SF patch 658251: Install a C implementation of the Mersenne Twister as the
core generator for random.py.
This commit is contained in:
parent
5e65ce671c
commit
40f6217092
|
@ -8,30 +8,26 @@
|
|||
|
||||
This module implements pseudo-random number generators for various
|
||||
distributions.
|
||||
|
||||
For integers, uniform selection from a range.
|
||||
For sequences, uniform selection of a random element, and a function to
|
||||
generate a random permutation of a list in-place.
|
||||
For sequences, uniform selection of a random element, a function to
|
||||
generate a random permutation of a list in-place, and a function for
|
||||
random sampling without replacement.
|
||||
|
||||
On the real line, there are functions to compute uniform, normal (Gaussian),
|
||||
lognormal, negative exponential, gamma, and beta distributions.
|
||||
For generating distribution of angles, the circular uniform and
|
||||
von Mises distributions are available.
|
||||
For generating distributions of angles, the von Mises distribution
|
||||
is available.
|
||||
|
||||
Almost all module functions depend on the basic function
|
||||
\function{random()}, which generates a random float uniformly in
|
||||
the semi-open range [0.0, 1.0). Python uses the standard Wichmann-Hill
|
||||
generator, combining three pure multiplicative congruential
|
||||
generators of modulus 30269, 30307 and 30323. Its period (how many
|
||||
numbers it generates before repeating the sequence exactly) is
|
||||
6,953,607,871,644. While of much higher quality than the \function{rand()}
|
||||
function supplied by most C libraries, the theoretical properties
|
||||
are much the same as for a single linear congruential generator of
|
||||
large modulus. It is not suitable for all purposes, and is completely
|
||||
unsuitable for cryptographic purposes.
|
||||
|
||||
The functions in this module are not threadsafe: if you want to call these
|
||||
functions from multiple threads, you should explicitly serialize the calls.
|
||||
Else, because no critical sections are implemented internally, calls
|
||||
from different threads may see the same return values.
|
||||
the semi-open range [0.0, 1.0). Python uses the Mersenne Twister as
|
||||
the core generator. It produces 53-bit precision floats and has a
|
||||
period of 2**19937-1. The underlying implementation in C
|
||||
is both fast and threadsafe. The Mersenne Twister is one of the most
|
||||
extensively tested random number generators in existence. However, being
|
||||
completely deterministic, it is not suitable for all purposes, and is
|
||||
completely unsuitable for cryptographic purposes.
|
||||
|
||||
The functions supplied by this module are actually bound methods of a
|
||||
hidden instance of the \class{random.Random} class. You can
|
||||
|
@ -39,58 +35,19 @@ instantiate your own instances of \class{Random} to get generators
|
|||
that don't share state. This is especially useful for multi-threaded
|
||||
programs, creating a different instance of \class{Random} for each
|
||||
thread, and using the \method{jumpahead()} method to ensure that the
|
||||
generated sequences seen by each thread don't overlap (see example
|
||||
below).
|
||||
generated sequences seen by each thread don't overlap.
|
||||
|
||||
Class \class{Random} can also be subclassed if you want to use a
|
||||
different basic generator of your own devising: in that case, override
|
||||
the \method{random()}, \method{seed()}, \method{getstate()},
|
||||
\method{setstate()} and \method{jumpahead()} methods.
|
||||
|
||||
Here's one way to create threadsafe distinct and non-overlapping generators:
|
||||
|
||||
\begin{verbatim}
|
||||
def create_generators(num, delta, firstseed=None):
|
||||
"""Return list of num distinct generators.
|
||||
Each generator has its own unique segment of delta elements
|
||||
from Random.random()'s full period.
|
||||
Seed the first generator with optional arg firstseed (default
|
||||
is None, to seed from current time).
|
||||
"""
|
||||
|
||||
from random import Random
|
||||
g = Random(firstseed)
|
||||
result = [g]
|
||||
for i in range(num - 1):
|
||||
laststate = g.getstate()
|
||||
g = Random()
|
||||
g.setstate(laststate)
|
||||
g.jumpahead(delta)
|
||||
result.append(g)
|
||||
return result
|
||||
|
||||
gens = create_generators(10, 1000000)
|
||||
\end{verbatim}
|
||||
|
||||
That creates 10 distinct generators, which can be passed out to 10
|
||||
distinct threads. The generators don't share state so can be called
|
||||
safely in parallel. So long as no thread calls its \code{g.random()}
|
||||
more than a million times (the second argument to
|
||||
\function{create_generators()}, the sequences seen by each thread will
|
||||
not overlap. The period of the underlying Wichmann-Hill generator
|
||||
limits how far this technique can be pushed.
|
||||
|
||||
Just for fun, note that since we know the period, \method{jumpahead()}
|
||||
can also be used to ``move backward in time:''
|
||||
|
||||
\begin{verbatim}
|
||||
>>> g = Random(42) # arbitrary
|
||||
>>> g.random()
|
||||
0.25420336316883324
|
||||
>>> g.jumpahead(6953607871644L - 1) # move *back* one
|
||||
>>> g.random()
|
||||
0.25420336316883324
|
||||
\end{verbatim}
|
||||
As an example of subclassing, the \module{random} module provides
|
||||
the \class{WichmannHill} class which implements an alternative generator
|
||||
in pure Python. The class provides a backward compatible way to
|
||||
reproduce results from earlier versions of Python which used the
|
||||
Wichmann-Hill algorithm as the core generator.
|
||||
\versionchanged[Substituted MersenneTwister for Wichmann-Hill]{2.3}
|
||||
|
||||
|
||||
Bookkeeping functions:
|
||||
|
@ -104,18 +61,6 @@ Bookkeeping functions:
|
|||
If \var{x} is not \code{None} or an int or long,
|
||||
\code{hash(\var{x})} is used instead.
|
||||
If \var{x} is an int or long, \var{x} is used directly.
|
||||
Distinct values between 0 and 27814431486575L inclusive are guaranteed
|
||||
to yield distinct internal states (this guarantee is specific to the
|
||||
default Wichmann-Hill generator, and may not apply to subclasses
|
||||
supplying their own basic generator).
|
||||
\end{funcdesc}
|
||||
|
||||
\begin{funcdesc}{whseed}{\optional{x}}
|
||||
This is obsolete, supplied for bit-level compatibility with versions
|
||||
of Python prior to 2.1.
|
||||
See \function{seed} for details. \function{whseed} does not guarantee
|
||||
that distinct integer arguments yield distinct internal states, and can
|
||||
yield no more than about 2**24 distinct internal states in all.
|
||||
\end{funcdesc}
|
||||
|
||||
\begin{funcdesc}{getstate}{}
|
||||
|
@ -134,17 +79,20 @@ Bookkeeping functions:
|
|||
\end{funcdesc}
|
||||
|
||||
\begin{funcdesc}{jumpahead}{n}
|
||||
Change the internal state to what it would be if \function{random()}
|
||||
were called \var{n} times, but do so quickly. \var{n} is a
|
||||
non-negative integer. This is most useful in multi-threaded
|
||||
Change the internal state to one different from and likely far away from
|
||||
the current state. \var{n} is a non-negative integer which is used to
|
||||
scramble the current state vector. This is most useful in multi-threaded
|
||||
programs, in conjuction with multiple instances of the \class{Random}
|
||||
class: \method{setstate()} or \method{seed()} can be used to force
|
||||
all instances into the same internal state, and then
|
||||
\method{jumpahead()} can be used to force the instances' states as
|
||||
far apart as you like (up to the period of the generator).
|
||||
class: \method{setstate()} or \method{seed()} can be used to force all
|
||||
instances into the same internal state, and then \method{jumpahead()}
|
||||
can be used to force the instances' states far apart.
|
||||
\versionadded{2.1}
|
||||
\versionchanged[Instead of jumping to a specific state, \var{n} steps
|
||||
ahead, \method{jumpahead(\var{n})} jumps to another state likely to be
|
||||
separated by many steps.]{2.3}
|
||||
\end{funcdesc}
|
||||
|
||||
|
||||
Functions for integers:
|
||||
|
||||
\begin{funcdesc}{randrange}{\optional{start,} stop\optional{, step}}
|
||||
|
@ -279,8 +227,32 @@ these equations can be found in any statistics text.
|
|||
\var{beta} is the shape parameter.
|
||||
\end{funcdesc}
|
||||
|
||||
Alternative Generator
|
||||
|
||||
\begin{classdesc}{WichmannHill}{\optional{seed}}
|
||||
Class that implements the Wichmann-Hill algorithm as the core generator.
|
||||
Has all of the same methods as \class{Random} plus the \method{whseed}
|
||||
method described below. Because this class is implemented in pure
|
||||
Python, it is not threadsafe and may require locks between calls. The
|
||||
period of the generator is 6,953,607,871,644 which is small enough to
|
||||
require care that two independent random sequences do not overlap.
|
||||
\end{classdesc}
|
||||
|
||||
\begin{funcdesc}{whseed}{\optional{x}}
|
||||
This is obsolete, supplied for bit-level compatibility with versions
|
||||
of Python prior to 2.1.
|
||||
See \function{seed} for details. \function{whseed} does not guarantee
|
||||
that distinct integer arguments yield distinct internal states, and can
|
||||
yield no more than about 2**24 distinct internal states in all.
|
||||
\end{funcdesc}
|
||||
|
||||
\begin{seealso}
|
||||
\seetext{M. Matsumoto and T. Nishimura, ``Mersenne Twister: A
|
||||
623-dimensionally equidistributed uniform pseudorandom
|
||||
number generator'',
|
||||
\citetitle{ACM Transactions on Modeling and Computer Simulation}
|
||||
Vol. 8, No. 1, January pp.3-30 1998.}
|
||||
|
||||
\seetext{Wichmann, B. A. \& Hill, I. D., ``Algorithm AS 183:
|
||||
An efficient and portable pseudo-random number generator'',
|
||||
\citetitle{Applied Statistics} 31 (1982) 188-190.}
|
||||
|
|
399
Lib/random.py
399
Lib/random.py
|
@ -18,61 +18,26 @@
|
|||
negative exponential
|
||||
gamma
|
||||
beta
|
||||
pareto
|
||||
Weibull
|
||||
|
||||
distributions on the circle (angles 0 to 2pi)
|
||||
---------------------------------------------
|
||||
circular uniform
|
||||
von Mises
|
||||
|
||||
Translated from anonymously contributed C/C++ source.
|
||||
General notes on the underlying Mersenne Twister core generator:
|
||||
|
||||
Multi-threading note: the random number generator used here is not thread-
|
||||
safe; it is possible that two calls return the same random value. However,
|
||||
you can instantiate a different instance of Random() in each thread to get
|
||||
generators that don't share state, then use .setstate() and .jumpahead() to
|
||||
move the generators to disjoint segments of the full period. For example,
|
||||
* The period is 2**19937-1.
|
||||
* It is one of the most extensively tested generators in existence
|
||||
* Without a direct way to compute N steps forward, the
|
||||
semantics of jumpahead(n) are weakened to simply jump
|
||||
to another distant state and rely on the large period
|
||||
to avoid overlapping sequences.
|
||||
* The random() method is implemented in C, executes in
|
||||
a single Python step, and is, therefore, threadsafe.
|
||||
|
||||
def create_generators(num, delta, firstseed=None):
|
||||
""\"Return list of num distinct generators.
|
||||
Each generator has its own unique segment of delta elements from
|
||||
Random.random()'s full period.
|
||||
Seed the first generator with optional arg firstseed (default is
|
||||
None, to seed from current time).
|
||||
""\"
|
||||
|
||||
from random import Random
|
||||
g = Random(firstseed)
|
||||
result = [g]
|
||||
for i in range(num - 1):
|
||||
laststate = g.getstate()
|
||||
g = Random()
|
||||
g.setstate(laststate)
|
||||
g.jumpahead(delta)
|
||||
result.append(g)
|
||||
return result
|
||||
|
||||
gens = create_generators(10, 1000000)
|
||||
|
||||
That creates 10 distinct generators, which can be passed out to 10 distinct
|
||||
threads. The generators don't share state so can be called safely in
|
||||
parallel. So long as no thread calls its g.random() more than a million
|
||||
times (the second argument to create_generators), the sequences seen by
|
||||
each thread will not overlap.
|
||||
|
||||
The period of the underlying Wichmann-Hill generator is 6,953,607,871,644,
|
||||
and that limits how far this technique can be pushed.
|
||||
|
||||
Just for fun, note that since we know the period, .jumpahead() can also be
|
||||
used to "move backward in time":
|
||||
|
||||
>>> g = Random(42) # arbitrary
|
||||
>>> g.random()
|
||||
0.25420336316883324
|
||||
>>> g.jumpahead(6953607871644L - 1) # move *back* one
|
||||
>>> g.random()
|
||||
0.25420336316883324
|
||||
"""
|
||||
# XXX The docstring sucks.
|
||||
|
||||
from math import log as _log, exp as _exp, pi as _pi, e as _e
|
||||
from math import sqrt as _sqrt, acos as _acos, cos as _cos, sin as _sin
|
||||
|
@ -82,32 +47,20 @@ __all__ = ["Random","seed","random","uniform","randint","choice","sample",
|
|||
"randrange","shuffle","normalvariate","lognormvariate",
|
||||
"cunifvariate","expovariate","vonmisesvariate","gammavariate",
|
||||
"stdgamma","gauss","betavariate","paretovariate","weibullvariate",
|
||||
"getstate","setstate","jumpahead","whseed"]
|
||||
|
||||
def _verify(name, computed, expected):
|
||||
if abs(computed - expected) > 1e-7:
|
||||
raise ValueError(
|
||||
"computed value for %s deviates too much "
|
||||
"(computed %g, expected %g)" % (name, computed, expected))
|
||||
"getstate","setstate","jumpahead"]
|
||||
|
||||
NV_MAGICCONST = 4 * _exp(-0.5)/_sqrt(2.0)
|
||||
_verify('NV_MAGICCONST', NV_MAGICCONST, 1.71552776992141)
|
||||
|
||||
TWOPI = 2.0*_pi
|
||||
_verify('TWOPI', TWOPI, 6.28318530718)
|
||||
|
||||
LOG4 = _log(4.0)
|
||||
_verify('LOG4', LOG4, 1.38629436111989)
|
||||
|
||||
SG_MAGICCONST = 1.0 + _log(4.5)
|
||||
_verify('SG_MAGICCONST', SG_MAGICCONST, 2.50407739677627)
|
||||
|
||||
del _verify
|
||||
|
||||
# Translated by Guido van Rossum from C source provided by
|
||||
# Adrian Baddeley.
|
||||
# Adrian Baddeley. Adapted by Raymond Hettinger for use with
|
||||
# the Mersenne Twister core generator.
|
||||
|
||||
class Random:
|
||||
from _random import Random as CoreGenerator
|
||||
|
||||
class Random(CoreGenerator):
|
||||
"""Random number generator base class used by bound module functions.
|
||||
|
||||
Used to instantiate instances of Random to get generators that don't
|
||||
|
@ -122,7 +75,7 @@ class Random:
|
|||
|
||||
"""
|
||||
|
||||
VERSION = 1 # used by getstate/setstate
|
||||
VERSION = 2 # used by getstate/setstate
|
||||
|
||||
def __init__(self, x=None):
|
||||
"""Initialize an instance.
|
||||
|
@ -131,12 +84,7 @@ class Random:
|
|||
"""
|
||||
|
||||
self.seed(x)
|
||||
|
||||
## -------------------- core generator -------------------
|
||||
|
||||
# Specific to Wichmann-Hill generator. Subclasses wishing to use a
|
||||
# different core generator should override the seed(), random(),
|
||||
# getstate(), setstate() and jumpahead() methods.
|
||||
self.gauss_next = None
|
||||
|
||||
def seed(self, a=None):
|
||||
"""Initialize internal state from hashable object.
|
||||
|
@ -144,141 +92,26 @@ class Random:
|
|||
None or no argument seeds from current time.
|
||||
|
||||
If a is not None or an int or long, hash(a) is used instead.
|
||||
|
||||
If a is an int or long, a is used directly. Distinct values between
|
||||
0 and 27814431486575L inclusive are guaranteed to yield distinct
|
||||
internal states (this guarantee is specific to the default
|
||||
Wichmann-Hill generator).
