bpo-41513: Add docs and tests for hypot() (GH-22238)
This commit is contained in:
parent
7dbbea75ce
commit
457d4e97de
|
@ -481,6 +481,11 @@ Trigonometric functions
|
||||||
Added support for n-dimensional points. Formerly, only the two
|
Added support for n-dimensional points. Formerly, only the two
|
||||||
dimensional case was supported.
|
dimensional case was supported.
|
||||||
|
|
||||||
|
.. versionchanged:: 3.10
|
||||||
|
Improved the algorithm's accuracy so that the maximum error is
|
||||||
|
under 1 ulp (unit in the last place). More typically, the result
|
||||||
|
is almost always correctly rounded to within 1/2 ulp.
|
||||||
|
|
||||||
|
|
||||||
.. function:: sin(x)
|
.. function:: sin(x)
|
||||||
|
|
||||||
|
|
|
@ -803,6 +803,57 @@ class MathTests(unittest.TestCase):
|
||||||
scale = FLOAT_MIN / 2.0 ** exp
|
scale = FLOAT_MIN / 2.0 ** exp
|
||||||
self.assertEqual(math.hypot(4*scale, 3*scale), 5*scale)
|
self.assertEqual(math.hypot(4*scale, 3*scale), 5*scale)
|
||||||
|
|
||||||
|
def testHypotAccuracy(self):
|
||||||
|
# Verify improved accuracy in cases that were known to be inaccurate.
|
||||||
|
|
||||||
|
hypot = math.hypot
|
||||||
|
Decimal = decimal.Decimal
|
||||||
|
high_precision = decimal.Context(prec=500)
|
||||||
|
|
||||||
|
for hx, hy in [
|
||||||
|
# Cases with a 1 ulp error in Python 3.7 compiled with Clang
|
||||||
|
('0x1.10e89518dca48p+29', '0x1.1970f7565b7efp+30'),
|
||||||
|
('0x1.10106eb4b44a2p+29', '0x1.ef0596cdc97f8p+29'),
|
||||||
|
('0x1.459c058e20bb7p+30', '0x1.993ca009b9178p+29'),
|
||||||
|
('0x1.378371ae67c0cp+30', '0x1.fbe6619854b4cp+29'),
|
||||||
|
('0x1.f4cd0574fb97ap+29', '0x1.50fe31669340ep+30'),
|
||||||
|
('0x1.494b2cdd3d446p+29', '0x1.212a5367b4c7cp+29'),
|
||||||
|
('0x1.f84e649f1e46dp+29', '0x1.1fa56bef8eec4p+30'),
|
||||||
|
('0x1.2e817edd3d6fap+30', '0x1.eb0814f1e9602p+29'),
|
||||||
|
('0x1.0d3a6e3d04245p+29', '0x1.32a62fea52352p+30'),
|
||||||
|
('0x1.888e19611bfc5p+29', '0x1.52b8e70b24353p+29'),
|
||||||
|
|
||||||
|
# Cases with 2 ulp error in Python 3.8
|
||||||
|
('0x1.538816d48a13fp+29', '0x1.7967c5ca43e16p+29'),
|
||||||
|
('0x1.57b47b7234530p+29', '0x1.74e2c7040e772p+29'),
|
||||||
|
('0x1.821b685e9b168p+30', '0x1.677dc1c1e3dc6p+29'),
|
||||||
|
('0x1.9e8247f67097bp+29', '0x1.24bd2dc4f4baep+29'),
|
||||||
|
('0x1.b73b59e0cb5f9p+29', '0x1.da899ab784a97p+28'),
|
||||||
|
('0x1.94a8d2842a7cfp+30', '0x1.326a51d4d8d8ap+30'),
|
||||||
|
('0x1.e930b9cd99035p+29', '0x1.5a1030e18dff9p+30'),
|
||||||
|
('0x1.1592bbb0e4690p+29', '0x1.a9c337b33fb9ap+29'),
|
||||||
|
('0x1.1243a50751fd4p+29', '0x1.a5a10175622d9p+29'),
|
||||||
|
('0x1.57a8596e74722p+30', '0x1.42d1af9d04da9p+30'),
|
||||||
|
|
||||||
|
# Cases with 1 ulp error in version fff3c28052e6b0750d6218e00acacd2fded4991a
|
||||||
|
('0x1.ee7dbd9565899p+29', '0x1.7ab4d6fc6e4b4p+29'),
|
||||||
|
('0x1.5c6bfbec5c4dcp+30', '0x1.02511184b4970p+30'),
|
||||||
|
('0x1.59dcebba995cap+30', '0x1.50ca7e7c38854p+29'),
|
||||||
|
('0x1.768cdd94cf5aap+29', '0x1.9cfdc5571d38ep+29'),
|
||||||
|
('0x1.dcf137d60262ep+29', '0x1.1101621990b3ep+30'),
|
||||||
|
('0x1.3a2d006e288b0p+30', '0x1.e9a240914326cp+29'),
|
||||||
|
('0x1.62a32f7f53c61p+29', '0x1.47eb6cd72684fp+29'),
|
||||||
|
('0x1.d3bcb60748ef2p+29', '0x1.3f13c4056312cp+30'),
|
||||||
|
('0x1.282bdb82f17f3p+30', '0x1.640ba4c4eed3ap+30'),
|
||||||
|
('0x1.89d8c423ea0c6p+29', '0x1.d35dcfe902bc3p+29'),
|
||||||
|
]:
|
||||||
|
with self.subTest(hx=hx, hy=hy):
|
||||||
|
x = float.fromhex(hx)
|
||||||
|
y = float.fromhex(hy)
|
||||||
|
with decimal.localcontext(high_precision):
|
||||||
|
z = float((Decimal(x)**2 + Decimal(y)**2).sqrt())
|
||||||
|
self.assertEqual(hypot(x, y), z)
|
||||||
|
|
||||||
def testDist(self):
|
def testDist(self):
|
||||||
from decimal import Decimal as D
|
from decimal import Decimal as D
|
||||||
from fractions import Fraction as F
|
from fractions import Fraction as F
|
||||||
|
|
|
@ -2429,7 +2429,7 @@ magnitude. We avoid this cost by arranging the calculation so that
|
||||||
fabs(csum) is always as large as fabs(x).
