Excise the sets module. SF #1500611 by Collin Winter.

This commit is contained in:
Guido van Rossum 2007-01-10 01:28:32 +00:00
parent 902d6ebddd
commit 33552e92fe
9 changed files with 5 additions and 1713 deletions

View File

@ -109,7 +109,6 @@ LIBFILES= $(MANSTYLES) $(INDEXSTYLES) $(COMMONTEX) \
lib/libplatform.tex \
lib/libfpectl.tex \
lib/libgc.tex \
lib/libsets.tex \
lib/libweakref.tex \
lib/libinspect.tex \
lib/libpydoc.tex \

View File

@ -104,7 +104,6 @@ and how to embed it in other applications.
\input{libheapq}
\input{libbisect}
\input{libarray}
\input{libsets}
\input{libsched}
\input{libmutex}
\input{libqueue}

View File

@ -1,264 +0,0 @@
\section{\module{sets} ---
Unordered collections of unique elements}
\declaremodule{standard}{sets}
\modulesynopsis{Implementation of sets of unique elements.}
\moduleauthor{Greg V. Wilson}{gvwilson@nevex.com}
\moduleauthor{Alex Martelli}{aleax@aleax.it}
\moduleauthor{Guido van Rossum}{guido@python.org}
\sectionauthor{Raymond D. Hettinger}{python@rcn.com}
\versionadded{2.3}
The \module{sets} module provides classes for constructing and manipulating
unordered collections of unique elements. Common uses include membership
testing, removing duplicates from a sequence, and computing standard math
operations on sets such as intersection, union, difference, and symmetric
difference.
Like other collections, sets support \code{\var{x} in \var{set}},
\code{len(\var{set})}, and \code{for \var{x} in \var{set}}. Being an
unordered collection, sets do not record element position or order of
insertion. Accordingly, sets do not support indexing, slicing, or
other sequence-like behavior.
Most set applications use the \class{Set} class which provides every set
method except for \method{__hash__()}. For advanced applications requiring
a hash method, the \class{ImmutableSet} class adds a \method{__hash__()}
method but omits methods which alter the contents of the set. Both
\class{Set} and \class{ImmutableSet} derive from \class{BaseSet}, an
abstract class useful for determining whether something is a set:
\code{isinstance(\var{obj}, BaseSet)}.
The set classes are implemented using dictionaries. Accordingly, the
requirements for set elements are the same as those for dictionary keys;
namely, that the element defines both \method{__eq__} and \method{__hash__}.
As a result, sets
cannot contain mutable elements such as lists or dictionaries.
However, they can contain immutable collections such as tuples or
instances of \class{ImmutableSet}. For convenience in implementing
sets of sets, inner sets are automatically converted to immutable
form, for example, \code{Set([Set(['dog'])])} is transformed to
\code{Set([ImmutableSet(['dog'])])}.
\begin{classdesc}{Set}{\optional{iterable}}
Constructs a new empty \class{Set} object. If the optional \var{iterable}
parameter is supplied, updates the set with elements obtained from iteration.
All of the elements in \var{iterable} should be immutable or be transformable
to an immutable using the protocol described in
section~\ref{immutable-transforms}.
\end{classdesc}
\begin{classdesc}{ImmutableSet}{\optional{iterable}}
Constructs a new empty \class{ImmutableSet} object. If the optional
\var{iterable} parameter is supplied, updates the set with elements obtained
from iteration. All of the elements in \var{iterable} should be immutable or
be transformable to an immutable using the protocol described in
section~\ref{immutable-transforms}.
Because \class{ImmutableSet} objects provide a \method{__hash__()} method,
they can be used as set elements or as dictionary keys. \class{ImmutableSet}
objects do not have methods for adding or removing elements, so all of the
elements must be known when the constructor is called.
\end{classdesc}
\subsection{Set Objects \label{set-objects}}
Instances of \class{Set} and \class{ImmutableSet} both provide
the following operations:
\begin{tableiii}{c|c|l}{code}{Operation}{Equivalent}{Result}
\lineiii{len(\var{s})}{}{cardinality of set \var{s}}
\hline
\lineiii{\var{x} in \var{s}}{}
{test \var{x} for membership in \var{s}}
\lineiii{\var{x} not in \var{s}}{}
{test \var{x} for non-membership in \var{s}}
\lineiii{\var{s}.issubset(\var{t})}{\code{\var{s} <= \var{t}}}
{test whether every element in \var{s} is in \var{t}}
\lineiii{\var{s}.issuperset(\var{t})}{\code{\var{s} >= \var{t}}}
{test whether every element in \var{t} is in \var{s}}
\hline
\lineiii{\var{s}.union(\var{t})}{\var{s} \textbar{} \var{t}}
{new set with elements from both \var{s} and \var{t}}
\lineiii{\var{s}.intersection(\var{t})}{\var{s} \&\ \var{t}}
{new set with elements common to \var{s} and \var{t}}
\lineiii{\var{s}.difference(\var{t})}{\var{s} - \var{t}}
{new set with elements in \var{s} but not in \var{t}}
\lineiii{\var{s}.symmetric_difference(\var{t})}{\var{s} \^\ \var{t}}
{new set with elements in either \var{s} or \var{t} but not both}
\lineiii{\var{s}.copy()}{}
{new set with a shallow copy of \var{s}}
\end{tableiii}
Note, the non-operator versions of \method{union()},
\method{intersection()}, \method{difference()}, and
\method{symmetric_difference()} will accept any iterable as an argument.
In contrast, their operator based counterparts require their arguments to
be sets. This precludes error-prone constructions like
\code{Set('abc') \&\ 'cbs'} in favor of the more readable
\code{Set('abc').intersection('cbs')}.
\versionchanged[Formerly all arguments were required to be sets]{2.3.1}
In addition, both \class{Set} and \class{ImmutableSet}
support set to set comparisons. Two sets are equal if and only if
every element of each set is contained in the other (each is a subset
of the other).
A set is less than another set if and only if the first set is a proper
subset of the second set (is a subset, but is not equal).
A set is greater than another set if and only if the first set is a proper
superset of the second set (is a superset, but is not equal).
The subset and equality comparisons do not generalize to a complete
ordering function. For example, any two disjoint sets are not equal and
are not subsets of each other, so \emph{all} of the following return
\code{False}: \code{\var{a}<\var{b}}, \code{\var{a}==\var{b}}, or
\code{\var{a}>\var{b}}.
Accordingly, sets do not implement the \method{__cmp__} method.
Since sets only define partial ordering (subset relationships), the output
of the \method{list.sort()} method is undefined for lists of sets.
The following table lists operations available in \class{ImmutableSet}
but not found in \class{Set}:
\begin{tableii}{c|l}{code}{Operation}{Result}
\lineii{hash(\var{s})}{returns a hash value for \var{s}}
\end{tableii}
The following table lists operations available in \class{Set}
but not found in \class{ImmutableSet}:
\begin{tableiii}{c|c|l}{code}{Operation}{Equivalent}{Result}
\lineiii{\var{s}.update(\var{t})}
{\var{s} \textbar= \var{t}}
{return set \var{s} with elements added from \var{t}}
\lineiii{\var{s}.intersection_update(\var{t})}
{\var{s} \&= \var{t}}
{return set \var{s} keeping only elements also found in \var{t}}
\lineiii{\var{s}.difference_update(\var{t})}
{\var{s} -= \var{t}}
{return set \var{s} after removing elements found in \var{t}}
\lineiii{\var{s}.symmetric_difference_update(\var{t})}
{\var{s} \textasciicircum= \var{t}}
{return set \var{s} with elements from \var{s} or \var{t}
but not both}
\hline
\lineiii{\var{s}.add(\var{x})}{}
{add element \var{x} to set \var{s}}
\lineiii{\var{s}.remove(\var{x})}{}
{remove \var{x} from set \var{s}; raises \exception{KeyError}
if not present}
\lineiii{\var{s}.discard(\var{x})}{}
{removes \var{x} from set \var{s} if present}
\lineiii{\var{s}.pop()}{}
{remove and return an arbitrary element from \var{s}; raises
\exception{KeyError} if empty}
\lineiii{\var{s}.clear()}{}
{remove all elements from set \var{s}}
\end{tableiii}
Note, the non-operator versions of \method{update()},
\method{intersection_update()}, \method{difference_update()}, and
\method{symmetric_difference_update()} will accept any iterable as
an argument.
\versionchanged[Formerly all arguments were required to be sets]{2.3.1}
Also note, the module also includes a \method{union_update()} method
which is an alias for \method{update()}. The method is included for
backwards compatibility. Programmers should prefer the
\method{update()} method because it is supported by the builtin
\class{set()} and \class{frozenset()} types.
\subsection{Example \label{set-example}}
\begin{verbatim}
>>> from sets import Set
>>> engineers = Set(['John', 'Jane', 'Jack', 'Janice'])
>>> programmers = Set(['Jack', 'Sam', 'Susan', 'Janice'])
>>> managers = Set(['Jane', 'Jack', 'Susan', 'Zack'])
>>> employees = engineers | programmers | managers # union
>>> engineering_management = engineers & managers # intersection
>>> fulltime_management = managers - engineers - programmers # difference
>>> engineers.add('Marvin') # add element
>>> print engineers
Set(['Jane', 'Marvin', 'Janice', 'John', 'Jack'])
>>> employees.issuperset(engineers) # superset test
False
>>> employees.union_update(engineers) # update from another set
>>> employees.issuperset(engineers)
True
>>> for group in [engineers, programmers, managers, employees]:
... group.discard('Susan') # unconditionally remove element
... print group
...
Set(['Jane', 'Marvin', 'Janice', 'John', 'Jack'])
Set(['Janice', 'Jack', 'Sam'])
Set(['Jane', 'Zack', 'Jack'])
Set(['Jack', 'Sam', 'Jane', 'Marvin', 'Janice', 'John', 'Zack'])
\end{verbatim}
\subsection{Protocol for automatic conversion to immutable
\label{immutable-transforms}}
Sets can only contain immutable elements. For convenience, mutable
\class{Set} objects are automatically copied to an \class{ImmutableSet}
before being added as a set element.
The mechanism is to always add a hashable element, or if it is not
hashable, the element is checked to see if it has an
\method{__as_immutable__()} method which returns an immutable equivalent.
Since \class{Set} objects have a \method{__as_immutable__()} method
returning an instance of \class{ImmutableSet}, it is possible to
construct sets of sets.
A similar mechanism is needed by the \method{__contains__()} and
\method{remove()} methods which need to hash an element to check
for membership in a set. Those methods check an element for hashability
and, if not, check for a \method{__as_temporarily_immutable__()} method
which returns the element wrapped by a class that provides temporary
methods for \method{__hash__()}, \method{__eq__()}, and \method{__ne__()}.
The alternate mechanism spares the need to build a separate copy of
the original mutable object.
\class{Set} objects implement the \method{__as_temporarily_immutable__()}
method which returns the \class{Set} object wrapped by a new class
\class{_TemporarilyImmutableSet}.
The two mechanisms for adding hashability are normally invisible to the
user; however, a conflict can arise in a multi-threaded environment
where one thread is updating a set while another has temporarily wrapped it
in \class{_TemporarilyImmutableSet}. In other words, sets of mutable sets
are not thread-safe.
\subsection{Comparison to the built-in \class{set} types
\label{comparison-to-builtin-set}}
The built-in \class{set} and \class{frozenset} types were designed based
on lessons learned from the \module{sets} module. The key differences are:
\begin{itemize}
\item \class{Set} and \class{ImmutableSet} were renamed to \class{set} and
\class{frozenset}.
\item There is no equivalent to \class{BaseSet}. Instead, use
\code{isinstance(x, (set, frozenset))}.
\item The hash algorithm for the built-ins performs significantly better
(fewer collisions) for most datasets.
\item The built-in versions have more space efficient pickles.
\item The built-in versions do not have a \method{union_update()} method.
Instead, use the \method{update()} method which is equivalent.
\item The built-in versions do not have a \method{_repr(sorted=True)} method.
Instead, use the built-in \function{repr()} and \function{sorted()}
functions: \code{repr(sorted(s))}.
\item The built-in version does not have a protocol for automatic conversion
to immutable. Many found this feature to be confusing and no one
in the community reported having found real uses for it.
\end{itemize}

View File

@ -1334,16 +1334,6 @@ Note, the non-operator versions of the \method{update()},
\method{intersection_update()}, \method{difference_update()}, and
\method{symmetric_difference_update()} methods will accept any iterable
as an argument.
The design of the set types was based on lessons learned from the
\module{sets} module.
\begin{seealso}
\seelink{comparison-to-builtin-set.html}
{Comparison to the built-in set types}
{Differences between the \module{sets} module and the
built-in set types.}
\end{seealso}
\section{Mapping Types --- \class{dict} \label{typesmapping}}

View File

@ -2,7 +2,7 @@
# Copyright (C) 2005 Martin v. Löwis
# Licensed to PSF under a Contributor Agreement.
from _msi import *
import sets, os, string, re
import os, string, re
Win64=0
@ -184,7 +184,7 @@ class CAB:
def __init__(self, name):
self.name = name
self.files = []
self.filenames = sets.Set()
self.filenames = set()
self.index = 0
def gen_id(self, file):
@ -215,7 +215,7 @@ class CAB:
os.unlink(filename)
db.Commit()
_directories = sets.Set()
_directories = set()
class Directory:
def __init__(self, db, cab, basedir, physical, _logical, default, componentflags=None):
"""Create a new directory in the Directory table. There is a current component
@ -239,8 +239,8 @@ class Directory:
self.physical = physical
self.logical = logical
self.component = None
self.short_names = sets.Set()
self.ids = sets.Set()
self.short_names = set()
self.ids = set()
self.keyfiles = {}
self.componentflags = componentflags
if basedir:

View File

@ -1,577 +0,0 @@
"""Classes to represent arbitrary sets (including sets of sets).
This module implements sets using dictionaries whose values are
ignored. The usual operations (union, intersection, deletion, etc.)
are provided as both methods and operators.
Important: sets are not sequences! While they support 'x in s',
'len(s)', and 'for x in s', none of those operations are unique for
sequences; for example, mappings support all three as well. The
characteristic operation for sequences is subscripting with small
integers: s[i], for i in range(len(s)). Sets don't support
subscripting at all. Also, sequences allow multiple occurrences and
their elements have a definite order; sets on the other hand don't
record multiple occurrences and don't remember the order of element
insertion (which is why they don't support s[i]).
The following classes are provided:
BaseSet -- All the operations common to both mutable and immutable
sets. This is an abstract class, not meant to be directly
instantiated.
Set -- Mutable sets, subclass of BaseSet; not hashable.
ImmutableSet -- Immutable sets, subclass of BaseSet; hashable.
An iterable argument is mandatory to create an ImmutableSet.
_TemporarilyImmutableSet -- A wrapper around a Set, hashable,
giving the same hash value as the immutable set equivalent
would have. Do not use this class directly.
Only hashable objects can be added to a Set. In particular, you cannot
really add a Set as an element to another Set; if you try, what is
actually added is an ImmutableSet built from it (it compares equal to
the one you tried adding).
When you ask if `x in y' where x is a Set and y is a Set or
ImmutableSet, x is wrapped into a _TemporarilyImmutableSet z, and
what's tested is actually `z in y'.
"""
# Code history:
#
# - Greg V. Wilson wrote the first version, using a different approach
# to the mutable/immutable problem, and inheriting from dict.
#
# - Alex Martelli modified Greg's version to implement the current
# Set/ImmutableSet approach, and make the data an attribute.
#
# - Guido van Rossum rewrote much of the code, made some API changes,
# and cleaned up the docstrings.
#
# - Raymond Hettinger added a number of speedups and other
# improvements.
from __future__ import generators
try:
from itertools import ifilter, ifilterfalse
except ImportError:
# Code to make the module run under Py2.2
def ifilter(predicate, iterable):
if predicate is None:
def predicate(x):
return x
for x in iterable:
if predicate(x):
yield x
def ifilterfalse(predicate, iterable):
if predicate is None:
def predicate(x):
return x
for x in iterable:
if not predicate(x):
yield x
try:
True, False
except NameError:
True, False = (0==0, 0!=0)
__all__ = ['BaseSet', 'Set', 'ImmutableSet']
class BaseSet(object):
"""Common base class for mutable and immutable sets."""
__slots__ = ['_data']
# Constructor
def __init__(self):
"""This is an abstract class."""
# Don't call this from a concrete subclass!
if self.__class__ is BaseSet:
raise TypeError, ("BaseSet is an abstract class. "
"Use Set or ImmutableSet.")
# Standard protocols: __len__, __repr__, __str__, __iter__
def __len__(self):
"""Return the number of elements of a set."""
return len(self._data)
def __repr__(self):
"""Return string representation of a set.
This looks like 'Set([<list of elements>])'.
"""
return self._repr()
# __str__ is the same as __repr__
__str__ = __repr__
def _repr(self, sorted=False):
elements = self._data.keys()
if sorted:
elements.sort()
return '%s(%r)' % (self.__class__.__name__, elements)
def __iter__(self):
"""Return an iterator over the elements or a set.
This is the keys iterator for the underlying dict.
"""
return self._data.iterkeys()
# Three-way comparison is not supported. However, because __eq__ is
# tried before __cmp__, if Set x == Set y, x.__eq__(y) returns True and
# then cmp(x, y) returns 0 (Python doesn't actually call __cmp__ in this
# case).
def __cmp__(self, other):
raise TypeError, "can't compare sets using cmp()"
# Equality comparisons using the underlying dicts. Mixed-type comparisons
# are allowed here, where Set == z for non-Set z always returns False,
# and Set != z always True. This allows expressions like "x in y" to
# give the expected result when y is a sequence of mixed types, not
# raising a pointless TypeError just because y contains a Set, or x is
# a Set and y contain's a non-set ("in" invokes only __eq__).
# Subtle: it would be nicer if __eq__ and __ne__ could return
# NotImplemented instead of True or False. Then the other comparand
# would get a chance to determine the result, and if the other comparand
# also returned NotImplemented then it would fall back to object address
# comparison (which would always return False for __eq__ and always
# True for __ne__). However, that doesn't work, because this type
# *also* implements __cmp__: if, e.g., __eq__ returns NotImplemented,
# Python tries __cmp__ next, and the __cmp__ here then raises TypeError.
def __eq__(self, other):
if isinstance(other, BaseSet):
return self._data == other._data
else:
return False
def __ne__(self, other):
if isinstance(other, BaseSet):
return self._data != other._data
else:
return True
# Copying operations
def copy(self):
"""Return a shallow copy of a set."""
result = self.__class__()
result._data.update(self._data)
return result
__copy__ = copy # For the copy module
def __deepcopy__(self, memo):
"""Return a deep copy of a set; used by copy module."""
# This pre-creates the result and inserts it in the memo
# early, in case the deep copy recurses into another reference
# to this same set. A set can't be an element of itself, but
# it can certainly contain an object that has a reference to
# itself.
from copy import deepcopy
result = self.__class__()
memo[id(self)] = result
data = result._data
value = True
for elt in self:
data[deepcopy(elt, memo)] = value
return result
# Standard set operations: union, intersection, both differences.
# Each has an operator version (e.g. __or__, invoked with |) and a
# method version (e.g. union).
# Subtle: Each pair requires distinct code so that the outcome is
# correct when the type of other isn't suitable. For example, if
# we did "union = __or__" instead, then Set().union(3) would return
# NotImplemented instead of raising TypeError (albeit that *why* it
# raises TypeError as-is is also a bit subtle).
def __or__(self, other):
"""Return the union of two sets as a new set.
(I.e. all elements that are in either set.)
"""
if not isinstance(other, BaseSet):
return NotImplemented
return self.union(other)
def union(self, other):
"""Return the union of two sets as a new set.
(I.e. all elements that are in either set.)
"""
result = self.__class__(self)
result._update(other)
return result
def __and__(self, other):
"""Return the intersection of two sets as a new set.
(I.e. all elements that are in both sets.)
"""
if not isinstance(other, BaseSet):
return NotImplemented
return self.intersection(other)
def intersection(self, other):
"""Return the intersection of two sets as a new set.
(I.e. all elements that are in both sets.)
"""
if not isinstance(other, BaseSet):
other = Set(other)
if len(self) <= len(other):
little, big = self, other
else:
little, big = other, self
common = ifilter(big._data.__contains__, little)
return self.__class__(common)
def __xor__(self, other):
"""Return the symmetric difference of two sets as a new set.
(I.e. all elements that are in exactly one of the sets.)
"""
if not isinstance(other, BaseSet):
return NotImplemented
return self.symmetric_difference(other)
def symmetric_difference(self, other):
"""Return the symmetric difference of two sets as a new set.
(I.e. all elements that are in exactly one of the sets.)
"""
result = self.__class__()
data = result._data
value = True
selfdata = self._data
try:
otherdata = other._data
except AttributeError:
otherdata = Set(other)._data
for elt in ifilterfalse(otherdata.__contains__, selfdata):
data[elt] = value
for elt in ifilterfalse(selfdata.__contains__, otherdata):
data[elt] = value
return result
def __sub__(self, other):
"""Return the difference of two sets as a new Set.
(I.e. all elements that are in this set and not in the other.)
"""
if not isinstance(other, BaseSet):
return NotImplemented
return self.difference(other)
def difference(self, other):
"""Return the difference of two sets as a new Set.
(I.e. all elements that are in this set and not in the other.)
"""
result = self.__class__()
data = result._data
try:
otherdata = other._data
except AttributeError:
otherdata = Set(other)._data
value = True
for elt in ifilterfalse(otherdata.__contains__, self):
data[elt] = value
return result
# Membership test
def __contains__(self, element):
"""Report whether an element is a member of a set.
(Called in response to the expression `element in self'.)
"""
try:
return element in self._data
except TypeError:
transform = getattr(element, "__as_temporarily_immutable__", None)
if transform is None:
raise # re-raise the TypeError exception we caught
return transform() in self._data
# Subset and superset test
def issubset(self, other):
"""Report whether another set contains this set."""
self._binary_sanity_check(other)
if len(self) > len(other): # Fast check for obvious cases
return False
for elt in ifilterfalse(other._data.__contains__, self):
return False
return True
def issuperset(self, other):
"""Report whether this set contains another set."""
self._binary_sanity_check(other)
if len(self) < len(other): # Fast check for obvious cases
return False
for elt in ifilterfalse(self._data.__contains__, other):
return False
return True
# Inequality comparisons using the is-subset relation.
__le__ = issubset
__ge__ = issuperset
def __lt__(self, other):
self._binary_sanity_check(other)
return len(self) < len(other) and self.issubset(other)
def __gt__(self, other):
self._binary_sanity_check(other)
return len(self) > len(other) and self.issuperset(other)
# Assorted helpers
def _binary_sanity_check(self, other):
# Check that the other argument to a binary operation is also
# a set, raising a TypeError otherwise.
if not isinstance(other, BaseSet):
raise TypeError, "Binary operation only permitted between sets"
def _compute_hash(self):
# Calculate hash code for a set by xor'ing the hash codes of
# the elements. This ensures that the hash code does not depend
# on the order in which elements are added to the set. This is
# not called __hash__ because a BaseSet should not be hashable;
# only an ImmutableSet is hashable.
result = 0
for elt in self:
result ^= hash(elt)
return result
def _update(self, iterable):
# The main loop for update() and the subclass __init__() methods.
data = self._data
# Use the fast update() method when a dictionary is available.
if isinstance(iterable, BaseSet):
data.update(iterable._data)
return
value = True
if type(iterable) in (list, tuple, xrange):
# Optimized: we know that __iter__() and next() can't
# raise TypeError, so we can move 'try:' out of the loop.
it = iter(iterable)
while True:
try:
for element in it:
data[element] = value
return
except TypeError:
transform = getattr(element, "__as_immutable__", None)
if transform is None:
raise # re-raise the TypeError exception we caught
data[transform()] = value
else:
# Safe: only catch TypeError where intended
for element in iterable:
try:
data[element] = value
except TypeError:
transform = getattr(element, "__as_immutable__", None)
if transform is None:
raise # re-raise the TypeError exception we caught
data[transform()] = value
class ImmutableSet(BaseSet):
"""Immutable set class."""
__slots__ = ['_hashcode']
# BaseSet + hashing
def __init__(self, iterable=None):
"""Construct an immutable set from an optional iterable."""
self._hashcode = None
self._data = {}
if iterable is not None:
self._update(iterable)
def __hash__(self):
if self._hashcode is None:
self._hashcode = self._compute_hash()
return self._hashcode
def __getstate__(self):
return self._data, self._hashcode
def __setstate__(self, state):
self._data, self._hashcode = state
class Set(BaseSet):
""" Mutable set class."""
__slots__ = []
# BaseSet + operations requiring mutability; no hashing
def __init__(self, iterable=None):
"""Construct a set from an optional iterable."""
self._data = {}
if iterable is not None:
self._update(iterable)
def __getstate__(self):
# getstate's results are ignored if it is not
return self._data,
def __setstate__(self, data):
self._data, = data
def __hash__(self):
"""A Set cannot be hashed."""
# We inherit object.__hash__, so we must deny this explicitly
raise TypeError, "Can't hash a Set, only an ImmutableSet."
# In-place union, intersection, differences.
# Subtle: The xyz_update() functions deliberately return None,
# as do all mutating operations on built-in container types.
# The __xyz__ spellings have to return self, though.
def __ior__(self, other):
"""Update a set with the union of itself and another."""
self._binary_sanity_check(other)
self._data.update(other._data)
return self
def union_update(self, other):
"""Update a set with the union of itself and another."""
self._update(other)
def __iand__(self, other):
"""Update a set with the intersection of itself and another."""
self._binary_sanity_check(other)
self._data = (self & other)._data
return self
def intersection_update(self, other):
"""Update a set with the intersection of itself and another."""
if isinstance(other, BaseSet):
self &= other
else:
self._data = (self.intersection(other))._data
def __ixor__(self, other):
"""Update a set with the symmetric difference of itself and another."""
self._binary_sanity_check(other)
self.symmetric_difference_update(other)
return self
def symmetric_difference_update(self, other):
"""Update a set with the symmetric difference of itself and another."""
data = self._data
value = True
if not isinstance(other, BaseSet):
other = Set(other)
if self is other:
self.clear()
for elt in other:
if elt in data:
del data[elt]
else:
data[elt] = value
def __isub__(self, other):
"""Remove all elements of another set from this set."""
self._binary_sanity_check(other)
self.difference_update(other)
return self
def difference_update(self, other):
"""Remove all elements of another set from this set."""
data = self._data
if not isinstance(other, BaseSet):
other = Set(other)
if self is other:
self.clear()
for elt in ifilter(data.__contains__, other):
del data[elt]
# Python dict-like mass mutations: update, clear
def update(self, iterable):
"""Add all values from an iterable (such as a list or file)."""
self._update(iterable)
def clear(self):
"""Remove all elements from this set."""
self._data.clear()
# Single-element mutations: add, remove, discard
def add(self, element):
"""Add an element to a set.
This has no effect if the element is already present.
"""
try:
self._data[element] = True
except TypeError:
transform = getattr(element, "__as_immutable__", None)
if transform is None:
raise # re-raise the TypeError exception we caught
self._data[transform()] = True
def remove(self, element):
"""Remove an element from a set; it must be a member.
If the element is not a member, raise a KeyError.
"""
try:
del self._data[element]
except TypeError:
transform = getattr(element, "__as_temporarily_immutable__", None)
if transform is None:
raise # re-raise the TypeError exception we caught
del self._data[transform()]
def discard(self, element):
"""Remove an element from a set if it is a member.
If the element is not a member, do nothing.
"""
try:
self.remove(element)
except KeyError:
pass
def pop(self):
"""Remove and return an arbitrary set element."""
return self._data.popitem()[0]
def __as_immutable__(self):
# Return a copy of self as an immutable set
return ImmutableSet(self)
def __as_temporarily_immutable__(self):
# Return self wrapped in a temporarily immutable set
return _TemporarilyImmutableSet(self)
class _TemporarilyImmutableSet(BaseSet):
# Wrap a mutable set as if it was temporarily immutable.
# This only supplies hashing and equality comparisons.
def __init__(self, set):
self._set = set
self._data = set._data # Needed by ImmutableSet.__eq__()
def __hash__(self):
return self._set._compute_hash()

View File

@ -1723,7 +1723,6 @@ class LWPCookieTests(TestCase):
def test_main(verbose=None):
from test import test_sets
test_support.run_unittest(
DateTimeTests,
HeaderTests,

View File

@ -1451,7 +1451,6 @@ class TestVariousIteratorArgs(unittest.TestCase):
#==============================================================================
def test_main(verbose=None):
from test import test_sets
test_classes = (
TestSet,
TestSetSubclass,

View File

@ -1,853 +0,0 @@
#!/usr/bin/env python
import unittest, operator, copy, pickle, random
from sets import Set, ImmutableSet
from test import test_support
empty_set = Set()
#==============================================================================
class TestBasicOps(unittest.TestCase):
def test_repr(self):
if self.repr is not None:
self.assertEqual(repr(self.set), self.repr)
def test_length(self):
self.assertEqual(len(self.set), self.length)
def test_self_equality(self):
self.assertEqual(self.set, self.set)
def test_equivalent_equality(self):
self.assertEqual(self.set, self.dup)
def test_copy(self):
self.assertEqual(self.set.copy(), self.dup)
def test_self_union(self):
result = self.set | self.set
self.assertEqual(result, self.dup)
def test_empty_union(self):
result = self.set | empty_set
self.assertEqual(result, self.dup)
def test_union_empty(self):
result = empty_set | self.set
self.assertEqual(result, self.dup)
def test_self_intersection(self):
result = self.set & self.set
self.assertEqual(result, self.dup)
def test_empty_intersection(self):
result = self.set & empty_set
self.assertEqual(result, empty_set)
def test_intersection_empty(self):
result = empty_set & self.set
self.assertEqual(result, empty_set)
def test_self_symmetric_difference(self):
result = self.set ^ self.set
self.assertEqual(result, empty_set)
def checkempty_symmetric_difference(self):
result = self.set ^ empty_set
self.assertEqual(result, self.set)
def test_self_difference(self):
result = self.set - self.set
self.assertEqual(result, empty_set)
def test_empty_difference(self):
result = self.set - empty_set
self.assertEqual(result, self.dup)
def test_empty_difference_rev(self):
result = empty_set - self.set
self.assertEqual(result, empty_set)
def test_iteration(self):
for v in self.set:
self.assert_(v in self.values)
def test_pickling(self):
p = pickle.dumps(self.set)
copy = pickle.loads(p)
self.assertEqual(self.set, copy,
"%s != %s" % (self.set, copy))
#------------------------------------------------------------------------------
class TestBasicOpsEmpty(TestBasicOps):
def setUp(self):
self.case = "empty set"
self.values = []
self.set = Set(self.values)
self.dup = Set(self.values)
self.length = 0
self.repr = "Set([])"
#------------------------------------------------------------------------------
class TestBasicOpsSingleton(TestBasicOps):
def setUp(self):
self.case = "unit set (number)"
self.values = [3]
self.set = Set(self.values)
self.dup = Set(self.values)
self.length = 1
self.repr = "Set([3])"
def test_in(self):
self.failUnless(3 in self.set)
def test_not_in(self):
self.failUnless(2 not in self.set)
#------------------------------------------------------------------------------
class TestBasicOpsTuple(TestBasicOps):
def setUp(self):
self.case = "unit set (tuple)"
self.values = [(0, "zero")]
self.set = Set(self.values)
self.dup = Set(self.values)
self.length = 1
self.repr = "Set([(0, 'zero')])"
def test_in(self):
self.failUnless((0, "zero") in self.set)
def test_not_in(self):
self.failUnless(9 not in self.set)
#------------------------------------------------------------------------------
class TestBasicOpsTriple(TestBasicOps):
def setUp(self):
self.case = "triple set"
self.values = [0, "zero", operator.add]
self.set = Set(self.values)
self.dup = Set(self.values)
self.length = 3
self.repr = None
#==============================================================================
def baditer():
raise TypeError
yield True
def gooditer():
yield True
class TestExceptionPropagation(unittest.TestCase):
"""SF 628246: Set constructor should not trap iterator TypeErrors"""
def test_instanceWithException(self):
self.assertRaises(TypeError, Set, baditer())
def test_instancesWithoutException(self):
# All of these iterables should load without exception.
Set([1,2,3])
Set((1,2,3))
Set({'one':1, 'two':2, 'three':3})
Set(xrange(3))
Set('abc')
Set(gooditer())
#==============================================================================
class TestSetOfSets(unittest.TestCase):
def test_constructor(self):
inner = Set([1])
outer = Set([inner])
element = outer.pop()
self.assertEqual(type(element), ImmutableSet)
outer.add(inner) # Rebuild set of sets with .add method
outer.remove(inner)
self.assertEqual(outer, Set()) # Verify that remove worked
outer.discard(inner) # Absence of KeyError indicates working fine
#==============================================================================
class TestBinaryOps(unittest.TestCase):
def setUp(self):
self.set = Set((2, 4, 6))
def test_eq(self): # SF bug 643115
self.assertEqual(self.set, Set({2:1,4:3,6:5}))
def test_union_subset(self):
result = self.set | Set([2])
self.assertEqual(result, Set((2, 4, 6)))
def test_union_superset(self):
result = self.set | Set([2, 4, 6, 8])
self.assertEqual(result, Set([2, 4, 6, 8]))
def test_union_overlap(self):
result = self.set | Set([3, 4, 5])
self.assertEqual(result, Set([2, 3, 4, 5, 6]))
def test_union_non_overlap(self):
result = self.set | Set([8])
self.assertEqual(result, Set([2, 4, 6, 8]))
def test_intersection_subset(self):
result = self.set & Set((2, 4))
self.assertEqual(result, Set((2, 4)))
def test_intersection_superset(self):
result = self.set & Set([2, 4, 6, 8])
self.assertEqual(result, Set([2, 4, 6]))
def test_intersection_overlap(self):
result = self.set & Set([3, 4, 5])
self.assertEqual(result, Set([4]))
def test_intersection_non_overlap(self):
result = self.set & Set([8])
self.assertEqual(result, empty_set)
def test_sym_difference_subset(self):
result = self.set ^ Set((2, 4))
self.assertEqual(result, Set([6]))
def test_sym_difference_superset(self):
result = self.set ^ Set((2, 4, 6, 8))
self.assertEqual(result, Set([8]))
def test_sym_difference_overlap(self):
result = self.set ^ Set((3, 4, 5))
self.assertEqual(result, Set([2, 3, 5, 6]))
def test_sym_difference_non_overlap(self):
result = self.set ^ Set([8])
self.assertEqual(result, Set([2, 4, 6, 8]))
def test_cmp(self):
a, b = Set('a'), Set('b')
self.assertRaises(TypeError, cmp, a, b)
# In py3k, this works!
self.assertRaises(TypeError, cmp, a, a)
self.assertRaises(TypeError, cmp, a, 12)
self.assertRaises(TypeError, cmp, "abc", a)
def test_inplace_on_self(self):
t = self.set.copy()
t |= t
self.assertEqual(t, self.set)
t &= t
self.assertEqual(t, self.set)
t -= t
self.assertEqual(len(t), 0)
t = self.set.copy()
t ^= t
self.assertEqual(len(t), 0)
#==============================================================================
class TestUpdateOps(unittest.TestCase):
def setUp(self):
self.set = Set((2, 4, 6))
def test_union_subset(self):
self.set |= Set([2])
self.assertEqual(self.set, Set((2, 4, 6)))
def test_union_superset(self):
self.set |= Set([2, 4, 6, 8])
self.assertEqual(self.set, Set([2, 4, 6, 8]))
def test_union_overlap(self):
self.set |= Set([3, 4, 5])
self.assertEqual(self.set, Set([2, 3, 4, 5, 6]))
def test_union_non_overlap(self):
self.set |= Set([8])
self.assertEqual(self.set, Set([2, 4, 6, 8]))
def test_union_method_call(self):
self.set.union_update(Set([3, 4, 5]))
self.assertEqual(self.set, Set([2, 3, 4, 5, 6]))
def test_intersection_subset(self):
self.set &= Set((2, 4))
self.assertEqual(self.set, Set((2, 4)))
def test_intersection_superset(self):
self.set &= Set([2, 4, 6, 8])
self.assertEqual(self.set, Set([2, 4, 6]))
def test_intersection_overlap(self):
self.set &= Set([3, 4, 5])
self.assertEqual(self.set, Set([4]))
def test_intersection_non_overlap(self):
self.set &= Set([8])
self.assertEqual(self.set, empty_set)
def test_intersection_method_call(self):
self.set.intersection_update(Set([3, 4, 5]))
self.assertEqual(self.set, Set([4]))
def test_sym_difference_subset(self):
self.set ^= Set((2, 4))
self.assertEqual(self.set, Set([6]))
def test_sym_difference_superset(self):
self.set ^= Set((2, 4, 6, 8))
self.assertEqual(self.set, Set([8]))
def test_sym_difference_overlap(self):
self.set ^= Set((3, 4, 5))
self.assertEqual(self.set, Set([2, 3, 5, 6]))
def test_sym_difference_non_overlap(self):
self.set ^= Set([8])
self.assertEqual(self.set, Set([2, 4, 6, 8]))
def test_sym_difference_method_call(self):
self.set.symmetric_difference_update(Set([3, 4, 5]))
self.assertEqual(self.set, Set([2, 3, 5, 6]))
def test_difference_subset(self):
self.set -= Set((2, 4))
self.assertEqual(self.set, Set([6]))
def test_difference_superset(self):
self.set -= Set((2, 4, 6, 8))
self.assertEqual(self.set, Set([]))
def test_difference_overlap(self):
self.set -= Set((3, 4, 5))
self.assertEqual(self.set, Set([2, 6]))
def test_difference_non_overlap(self):
self.set -= Set([8])
self.assertEqual(self.set, Set([2, 4, 6]))
def test_difference_method_call(self):
self.set.difference_update(Set([3, 4, 5]))
self.assertEqual(self.set, Set([2, 6]))
#==============================================================================
class TestMutate(unittest.TestCase):
def setUp(self):
self.values = ["a", "b", "c"]
self.set = Set(self.values)
def test_add_present(self):
self.set.add("c")
self.assertEqual(self.set, Set("abc"))
def test_add_absent(self):
self.set.add("d")
self.assertEqual(self.set, Set("abcd"))
def test_add_until_full(self):
tmp = Set()
expected_len = 0
for v in self.values:
tmp.add(v)
expected_len += 1
self.assertEqual(len(tmp), expected_len)
self.assertEqual(tmp, self.set)
def test_remove_present(self):
self.set.remove("b")
self.assertEqual(self.set, Set("ac"))
def test_remove_absent(self):
try:
self.set.remove("d")
self.fail("Removing missing element should have raised LookupError")
except LookupError:
pass
def test_remove_until_empty(self):
expected_len = len(self.set)
for v in self.values:
self.set.remove(v)
expected_len -= 1
self.assertEqual(len(self.set), expected_len)
def test_discard_present(self):
self.set.discard("c")
self.assertEqual(self.set, Set("ab"))
def test_discard_absent(self):
self.set.discard("d")
self.assertEqual(self.set, Set("abc"))
def test_clear(self):
self.set.clear()
self.assertEqual(len(self.set), 0)
def test_pop(self):
popped = {}
while self.set:
popped[self.set.pop()] = None
self.assertEqual(len(popped), len(self.values))
for v in self.values:
self.failUnless(v in popped)
def test_update_empty_tuple(self):
self.set.union_update(())
self.assertEqual(self.set, Set(self.values))
def test_update_unit_tuple_overlap(self):
self.set.union_update(("a",))
self.assertEqual(self.set, Set(self.values))
def test_update_unit_tuple_non_overlap(self):
self.set.union_update(("a", "z"))
self.assertEqual(self.set, Set(self.values + ["z"]))
#==============================================================================
class TestSubsets(unittest.TestCase):
case2method = {"<=": "issubset",
">=": "issuperset",
}
reverse = {"==": "==",
"!=": "!=",
"<": ">",
">": "<",
"<=": ">=",
">=": "<=",
}
def test_issubset(self):
x = self.left
y = self.right
for case in "!=", "==", "<", "<=", ">", ">=":
expected = case in self.cases
# Test the binary infix spelling.
result = eval("x" + case + "y", locals())
self.assertEqual(result, expected)
# Test the "friendly" method-name spelling, if one exists.
if case in TestSubsets.case2method:
method = getattr(x, TestSubsets.case2method[case])
result = method(y)
self.assertEqual(result, expected)
# Now do the same for the operands reversed.
rcase = TestSubsets.reverse[case]
result = eval("y" + rcase + "x", locals())