|
||||
"""
|
||||
|
||||
if a is None:
|
||||
# Initialize from current time
|
||||
import time
|
||||
a = long(time.time() * 256)
|
||||
|
||||
if type(a) not in (type(3), type(3L)):
|
||||
a = hash(a)
|
||||
|
||||
a, x = divmod(a, 30268)
|
||||
a, y = divmod(a, 30306)
|
||||
a, z = divmod(a, 30322)
|
||||
self._seed = int(x)+1, int(y)+1, int(z)+1
|
||||
|
||||
CoreGenerator.seed(self, a)
|
||||
self.gauss_next = None
|
||||
|
||||
def random(self):
|
||||
"""Get the next random number in the range [0.0, 1.0)."""
|
||||
|
||||
# Wichman-Hill random number generator.
|
||||
#
|
||||
# Wichmann, B. A. & Hill, I. D. (1982)
|
||||
# Algorithm AS 183:
|
||||
# An efficient and portable pseudo-random number generator
|
||||
# Applied Statistics 31 (1982) 188-190
|
||||
#
|
||||
# see also:
|
||||
# Correction to Algorithm AS 183
|
||||
# Applied Statistics 33 (1984) 123
|
||||
#
|
||||
# McLeod, A. I. (1985)
|
||||
# A remark on Algorithm AS 183
|
||||
# Applied Statistics 34 (1985),198-200
|
||||
|
||||
# This part is thread-unsafe:
|
||||
# BEGIN CRITICAL SECTION
|
||||
x, y, z = self._seed
|
||||
x = (171 * x) % 30269
|
||||
y = (172 * y) % 30307
|
||||
z = (170 * z) % 30323
|
||||
self._seed = x, y, z
|
||||
# END CRITICAL SECTION
|
||||
|
||||
# Note: on a platform using IEEE-754 double arithmetic, this can
|
||||
# never return 0.0 (asserted by Tim; proof too long for a comment).
|
||||
return (x/30269.0 + y/30307.0 + z/30323.0) % 1.0
|
||||
|
||||
def getstate(self):
|
||||
"""Return internal state; can be passed to setstate() later."""
|
||||
return self.VERSION, self._seed, self.gauss_next
|
||||
return self.VERSION, CoreGenerator.getstate(self), self.gauss_next
|
||||
|
||||
def setstate(self, state):
|
||||
"""Restore internal state from object returned by getstate()."""
|
||||
version = state[0]
|
||||
if version == 1:
|
||||
version, self._seed, self.gauss_next = state
|
||||
if version == 2:
|
||||
version, internalstate, self.gauss_next = state
|
||||
CoreGenerator.setstate(self, internalstate)
|
||||
else:
|
||||
raise ValueError("state with version %s passed to "
|
||||
"Random.setstate() of version %s" %
|
||||
(version, self.VERSION))
|
||||
|
||||
def jumpahead(self, n):
|
||||
"""Act as if n calls to random() were made, but quickly.
|
||||
|
||||
n is an int, greater than or equal to 0.
|
||||
|
||||
Example use: If you have 2 threads and know that each will
|
||||
consume no more than a million random numbers, create two Random
|
||||
objects r1 and r2, then do
|
||||
r2.setstate(r1.getstate())
|
||||
r2.jumpahead(1000000)
|
||||
Then r1 and r2 will use guaranteed-disjoint segments of the full
|
||||
period.
|
||||
"""
|
||||
|
||||
if not n >= 0:
|
||||
raise ValueError("n must be >= 0")
|
||||
x, y, z = self._seed
|
||||
x = int(x * pow(171, n, 30269)) % 30269
|
||||
y = int(y * pow(172, n, 30307)) % 30307
|
||||
z = int(z * pow(170, n, 30323)) % 30323
|
||||
self._seed = x, y, z
|
||||
|
||||
def __whseed(self, x=0, y=0, z=0):
|
||||
"""Set the Wichmann-Hill seed from (x, y, z).
|
||||
|
||||
These must be integers in the range [0, 256).
|
||||
"""
|
||||
|
||||
if not type(x) == type(y) == type(z) == int:
|
||||
raise TypeError('seeds must be integers')
|
||||
if not (0 <= x < 256 and 0 <= y < 256 and 0 <= z < 256):
|
||||
raise ValueError('seeds must be in range(0, 256)')
|
||||
if 0 == x == y == z:
|
||||
# Initialize from current time
|
||||
import time
|
||||
t = long(time.time() * 256)
|
||||
t = int((t&0xffffff) ^ (t>>24))
|
||||
t, x = divmod(t, 256)
|
||||
t, y = divmod(t, 256)
|
||||
t, z = divmod(t, 256)
|
||||
# Zero is a poor seed, so substitute 1
|
||||
self._seed = (x or 1, y or 1, z or 1)
|
||||
|
||||
self.gauss_next = None
|
||||
|
||||
def whseed(self, a=None):
|
||||
"""Seed from hashable object's hash code.
|
||||
|
||||
None or no argument seeds from current time. It is not guaranteed
|
||||
that objects with distinct hash codes lead to distinct internal
|
||||
states.
|
||||
|
||||
This is obsolete, provided for compatibility with the seed routine
|
||||
used prior to Python 2.1. Use the .seed() method instead.
|
||||
"""
|
||||
|
||||
if a is None:
|
||||
self.__whseed()
|
||||
return
|
||||
a = hash(a)
|
||||
a, x = divmod(a, 256)
|
||||
a, y = divmod(a, 256)
|
||||
a, z = divmod(a, 256)
|
||||
x = (x + a) % 256 or 1
|
||||
y = (y + a) % 256 or 1
|
||||
z = (z + a) % 256 or 1
|
||||
self.__whseed(x, y, z)
|
||||
|
||||
## ---- Methods below this point do not need to be overridden when
|
||||
## ---- subclassing for the purpose of using a different core generator.
|
||||
|
||||
|
@ -744,6 +577,153 @@ class Random:
|
|||
u = self.random()
|
||||
return alpha * pow(-_log(u), 1.0/beta)
|
||||
|
||||
## -------------------- Wichmann-Hill -------------------
|
||||
|
||||
class WichmannHill(Random):
|
||||
|
||||
VERSION = 1 # used by getstate/setstate
|
||||
|
||||
def seed(self, a=None):
|
||||
"""Initialize internal state from hashable object.
|
||||
|
||||
None or no argument seeds from current time.
|
||||
|
||||
If a is not None or an int or long, hash(a) is used instead.
|
||||
|
||||
If a is an int or long, a is used directly. Distinct values between
|
||||
0 and 27814431486575L inclusive are guaranteed to yield distinct
|
||||
internal states (this guarantee is specific to the default
|
||||
Wichmann-Hill generator).
|
||||
"""
|
||||
|
||||
if a is None:
|
||||
# Initialize from current time
|
||||
import time
|
||||
a = long(time.time() * 256)
|
||||
|
||||
if not isinstance(a, (int, long)):
|
||||
a = hash(a)
|
||||
|
||||
a, x = divmod(a, 30268)
|
||||
a, y = divmod(a, 30306)
|
||||
a, z = divmod(a, 30322)
|
||||
self._seed = int(x)+1, int(y)+1, int(z)+1
|
||||
|
||||
self.gauss_next = None
|
||||
|
||||
def random(self):
|
||||
"""Get the next random number in the range [0.0, 1.0)."""
|
||||
|
||||
# Wichman-Hill random number generator.
|
||||
#
|
||||
# Wichmann, B. A. & Hill, I. D. (1982)
|
||||
# Algorithm AS 183:
|
||||
# An efficient and portable pseudo-random number generator
|
||||
# Applied Statistics 31 (1982) 188-190
|
||||
#
|
||||
# see also:
|
||||
# Correction to Algorithm AS 183
|
||||
# Applied Statistics 33 (1984) 123
|
||||
#
|
||||
# McLeod, A. I. (1985)
|
||||
# A remark on Algorithm AS 183
|
||||
# Applied Statistics 34 (1985),198-200
|
||||
|
||||
# This part is thread-unsafe:
|
||||
# BEGIN CRITICAL SECTION
|
||||
x, y, z = self._seed
|
||||
x = (171 * x) % 30269
|
||||
y = (172 * y) % 30307
|
||||
z = (170 * z) % 30323
|
||||
self._seed = x, y, z
|
||||
# END CRITICAL SECTION
|
||||
|
||||
# Note: on a platform using IEEE-754 double arithmetic, this can
|
||||
# never return 0.0 (asserted by Tim; proof too long for a comment).
|
||||
return (x/30269.0 + y/30307.0 + z/30323.0) % 1.0
|
||||
|
||||
def getstate(self):
|
||||
"""Return internal state; can be passed to setstate() later."""