|
fabs(csum) is always as large as fabs(x).
|
||||||
|
|
||||||
To establish the invariant, *csum* is initialized to 1.0 which is
|
To establish the invariant, *csum* is initialized to 1.0 which is
|
||||||
always larger than x**2 after scaling or division by *max*.
|
always larger than x**2 after scaling or after division by *max*.
|
||||||
After the loop is finished, the initial 1.0 is subtracted out for a
|
After the loop is finished, the initial 1.0 is subtracted out for a
|
||||||
net zero effect on the final sum. Since *csum* will be greater than
|
net zero effect on the final sum. Since *csum* will be greater than
|
||||||
1.0, the subtraction of 1.0 will not cause fractional digits to be
|
1.0, the subtraction of 1.0 will not cause fractional digits to be
|
||||||
|
@ -2458,7 +2458,7 @@ Since lo**2 is less than 1/2 ulp(csum), we have csum+lo*lo == csum.
|
||||||
To minimize loss of information during the accumulation of fractional
|
To minimize loss of information during the accumulation of fractional
|
||||||
values, each term has a separate accumulator. This also breaks up
|
values, each term has a separate accumulator. This also breaks up
|
||||||
sequential dependencies in the inner loop so the CPU can maximize
|
sequential dependencies in the inner loop so the CPU can maximize
|
||||||
floating point throughput. [5] On a 2.6 GHz Haswell, adding one
|
floating point throughput. [4] On a 2.6 GHz Haswell, adding one
|
||||||
dimension has an incremental cost of only 5ns -- for example when
|
dimension has an incremental cost of only 5ns -- for example when
|
||||||
moving from hypot(x,y) to hypot(x,y,z).
|
moving from hypot(x,y) to hypot(x,y,z).
|
||||||
|
|
||||||
|
@ -2470,7 +2470,7 @@ The differential correction starts with a value *x* that is
|
||||||
the difference between the square of *h*, the possibly inaccurately
|
the difference between the square of *h*, the possibly inaccurately
|
||||||
rounded square root, and the accurately computed sum of squares.
|
rounded square root, and the accurately computed sum of squares.
|
||||||
The correction is the first order term of the Maclaurin series
|
The correction is the first order term of the Maclaurin series
|
||||||
expansion of sqrt(h**2 + x) == h + x/(2*h) + O(x**2). [4]
|
expansion of sqrt(h**2 + x) == h + x/(2*h) + O(x**2). [5]
|
||||||
|
|
||||||
Essentially, this differential correction is equivalent to one
|
Essentially, this differential correction is equivalent to one
|
||||||
refinement step in Newton's divide-and-average square root
|
refinement step in Newton's divide-and-average square root
|
||||||
|
@ -2492,10 +2492,10 @@ References:
|
||||||
1. Veltkamp-Dekker splitting: http://csclub.uwaterloo.ca/~pbarfuss/dekker1971.pdf
|
1. Veltkamp-Dekker splitting: http://csclub.uwaterloo.ca/~pbarfuss/dekker1971.pdf
|
||||||
2. Compensated summation: http://www.ti3.tu-harburg.de/paper/rump/Ru08b.pdf
|
2. Compensated summation: http://www.ti3.tu-harburg.de/paper/rump/Ru08b.pdf
|
||||||
3. Square root differential correction: https://arxiv.org/pdf/1904.09481.pdf
|
3. Square root differential correction: https://arxiv.org/pdf/1904.09481.pdf
|
||||||
4. https://www.wolframalpha.com/input/?i=Maclaurin+series+sqrt%28h**2+%2B+x%29+at+x%3D0
|
4. Data dependency graph: https://bugs.python.org/file49439/hypot.png
|
||||||
5. https://bugs.python.org/file49439/hypot.png
|
5. https://www.wolframalpha.com/input/?i=Maclaurin+series+sqrt%28h**2+%2B+x%29+at+x%3D0
|
||||||
6. https://bugs.python.org/file49435/best_frac.py
|
6. Analysis of internal accuracy: https://bugs.python.org/file49435/best_frac.py
|
||||||
7. https://bugs.python.org/file49448/test_hypot_commutativity.py
|
7. Commutativity test: https://bugs.python.org/file49448/test_hypot_commutativity.py
|
||||||
|
|
||||||
*/
|
*/
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue