (inner == NULL)
return NULL;
outer = inner;
Py_INCREF(outer);
upper = 3;
for (i = bit_length(n) - 2; i >= 0; i--) {
v = n >> i;
if (v <= 2)
continue;
lower = upper;
/* (v + 1) | 1 = least odd integer strictly larger than n / 2**i */
upper = (v + 1) | 1;
/* Here inner is the product of all odd integers j in the range (0,
n/2**(i+1)]. The factorial_partial_product call below gives the
product of all odd integers j in the range (n/2**(i+1), n/2**i]. */
partial = factorial_partial_product(lower, upper, bit_length(upper-2));
/* inner *= partial */
if (partial == NULL)
goto error;
tmp = PyNumber_Multiply(inner, partial);
Py_DECREF(partial);
if (tmp == NULL)
goto error;
Py_DECREF(inner);
inner = tmp;
/* Now inner is the product of all odd integers j in the range (0,
n/2**i], giving the inner product in the formula above. */
/* outer *= inner; */
tmp = PyNumber_Multiply(outer, inner);
if (tmp == NULL)
goto error;
Py_DECREF(outer);
outer = tmp;
}
goto done;
error:
Py_DECREF(outer);
done:
Py_DECREF(inner);
return outer;
}
/* Lookup table for small factorial values */
static const unsigned long SmallFactorials[] = {
1, 1, 2, 6, 24, 120, 720, 5040, 40320,
362880, 3628800, 39916800, 479001600,
#if SIZEOF_LONG >= 8
6227020800, 87178291200, 1307674368000,
20922789888000, 355687428096000, 6402373705728000,
121645100408832000, 2432902008176640000
#endif
};
static PyObject *
math_factorial(PyObject *self, PyObject *arg)
{
long i, x;
PyObject *result, *iobj, *newresult;
long x;
PyObject *result, *odd_part, *two_valuation;
if (PyFloat_Check(arg)) {
PyObject *lx;
@ -1160,25 +1381,24 @@ math_factorial(PyObject *self, PyObject *arg)
return NULL;
}
result = (PyObject *)PyLong_FromLong(1);
if (result == NULL)
return NULL;
for (i=1 ; i<=x ; i++) {
iobj = (PyObject *)PyLong_FromLong(i);
if (iobj == NULL)
goto error;
newresult = PyNumber_Multiply(result, iobj);
Py_DECREF(iobj);
if (newresult == NULL)
goto error;
Py_DECREF(result);
result = newresult;
}
return result;
/* use lookup table if x is small */
if (x < (long)(sizeof(SmallFactorials)/sizeof(SmallFactorials[0])))
return PyLong_FromUnsignedLong(SmallFactorials[x]);
error:
Py_DECREF(result);
/* else express in the form odd_part * 2**two_valuation, and compute as
odd_part << two_valuation. */
odd_part = factorial_odd_part(x);
if (odd_part == NULL)
return NULL;
two_valuation = PyLong_FromLong(x - count_set_bits(x));
if (two_valuation == NULL) {
Py_DECREF(odd_part);
return NULL;
}
result = PyNumber_Lshift(odd_part, two_valuation);
Py_DECREF(two_valuation);
Py_DECREF(odd_part);
return result;
}
PyDoc_STRVAR(math_factorial_doc,