|
||||
return self.VERSION, self._seed, self.gauss_next
|
||||
|
||||
def setstate(self, state):
|
||||
"""Restore internal state from object returned by getstate()."""
|
||||
version = state[0]
|
||||
if version == 1:
|
||||
version, self._seed, self.gauss_next = state
|
||||
else:
|
||||
raise ValueError("state with version %s passed to "
|
||||
"Random.setstate() of version %s" %
|
||||
(version, self.VERSION))
|
||||
|
||||
def jumpahead(self, n):
|
||||
"""Act as if n calls to random() were made, but quickly.
|
||||
|
||||
n is an int, greater than or equal to 0.
|
||||
|
||||
Example use: If you have 2 threads and know that each will
|
||||
consume no more than a million random numbers, create two Random
|
||||
objects r1 and r2, then do
|
||||
r2.setstate(r1.getstate())
|
||||
r2.jumpahead(1000000)
|
||||
Then r1 and r2 will use guaranteed-disjoint segments of the full
|
||||
period.
|
||||
"""
|
||||
|
||||
if not n >= 0:
|
||||
raise ValueError("n must be >= 0")
|
||||
x, y, z = self._seed
|
||||
x = int(x * pow(171, n, 30269)) % 30269
|
||||
y = int(y * pow(172, n, 30307)) % 30307
|
||||
z = int(z * pow(170, n, 30323)) % 30323
|
||||
self._seed = x, y, z
|
||||
|
||||
def __whseed(self, x=0, y=0, z=0):
|
||||
"""Set the Wichmann-Hill seed from (x, y, z).
|
||||
|
||||
These must be integers in the range [0, 256).
|
||||
"""
|
||||
|
||||
if not type(x) == type(y) == type(z) == int:
|
||||
raise TypeError('seeds must be integers')
|
||||
if not (0 <= x < 256 and 0 <= y < 256 and 0 <= z < 256):
|
||||
raise ValueError('seeds must be in range(0, 256)')
|
||||
if 0 == x == y == z:
|
||||
# Initialize from current time
|
||||
import time
|
||||
t = long(time.time() * 256)
|
||||
t = int((t&0xffffff) ^ (t>>24))
|
||||
t, x = divmod(t, 256)
|
||||
t, y = divmod(t, 256)
|
||||
t, z = divmod(t, 256)
|
||||
# Zero is a poor seed, so substitute 1
|
||||
self._seed = (x or 1, y or 1, z or 1)
|
||||
|
||||
self.gauss_next = None
|
||||
|
||||
def whseed(self, a=None):
|
||||
"""Seed from hashable object's hash code.
|
||||
|
||||
None or no argument seeds from current time. It is not guaranteed
|
||||
that objects with distinct hash codes lead to distinct internal
|
||||
states.
|
||||
|
||||
This is obsolete, provided for compatibility with the seed routine
|
||||
used prior to Python 2.1. Use the .seed() method instead.
|
||||
"""
|
||||
|
||||
if a is None:
|
||||
self.__whseed()
|
||||
return
|
||||
a = hash(a)
|
||||
a, x = divmod(a, 256)
|
||||
a, y = divmod(a, 256)
|
||||
a, z = divmod(a, 256)
|
||||
x = (x + a) % 256 or 1
|
||||
y = (y + a) % 256 or 1
|
||||
z = (z + a) % 256 or 1
|
||||
self.__whseed(x, y, z)
|
||||
|
||||
## -------------------- test program --------------------
|
||||
|
||||
def _test_generator(n, funccall):
|
||||
|
@ -768,25 +748,11 @@ def _test_generator(n, funccall):
|
|||
print 'avg %g, stddev %g, min %g, max %g' % \
|
||||
(avg, stddev, smallest, largest)
|
||||
|
||||
def _test_sample(n):
|
||||
# For the entire allowable range of 0 <= k <= n, validate that
|
||||
# the sample is of the correct length and contains only unique items
|
||||
population = xrange(n)
|
||||
for k in xrange(n+1):
|
||||
s = sample(population, k)
|
||||
uniq = dict.fromkeys(s)
|
||||
assert len(uniq) == len(s) == k
|
||||
assert None not in uniq
|
||||
|
||||
def _sample_generator(n, k):
|
||||
# Return a fixed element from the sample. Validates random ordering.
|
||||
return sample(xrange(n), k)[k//2]
|
||||
|
||||
def _test(N=2000):
|
||||
print 'TWOPI =', TWOPI
|
||||
print 'LOG4 =', LOG4
|
||||
print 'NV_MAGICCONST =', NV_MAGICCONST
|
||||
print 'SG_MAGICCONST =', SG_MAGICCONST
|
||||
_test_generator(N, 'random()')
|
||||
_test_generator(N, 'normalvariate(0.0, 1.0)')
|
||||
_test_generator(N, 'lognormvariate(0.0, 1.0)')
|
||||
|
@ -808,25 +774,13 @@ def _test(N=2000):
|
|||
_test_generator(N, 'weibullvariate(1.0, 1.0)')
|
||||
_test_generator(N, '_sample_generator(50, 5)') # expected s.d.: 14.4
|
||||
_test_generator(N, '_sample_generator(50, 45)') # expected s.d.: 14.4
|
||||
_test_sample(500)
|
||||
|
||||
# Test jumpahead.
|
||||
s = getstate()
|
||||
jumpahead(N)
|
||||
r1 = random()
|
||||
# now do it the slow way
|
||||
setstate(s)
|
||||
for i in range(N):
|
||||
random()
|
||||
r2 = random()
|
||||
if r1 != r2:
|
||||
raise ValueError("jumpahead test failed " + `(N, r1, r2)`)
|
||||
|
||||
# Create one instance, seeded from current time, and export its methods
|
||||
# as module-level functions. The functions are not threadsafe, and state
|
||||
# is shared across all uses (both in the user's code and in the Python
|
||||
# libraries), but that's fine for most programs and is easier for the
|
||||
# casual user than making them instantiate their own Random() instance.
|
||||
# as module-level functions. The functions share state across all uses
|
||||
#(both in the user's code and in the Python libraries), but that's fine
|
||||
# for most programs and is easier for the casual user than making them
|
||||
# instantiate their own Random() instance.
|
||||
|
||||
_inst = Random()
|
||||
seed = _inst.seed
|
||||
random = _inst.random
|
||||
|
@ -850,7 +804,6 @@ weibullvariate = _inst.weibullvariate
|
|||
getstate = _inst.getstate
|
||||
setstate = _inst.setstate
|
||||
jumpahead = _inst.jumpahead
|
||||
whseed = _inst.whseed
|
||||
|
||||
if __name__ == '__main__':
|
||||
_test()
|
||||
|
|
|
@ -1,19 +1,206 @@
|
|||
from test import test_support
|
||||
#!/usr/bin/env python
|
||||
|
||||
import unittest
|
||||
import random
|
||||
import time
|
||||
from test import test_support
|
||||
|
||||
# Ensure that the seed() method initializes all the hidden state. In
|
||||
# particular, through 2.2.1 it failed to reset a piece of state used by
|
||||
# (and only by) the .gauss() method.
|
||||
class TestBasicOps(unittest.TestCase):
|
||||
# Superclass with tests common to all generators.
|
||||
# Subclasses must arrange for self.gen to retrieve the Random instance
|
||||
# to be tested.
|
||||
|
||||
for seed in 1, 12, 123, 1234, 12345, 123456, 654321:
|
||||
for seeder in random.seed, random.whseed:
|
||||
seeder(seed)
|
||||
x1 = random.random()
|
||||
y1 = random.gauss(0, 1)
|
||||
def randomlist(self, n):
|
||||
"""Helper function to make a list of random numbers"""
|
||||
return [self.gen.random() for i in xrange(n)]
|
||||
|
||||
seeder(seed)
|
||||
x2 = random.random()
|
||||
y2 = random.gauss(0, 1)
|
||||
def test_autoseed(self):
|
||||
self.gen.seed()
|
||||
state1 = self.gen.getstate()
|
||||
time.sleep(1)
|
||||
self.gen.seed() # diffent seeds at different times
|
||||
state2 = self.gen.getstate()
|
||||
self.assertNotEqual(state1, state2)
|
||||
|
||||
test_support.vereq(x1, x2)
|
||||
test_support.vereq(y1, y2)
|
||||
def test_saverestore(self):
|
||||
N = 1000
|
||||
self.gen.seed()
|
||||
state = self.gen.getstate()
|
||||
randseq = self.randomlist(N)
|
||||
self.gen.setstate(state) # should regenerate the same sequence
|
||||
self.assertEqual(randseq, self.randomlist(N))
|
||||
|
||||
def test_seedargs(self):
|
||||
for arg in [None, 0, 0L, 1, 1L, -1, -1L, 10**20, -(10**20),
|
||||
3.14, 1+2j, 'a', tuple('abc')]:
|
||||
self.gen.seed(arg)
|
||||
for arg in [range(3), dict(one=1)]:
|
||||
self.assertRaises(TypeError, self.gen.seed, arg)
|
||||
|
||||
def test_jumpahead(self):
|
||||
self.gen.seed()
|
||||
state1 = self.gen.getstate()
|
||||
self.gen.jumpahead(100)
|
||||
state2 = self.gen.getstate() # s/b distinct from state1
|
||||
self.assertNotEqual(state1, state2)
|
||||
self.gen.jumpahead(100)
|
||||
state3 = self.gen.getstate() # s/b distinct from state2
|
||||
self.assertNotEqual(state2, state3)
|
||||
|
||||
self.assertRaises(TypeError, self.gen.jumpahead) # needs an arg
|
||||
self.assertRaises(TypeError, self.gen.jumpahead, "ick") # wrong type
|
||||
self.assertRaises(TypeError, self.gen.jumpahead, 2.3) # wrong type
|
||||
self.assertRaises(TypeError, self.gen.jumpahead, 2, 3) # too many
|
||||
|
||||
def test_sample(self):
|
||||
# For the entire allowable range of 0 <= k <= N, validate that
|
||||
# the sample is of the correct length and contains only unique items
|
||||
N = 100
|
||||
population = xrange(N)
|
||||
for k in xrange(N+1):
|
||||
s = self.gen.sample(population, k)
|
||||
self.assertEqual(len(s), k)
|
||||
uniq = dict.fromkeys(s)
|
||||
self.assertEqual(len(uniq), k)
|
||||
self.failIf(None in uniq)
|
||||
|
||||
def test_gauss(self):
|
||||
# Ensure that the seed() method initializes all the hidden state. In
|
||||
# particular, through 2.2.1 it failed to reset a piece of state used
|
||||
# by (and only by) the .gauss() method.
|
||||
|
||||
for seed in 1, 12, 123, 1234, 12345, 123456, 654321:
|
||||
self.gen.seed(seed)
|
||||
x1 = self.gen.random()
|
||||
y1 = self.gen.gauss(0, 1)
|
||||
|
||||
self.gen.seed(seed)
|
||||
x2 = self.gen.random()
|
||||
y2 = self.gen.gauss(0, 1)
|
||||
|
||||
self.assertEqual(x1, x2)
|
||||
self.assertEqual(y1, y2)
|
||||
|
||||
|
||||
class WichmannHill_TestBasicOps(TestBasicOps):
|
||||
gen = random.WichmannHill()
|
||||
|
||||
def test_strong_jumpahead(self):
|
||||
# tests that jumpahead(n) semantics correspond to n calls to random()
|
||||
N = 1000
|
||||
s = self.gen.getstate()
|
||||
self.gen.jumpahead(N)
|
||||
r1 = self.gen.random()
|
||||
# now do it the slow way
|
||||
self.gen.setstate(s)
|
||||
for i in xrange(N):
|
||||
self.gen.random()
|
||||
r2 = self.gen.random()
|
||||
self.assertEqual(r1, r2)
|
||||
|
||||
def test_gauss_with_whseed(self):
|
||||
# Ensure that the seed() method initializes all the hidden state. In
|
||||
# particular, through 2.2.1 it failed to reset a piece of state used
|
||||
# by (and only by) the .gauss() method.
|
||||
|
||||
for seed in 1, 12, 123, 1234, 12345, 123456, 654321:
|
||||
self.gen.whseed(seed)
|
||||
x1 = self.gen.random()
|
||||
y1 = self.gen.gauss(0, 1)
|
||||
|
||||
self.gen.whseed(seed)
|
||||
x2 = self.gen.random()
|
||||
y2 = self.gen.gauss(0, 1)
|
||||
|
||||
self.assertEqual(x1, x2)
|
||||
self.assertEqual(y1, y2)
|
||||
|
||||
class MersenneTwister_TestBasicOps(TestBasicOps):
|
||||
gen = random.Random()
|
||||
|
||||
def test_referenceImplementation(self):
|
||||
# Compare the python implementation with results from the original
|
||||
# code. Create 2000 53-bit precision random floats. Compare only
|
||||
# the last ten entries to show that the independent implementations
|
||||
# are tracking. Here is the main() function needed to create the
|
||||
# list of expected random numbers:
|
||||
# void main(void){
|
||||
# int i;
|
||||
# unsigned long init[4]={61731, 24903, 614, 42143}, length=4;
|
||||
# init_by_array(init, length);
|
||||
# for (i=0; i<2000; i++) {
|
||||
# printf("%.15f ", genrand_res53());
|
||||
# if (i%5==4) printf("\n");
|
||||
# }
|
||||
# }
|
||||
expected = [0.45839803073713259,
|
||||
0.86057815201978782,
|
||||
0.92848331726782152,
|
||||
0.35932681119782461,
|
||||
0.081823493762449573,
|
||||
0.14332226470169329,
|
||||
0.084297823823520024,
|
||||
0.53814864671831453,
|
||||
0.089215024911993401,
|
||||
0.78486196105372907]
|
||||
|
||||
self.gen.seed(61731L + (24903L<<32) + (614L<<64) + (42143L<<96))
|
||||
actual = self.randomlist(2000)[-10:]
|
||||
for a, e in zip(actual, expected):
|
||||
self.assertAlmostEqual(a,e,places=14)
|
||||
|
||||
def test_strong_reference_implementation(self):
|
||||
# Like test_referenceImplementation, but checks for exact bit-level
|
||||
# equality. This should pass on any box where C double contains
|
||||
# at least 53 bits of precision (the underlying algorithm suffers
|
||||
# no rounding errors -- all results are exact).
|
||||
from math import ldexp
|
||||
|
||||
expected = [0x0eab3258d2231fL,
|
||||
0x1b89db315277a5L,
|
||||
0x1db622a5518016L,
|
||||
0x0b7f9af0d575bfL,
|
||||
0x029e4c4db82240L,
|
||||
0x04961892f5d673L,
|
||||
0x02b291598e4589L,
|
||||
0x11388382c15694L,
|
||||
0x02dad977c9e1feL,
|
||||
0x191d96d4d334c6L]
|
||||
|
||||
self.gen.seed(61731L + (24903L<<32) + (614L<<64) + (42143L<<96))
|
||||
actual = self.randomlist(2000)[-10:]
|
||||
for a, e in zip(actual, expected):
|
||||
self.assertEqual(long(ldexp(a, 53)), e)
|
||||
|
||||
def test_long_seed(self):
|
||||
# This is most interesting to run in debug mode, just to make sure
|
||||
# nothing blows up. Under the covers, a dynamically resized array
|
||||
# is allocated, consuming space proportional to the number of bits
|
||||
# in the seed. Unfortunately, that's a quadratic-time algorithm,
|
||||
# so don't make this horribly big.
|
||||
seed = (1L << (10000 * 8)) - 1 # about 10K bytes
|
||||
self.gen.seed(seed)
|
||||
|
||||
class TestModule(unittest.TestCase):
|
||||
def testMagicConstants(self):
|
||||
self.assertAlmostEqual(random.NV_MAGICCONST, 1.71552776992141)
|
||||
self.assertAlmostEqual(random.TWOPI, 6.28318530718)
|
||||
self.assertAlmostEqual(random.LOG4, 1.38629436111989)
|
||||
self.assertAlmostEqual(random.SG_MAGICCONST, 2.50407739677627)
|
||||
|
||||
def test__all__(self):
|
||||
# tests validity but not completeness of the __all__ list
|
||||
defined = dict.fromkeys(dir(random))
|
||||
for entry in random.__all__:
|
||||
self.failUnless(entry in defined)
|
||||
|
||||
def test_main():
|
||||
suite = unittest.TestSuite()
|
||||
for testclass in (WichmannHill_TestBasicOps,
|
||||
MersenneTwister_TestBasicOps,
|
||||
TestModule):
|
||||
suite.addTest(unittest.makeSuite(testclass))
|
||||
test_support.run_suite(suite)
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_main()
|
||||
|
|
19
Misc/NEWS
19
Misc/NEWS
|
@ -545,6 +545,25 @@ Library
|
|||
and 'stop' arguments so long as each is in the range of Python's
|
||||
bounded integers.
|
||||
|
||||
- Thanks to Raymond Hettinger, random.random() now uses a new core
|
||||
generator. The Mersenne Twister algorithm is implemented in C,
|
||||
threadsafe, faster than the previous generator, has an astronomically
|
||||
large period (2**19937-1), creates random floats to full 53-bit
|
||||
precision, and may be the most widely tested random number generator
|
||||
in existence.
|
||||
|
||||
The random.jumpahead(n) method has different semantics for the new
|
||||
generator. Instead of jumping n steps ahead, it uses n and the
|
||||
existing state to create a new state. This means that jumpahead()
|
||||
continues to support multi-threaded code needing generators of
|
||||
non-overlapping sequences. However, it will break code which relies
|
||||
on jumpahead moving a specific number of steps forward.
|
||||
|
||||
The attributes random.whseed and random.__whseed have no meaning for
|
||||
the new generator. Code using these attributes should switch to a
|
||||
new class, random.WichmannHill which is provided for backward
|
||||
compatibility and to make an alternate generator available.
|
||||
|
||||
- New "algorithms" module: heapq, implements a heap queue. Thanks to
|
||||
Kevin O'Connor for the code and François Pinard for an entertaining
|
||||
write-up explaining the theory and practical uses of heaps.
|
||||
|
|
|
@ -0,0 +1,528 @@
|
|||
/* Random objects */
|
||||
|
||||
/* ------------------------------------------------------------------
|
||||
The code in this module was based on a download from:
|
||||
http://www.math.keio.ac.jp/~matumoto/MT2002/emt19937ar.html
|
||||
|
||||
It was modified in 2002 by Raymond Hettinger as follows:
|
||||
|
||||
* the principal computational lines untouched except for tabbing.
|
||||
|
||||
* renamed genrand_res53() to random_random() and wrapped
|
||||
in python calling/return code.
|
||||
|
||||
* genrand_int32() and the helper functions, init_genrand()
|
||||
and init_by_array(), were declared static, wrapped in
|
||||
Python calling/return code. also, their global data
|
||||
references were replaced with structure references.
|
||||
|
||||
* unused functions from the original were deleted.
|
||||
new, original C python code was added to implement the
|
||||
Random() interface.
|
||||
|
||||
The following are the verbatim comments from the original code:
|
||||
|
||||
A C-program for MT19937, with initialization improved 2002/1/26.
|
||||
Coded by Takuji Nishimura and Makoto Matsumoto.
|
||||
|
||||
Before using, initialize the state by using init_genrand(seed)
|
||||
or init_by_array(init_key, key_length).
|
||||
|
||||
Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
|
||||
All rights reserved.
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions
|
||||
are met:
|
||||
|
||||
1. Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
|
||||
2. Redistributions in binary form must reproduce the above copyright
|
||||
notice, this list of conditions and the following disclaimer in the
|
||||
documentation and/or other materials provided with the distribution.
|
||||
|
||||
3. The names of its contributors may not be used to endorse or promote
|
||||
products derived from this software without specific prior written
|
||||
permission.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
||||
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||||
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||||
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||||
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
||||
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
||||
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
|
||||
Any feedback is very welcome.
|
||||
http://www.math.keio.ac.jp/matumoto/emt.html
|
||||
email: matumoto@math.keio.ac.jp
|
||||
*/
|
||||
|
||||
/* ---------------------------------------------------------------*/
|
||||
|
||||
#include "Python.h"
|
||||
#include <time.h> // for seeding to current time
|
||||
|
||||
/* Period parameters -- These are all magic. Don't change. */
|
||||
#define N 624
|
||||
#define M 397
|
||||
#define MATRIX_A 0x9908b0dfUL /* constant vector a */
|
||||
#define UPPER_MASK 0x80000000UL /* most significant w-r bits */
|
||||
#define LOWER_MASK 0x7fffffffUL /* least significant r bits */
|
||||
|
||||
typedef struct {
|
||||
PyObject_HEAD
|
||||
unsigned long state[N];
|
||||
int index;
|
||||
} RandomObject;
|
||||
|
||||
static PyTypeObject Random_Type;
|
||||
|
||||
#define RandomObject_Check(v) ((v)->ob_type == &Random_Type)
|
||||
|
||||
|
||||
/* Random methods */
|
||||
|
||||
|
||||
/* generates a random number on [0,0xffffffff]-interval */
|
||||
static unsigned long
|
||||
genrand_int32(RandomObject *self)
|
||||
{
|
||||
unsigned long y;
|
||||
static unsigned long mag01[2]={0x0UL, MATRIX_A};
|
||||
/* mag01[x] = x * MATRIX_A for x=0,1 */
|
||||
unsigned long *mt;
|
||||
|
||||
mt = self->state;
|
||||
if (self->index >= N) { /* generate N words at one time */
|
||||
int kk;
|
||||
|
||||
for (kk=0;kk<N-M;kk++) {
|
||||
y = (mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK);
|
||||
mt[kk] = mt[kk+M] ^ (y >> 1) ^ mag01[y & 0x1UL];
|
||||
}
|
||||
for (;kk<N-1;kk++) {
|
||||
y = (mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK);
|
||||
mt[kk] = mt[kk+(M-N)] ^ (y >> 1) ^ mag01[y & 0x1UL];
|
||||
}
|
||||
y = (mt[N-1]&UPPER_MASK)|(mt[0]&LOWER_MASK);
|
||||
mt[N-1] = mt[M-1] ^ (y >> 1) ^ mag01[y & 0x1UL];
|
||||
|
||||
self->index = 0;
|
||||
}
|
||||
|
||||
y = mt[self->index++];
|
||||
y ^= (y >> 11);
|
||||
y ^= (y << 7) & 0x9d2c5680UL;
|
||||
y ^= (y << 15) & 0xefc60000UL;
|
||||
y ^= (y >> 18);
|
||||
return y;
|
||||
}
|
||||
|
||||
/* random_random is the function named genrand_res53 in the original code;
|
||||
* generates a random number on [0,1) with 53-bit resolution; note that
|
||||
* 9007199254740992 == 2**53; I assume they're spelling "/2**53" as
|
||||
* multiply-by-reciprocal in the (likely vain) hope that the compiler will
|
||||
* optimize the division away at compile-time. 67108864 is 2**26. In
|
||||
* effect, a contains 27 random bits shifted left 26, and b fills in the
|
||||
* lower 26 bits of the 53-bit numerator.
|
||||
* The orginal code credited Isaku Wada for this algorithm, 2002/01/09.
|
||||
*/
|
||||
static PyObject *
|
||||
random_random(RandomObject *self)
|
||||
{
|
||||
unsigned long a=genrand_int32(self)>>5, b=genrand_int32(self)>>6;
|
||||
return PyFloat_FromDouble((a*67108864.0+b)*(1.0/9007199254740992.0));
|
||||
}
|
||||
|
||||
/* initializes mt[N] with a seed */
|
||||
static void
|
||||
init_genrand(RandomObject *self, unsigned long s)
|
||||
{
|
||||
int mti;
|
||||
unsigned long *mt;
|
||||
|
||||
mt = self->state;
|
||||
mt[0]= s & 0xffffffffUL;
|
||||
for (mti=1; mti<N; mti++) {
|
||||
mt[mti] =
|
||||
(1812433253UL * (mt[mti-1] ^ (mt[mti-1] >> 30)) + mti);
|
||||
/* See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier. */
|
||||
/* In the previous versions, MSBs of the seed affect */
|
||||
/* only MSBs of the array mt[]. */
|
||||
/* 2002/01/09 modified by Makoto Matsumoto */
|
||||
mt[mti] &= 0xffffffffUL;
|
||||
/* for >32 bit machines */
|
||||
}
|
||||
self->index = mti;
|
||||
return;
|
||||
}
|
||||
|
||||
/* initialize by an array with array-length */
|
||||
/* init_key is the array for initializing keys */
|
||||
/* key_length is its length */
|
||||
static PyObject *
|
||||
init_by_array(RandomObject *self, unsigned long init_key[], unsigned long key_length)
|
||||
{
|
||||
unsigned int i, j, k; /* was signed in the original code. RDH 12/16/2002 */
|
||||
unsigned long *mt;
|
||||
|
||||
mt = self->state;
|
||||
init_genrand(self, 19650218UL);
|
||||
i=1; j=0;
|
||||
k = (N>key_length ? N : key_length);
|
||||
for (; k; k--) {
|
||||
mt[i] = (mt[i] ^ ((mt[i-1] ^ (mt[i-1] >> 30)) * 1664525UL))
|
||||
+ init_key[j] + j; /* non linear */
|
||||
mt[i] &= 0xffffffffUL; /* for WORDSIZE > 32 machines */
|
||||
i++; j++;
|
||||
if (i>=N) { mt[0] = mt[N-1]; i=1; }
|
||||
if (j>=key_length) j=0;
|
||||
}
|
||||
for (k=N-1; k; k--) {
|
||||
mt[i] = (mt[i] ^ ((mt[i-1] ^ (mt[i-1] >> 30)) * 1566083941UL))
|
||||
- i; /* non linear */
|
||||
mt[i] &= 0xffffffffUL; /* for WORDSIZE > 32 machines */
|
||||
i++;
|
||||
if (i>=N) { mt[0] = mt[N-1]; i=1; }
|
||||
}
|
||||
|
||||
mt[0] = 0x80000000UL; /* MSB is 1; assuring non-zero initial array */
|
||||
Py_INCREF(Py_None);
|
||||
return Py_None;
|
||||
}
|
||||
|
||||
/*
|
||||
* The rest is Python-specific code, neither part of, nor derived from, the
|
||||
* Twister download.
|
||||
*/
|
||||
|
||||
static PyObject *
|
||||
random_seed(RandomObject *self, PyObject *args)
|
||||
{
|
||||
PyObject *result = NULL; /* guilty until proved innocent */
|
||||
PyObject *masklower = NULL;
|
||||
PyObject *thirtytwo = NULL;
|
||||
PyObject *n = NULL;
|
||||
unsigned long *key = NULL;
|
||||
unsigned long keymax; /* # of allocated slots in key */
|
||||
unsigned long keyused; /* # of used slots in key */
|
||||
|
||||
PyObject *arg = NULL;
|
||||
|
||||
if (!PyArg_UnpackTuple(args, "seed", 0, 1, &arg))
|
||||
return NULL;
|
||||
|
||||
if (arg == NULL || arg == Py_None) {
|
||||
time_t now;
|
||||
|
||||
time(&now);
|
||||
init_genrand(self, (unsigned long)now);
|
||||
Py_INCREF(Py_None);
|
||||
return Py_None;
|
||||
}
|
||||
/* If the arg is an int or long, use its absolute value; else use
|
||||
* the absolute value of its hash code.
|
||||
*/
|
||||
if (PyInt_Check(arg) || PyLong_Check(arg))
|
||||
n = PyNumber_Absolute(arg);
|
||||
else {
|
||||
long hash = PyObject_Hash(arg);
|
||||
if (hash == -1)
|
||||
goto Done;
|
||||
n = PyLong_FromUnsignedLong((unsigned long)hash);
|
||||
}
|
||||
if (n == NULL)
|
||||
goto Done;
|
||||
|
||||
/* Now split n into 32-bit chunks, from the right. Each piece is
|
||||
* stored into key, which has a capacity of keymax chunks, of which
|
||||
* keyused are filled. Alas, the repeated shifting makes this a
|
||||
* quadratic-time algorithm; we'd really like to use
|
||||
* _PyLong_AsByteArray here, but then we'd have to break into the
|
||||
* long representation to figure out how big an array was needed
|
||||
* in advance.
|
||||
*/
|
||||
keymax = 8; /* arbitrary; grows later if needed */
|
||||
keyused = 0;
|
||||
key = (unsigned long *)PyMem_Malloc(keymax * sizeof(*key));
|
||||
if (key == NULL)
|
||||
goto Done;
|
||||
|
||||
masklower = PyLong_FromUnsignedLong(0xffffffffU);
|
||||
if (masklower == NULL)
|
||||
goto Done;
|
||||
thirtytwo = PyInt_FromLong(32L);
|
||||
if (thirtytwo == NULL)
|
||||
goto Done;
|
||||
while (PyObject_IsTrue(n)) {
|
||||
PyObject *newn;
|
||||
PyObject *pychunk;
|
||||
unsigned long chunk;
|
||||
|
||||
pychunk = PyNumber_And(n, masklower);
|
||||
if (pychunk == NULL)
|
||||
goto Done;
|
||||
chunk = PyLong_AsUnsignedLong(pychunk);
|
||||
Py_DECREF(pychunk);
|
||||
if (chunk == (unsigned long)-1 && PyErr_Occurred())
|
||||
goto Done;
|
||||
newn = PyNumber_Rshift(n, thirtytwo);
|
||||
if (newn == NULL)
|
||||
goto Done;
|
||||
Py_DECREF(n);
|
||||
n = newn;
|
||||
if (keyused >= keymax) {
|
||||
unsigned long bigger = keymax << 1;
|
||||
if ((bigger >> 1) != keymax) {
|
||||
PyErr_NoMemory();
|
||||
goto Done;
|
||||
}
|
||||
key = (unsigned long *)PyMem_Realloc(key,
|
||||
bigger * sizeof(*key));
|
||||
if (key == NULL)
|
||||
goto Done;
|
||||
keymax = bigger;
|
||||
}
|
||||
assert(keyused < keymax);
|
||||
key[keyused++] = chunk;
|
||||
}
|
||||
|
||||
if (keyused == 0)
|
||||
key[keyused++] = 0UL;
|
||||
result = init_by_array(self, key, keyused);
|
||||
Done:
|
||||
Py_XDECREF(masklower);
|
||||
Py_XDECREF(thirtytwo);
|
||||
Py_XDECREF(n);
|
||||
PyMem_Free(key);
|
||||
return result;
|
||||
}
|
||||
|
||||
static PyObject *
|
||||
random_getstate(RandomObject *self)
|
||||
{
|
||||
PyObject *state;
|
||||
PyObject *element;
|
||||
int i;
|
||||
|
||||
state = PyTuple_New(N+1);
|
||||
if (state == NULL)
|
||||
return NULL;
|
||||
for (i=0; i<N ; i++) {
|
||||
element = PyInt_FromLong((long)(self->state[i]));
|
||||
if (element == NULL)
|
||||
goto Fail;
|
||||
PyTuple_SET_ITEM(state, i, element);
|
||||
}
|
||||
element = PyInt_FromLong((long)(self->index));
|
||||
if (element == NULL)
|
||||
goto Fail;
|
||||
PyTuple_SET_ITEM(state, i, element);
|
||||
return state;
|
||||
|
||||
Fail:
|
||||
Py_DECREF(state);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
static PyObject *
|
||||
random_setstate(RandomObject *self, PyObject *state)
|
||||
{
|
||||
int i;
|
||||
long element;
|
||||
|
||||
if (!PyTuple_Check(state)) {
|
||||
PyErr_SetString(PyExc_TypeError,
|
||||
"state vector must be a tuple");
|
||||
return NULL;
|
||||
}
|
||||
if (PyTuple_Size(state) != N+1) {
|
||||
PyErr_SetString(PyExc_ValueError,
|
||||
"state vector is the wrong size");
|
||||
return NULL;
|
||||
}
|
||||
|
||||
for (i=0; i<N ; i++) {
|
||||
element = PyInt_AsLong(PyTuple_GET_ITEM(state, i));
|
||||
if (element == -1 && PyErr_Occurred())
|
||||
return NULL;
|
||||
self->state[i] = (unsigned long)element;
|
||||
}
|
||||
|
||||
element = PyInt_AsLong(PyTuple_GET_ITEM(state, i));
|
||||
if (element == -1 && PyErr_Occurred())
|
||||
return NULL;
|
||||
self->index = (int)element;
|
||||
|
||||
Py_INCREF(Py_None);
|
||||
return Py_None;
|
||||
}
|
||||
|
||||
/*
|
||||
Jumpahead should be a fast way advance the generator n-steps ahead, but
|
||||
lacking a formula for that, the next best is to use n and the existing
|
||||
state to create a new state far away from the original.
|
||||
|
||||
The generator uses constant spaced additive feedback, so shuffling the
|
||||
state elements ought to produce a state which would not be encountered
|
||||
(in the near term) by calls to random(). Shuffling is normally
|
||||
implemented by swapping the ith element with another element ranging
|
||||
from 0 to i inclusive. That allows the element to have the possibility
|
||||
of not being moved. Since the goal is to produce a new, different
|
||||
state, the swap element is ranged from 0 to i-1 inclusive. This assures
|
||||
that each element gets moved at least once.
|
||||
|
||||
To make sure that consecutive calls to jumpahead(n) produce different
|
||||
states (even in the rare case of involutory shuffles), i+1 is added to
|
||||
each element at position i. Successive calls are then guaranteed to
|
||||
have changing (growing) values as well as shuffled positions.
|
||||
|
||||
Finally, the self->index value is set to N so that the generator itself
|
||||
kicks in on the next call to random(). This assures that all results
|
||||
have been through the generator and do not just reflect alterations to
|
||||
the underlying state.
|
||||
*/
|
||||
|
||||
static PyObject *
|
||||
random_jumpahead(RandomObject *self, PyObject *n)
|
||||
{
|
||||
long i, j;
|
||||
PyObject *iobj;
|
||||
PyObject *remobj;
|
||||
unsigned long *mt, tmp;
|
||||
|
||||
if (!PyInt_Check(n) && !PyLong_Check(n)) {
|
||||
PyErr_Format(PyExc_TypeError, "jumpahead requires an "
|
||||
"integer, not '%s'",
|
||||
n->ob_type->tp_name);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
mt = self->state;
|
||||
for (i = N-1; i > 1; i--) {
|
||||
iobj = PyInt_FromLong(i);
|
||||
if (iobj == NULL)
|
||||
return NULL;
|
||||
remobj = PyNumber_Remainder(n, iobj);
|
||||
Py_DECREF(iobj);
|
||||
if (remobj == NULL)
|
||||
return NULL;
|
||||
j = PyInt_AsLong(remobj);
|
||||
Py_DECREF(remobj);
|
||||
if (j == -1L && PyErr_Occurred())
|
||||
return NULL;
|
||||
tmp = mt[i];
|
||||
mt[i] = mt[j];
|
||||
mt[j] = tmp;
|
||||
}
|
||||
|
||||
for (i = 0; i < N; i++)
|
||||
mt[i] += i+1;
|
||||
|
||||
self->index = N;
|
||||
Py_INCREF(Py_None);
|
||||
return Py_None;
|
||||
}
|
||||
|
||||
static PyObject *
|
||||
random_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
|
||||
{
|
||||
RandomObject *self;
|
||||
PyObject *tmp;
|
||||
|
||||
self = (RandomObject *)type->tp_alloc(type, 0);
|
||||
if (self == NULL)
|
||||
return NULL;
|
||||
tmp = random_seed(self, args);
|
||||
if (tmp == NULL) {
|
||||
Py_DECREF(self);
|
||||
return NULL;
|
||||
}
|
||||
Py_DECREF(tmp);
|
||||
return (PyObject *)self;
|
||||
}
|
||||
|
||||
static PyMethodDef random_methods[] = {
|
||||
{"random", (PyCFunction)random_random, METH_NOARGS,
|
||||
PyDoc_STR("random() -> x in the interval [0, 1).")},
|
||||
{"seed", (PyCFunction)random_seed, METH_VARARGS,
|
||||
PyDoc_STR("seed([n]) -> None. Defaults to current time.")},
|
||||
{"getstate", (PyCFunction)random_getstate, METH_NOARGS,
|
||||
PyDoc_STR("getstate() -> tuple containing the current state.")},
|
||||
{"setstate", (PyCFunction)random_setstate, METH_O,
|
||||
PyDoc_STR("setstate(state) -> None. Restores generator state.")},
|
||||
{"jumpahead", (PyCFunction)random_jumpahead, METH_O,
|
||||
PyDoc_STR("jumpahead(int) -> None. Create new state from "
|
||||
"existing state and integer.")},
|
||||
{NULL, NULL} /* sentinel */
|
||||
};
|
||||
|
||||
PyDoc_STRVAR(random_doc,
|
||||
"Random() -> create a random number generator with its own internal state.");
|
||||
|
||||
static PyTypeObject Random_Type = {
|
||||
PyObject_HEAD_INIT(NULL)
|
||||
0, /*ob_size*/
|
||||
"_random.Random", /*tp_name*/
|
||||
sizeof(RandomObject), /*tp_basicsize*/
|
||||
0, /*tp_itemsize*/
|
||||
/* methods */
|
||||
0, /*tp_dealloc*/
|
||||
0, /*tp_print*/
|
||||
0, /*tp_getattr*/
|
||||
0, /*tp_setattr*/
|
||||
0, /*tp_compare*/
|
||||
0, /*tp_repr*/
|
||||
0, /*tp_as_number*/
|
||||
0, /*tp_as_sequence*/
|
||||
0, /*tp_as_mapping*/
|
||||
0, /*tp_hash*/
|
||||
0, /*tp_call*/
|
||||
0, /*tp_str*/
|
||||
PyObject_GenericGetAttr, /*tp_getattro*/
|
||||
0, /*tp_setattro*/
|
||||
0, /*tp_as_buffer*/
|
||||
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /*tp_flags*/
|
||||
random_doc, /*tp_doc*/
|
||||
0, /*tp_traverse*/
|
||||
0, /*tp_clear*/
|
||||
0, /*tp_richcompare*/
|
||||
0, /*tp_weaklistoffset*/
|
||||
0, /*tp_iter*/
|
||||
0, /*tp_iternext*/
|
||||
random_methods, /*tp_methods*/
|
||||
0, /*tp_members*/
|
||||
0, /*tp_getset*/
|
||||
0, /*tp_base*/
|
||||
0, /*tp_dict*/
|
||||
0, /*tp_descr_get*/
|
||||
0, /*tp_descr_set*/
|
||||
0, /*tp_dictoffset*/
|
||||
0, /*tp_init*/
|
||||
PyType_GenericAlloc, /*tp_alloc*/
|
||||
random_new, /*tp_new*/
|
||||
_PyObject_Del, /*tp_free*/
|
||||
0, /*tp_is_gc*/
|
||||
};
|
||||
|
||||
PyDoc_STRVAR(module_doc,
|
||||
"Module implements the Mersenne Twister random number generator.");
|
||||
|
||||
PyMODINIT_FUNC
|
||||
init_random(void)
|
||||
{
|
||||
PyObject *m;
|
||||
|
||||
if (PyType_Ready(&Random_Type) < 0)
|
||||
return;
|
||||
m = Py_InitModule3("_random", NULL, module_doc);
|
||||
Py_INCREF(&Random_Type);
|
||||
PyModule_AddObject(m, "Random", (PyObject *)&Random_Type);
|
||||
}
|
2
setup.py
2
setup.py
|
@ -316,6 +316,8 @@ class PyBuildExt(build_ext):
|
|||
libraries=math_libs) )
|
||||
exts.append( Extension('datetime', ['datetimemodule.c'],
|
||||
libraries=math_libs) )
|
||||
# random number generator implemented in C
|
||||
exts.append( Extension("_random", ["_randommodule.c"]) )
|
||||
# operator.add() and similar goodies
|
||||
exts.append( Extension('operator', ['operator.c']) )
|
||||
# Python C API test module
|
||||
|
|
Loading…
Reference in New Issue