self.assertEqual(result, expected)
if rcase in TestSubsets.case2method:
method = getattr(y, TestSubsets.case2method[rcase])
result = method(x)
self.assertEqual(result, expected)
#------------------------------------------------------------------------------
class TestSubsetEqualEmpty(TestSubsets):
left = Set()
right = Set()
name = "both empty"
cases = "==", "<=", ">="
#------------------------------------------------------------------------------
class TestSubsetEqualNonEmpty(TestSubsets):
left = Set([1, 2])
right = Set([1, 2])
name = "equal pair"
cases = "==", "<=", ">="
#------------------------------------------------------------------------------
class TestSubsetEmptyNonEmpty(TestSubsets):
left = Set()
right = Set([1, 2])
name = "one empty, one non-empty"
cases = "!=", "<", "<="
#------------------------------------------------------------------------------
class TestSubsetPartial(TestSubsets):
left = Set([1])
right = Set([1, 2])
name = "one a non-empty proper subset of other"
cases = "!=", "<", "<="
#------------------------------------------------------------------------------
class TestSubsetNonOverlap(TestSubsets):
left = Set([1])
right = Set([2])
name = "neither empty, neither contains"
cases = "!="
#==============================================================================
class TestOnlySetsInBinaryOps(unittest.TestCase):
def test_eq_ne(self):
# Unlike the others, this is testing that == and != *are* allowed.
self.assertEqual(self.other == self.set, False)
self.assertEqual(self.set == self.other, False)
self.assertEqual(self.other != self.set, True)
self.assertEqual(self.set != self.other, True)
def test_ge_gt_le_lt(self):
self.assertRaises(TypeError, lambda: self.set < self.other)
self.assertRaises(TypeError, lambda: self.set <= self.other)
self.assertRaises(TypeError, lambda: self.set > self.other)
self.assertRaises(TypeError, lambda: self.set >= self.other)
self.assertRaises(TypeError, lambda: self.other < self.set)
self.assertRaises(TypeError, lambda: self.other <= self.set)
self.assertRaises(TypeError, lambda: self.other > self.set)
self.assertRaises(TypeError, lambda: self.other >= self.set)
def test_union_update_operator(self):
try:
self.set |= self.other
except TypeError:
pass
else:
self.fail("expected TypeError")
def test_union_update(self):
if self.otherIsIterable:
self.set.union_update(self.other)
else:
self.assertRaises(TypeError, self.set.union_update, self.other)
def test_union(self):
self.assertRaises(TypeError, lambda: self.set | self.other)
self.assertRaises(TypeError, lambda: self.other | self.set)
if self.otherIsIterable:
self.set.union(self.other)
else:
self.assertRaises(TypeError, self.set.union, self.other)
def test_intersection_update_operator(self):
try:
self.set &= self.other
except TypeError:
pass
else:
self.fail("expected TypeError")
def test_intersection_update(self):
if self.otherIsIterable:
self.set.intersection_update(self.other)
else:
self.assertRaises(TypeError,
self.set.intersection_update,
self.other)
def test_intersection(self):
self.assertRaises(TypeError, lambda: self.set & self.other)
self.assertRaises(TypeError, lambda: self.other & self.set)
if self.otherIsIterable:
self.set.intersection(self.other)
else:
self.assertRaises(TypeError, self.set.intersection, self.other)
def test_sym_difference_update_operator(self):
try:
self.set ^= self.other
except TypeError:
pass
else:
self.fail("expected TypeError")
def test_sym_difference_update(self):
if self.otherIsIterable:
self.set.symmetric_difference_update(self.other)
else:
self.assertRaises(TypeError,
self.set.symmetric_difference_update,
self.other)
def test_sym_difference(self):
self.assertRaises(TypeError, lambda: self.set ^ self.other)
self.assertRaises(TypeError, lambda: self.other ^ self.set)
if self.otherIsIterable:
self.set.symmetric_difference(self.other)
else:
self.assertRaises(TypeError, self.set.symmetric_difference, self.other)
def test_difference_update_operator(self):
try:
self.set -= self.other
except TypeError:
pass
else:
self.fail("expected TypeError")
def test_difference_update(self):
if self.otherIsIterable:
self.set.difference_update(self.other)
else:
self.assertRaises(TypeError,
self.set.difference_update,
self.other)
def test_difference(self):
self.assertRaises(TypeError, lambda: self.set - self.other)
self.assertRaises(TypeError, lambda: self.other - self.set)
if self.otherIsIterable:
self.set.difference(self.other)
else:
self.assertRaises(TypeError, self.set.difference, self.other)
#------------------------------------------------------------------------------
class TestOnlySetsNumeric(TestOnlySetsInBinaryOps):
def setUp(self):
self.set = Set((1, 2, 3))
self.other = 19
self.otherIsIterable = False
#------------------------------------------------------------------------------
class TestOnlySetsDict(TestOnlySetsInBinaryOps):
def setUp(self):
self.set = Set((1, 2, 3))
self.other = {1:2, 3:4}
self.otherIsIterable = True
#------------------------------------------------------------------------------
class TestOnlySetsOperator(TestOnlySetsInBinaryOps):
def setUp(self):
self.set = Set((1, 2, 3))
self.other = operator.add
self.otherIsIterable = False
#------------------------------------------------------------------------------
class TestOnlySetsTuple(TestOnlySetsInBinaryOps):
def setUp(self):
self.set = Set((1, 2, 3))
self.other = (2, 4, 6)
self.otherIsIterable = True
#------------------------------------------------------------------------------
class TestOnlySetsString(TestOnlySetsInBinaryOps):
def setUp(self):
self.set = Set((1, 2, 3))
self.other = 'abc'
self.otherIsIterable = True
#------------------------------------------------------------------------------
class TestOnlySetsGenerator(TestOnlySetsInBinaryOps):
def setUp(self):
def gen():
for i in xrange(0, 10, 2):
yield i
self.set = Set((1, 2, 3))
self.other = gen()
self.otherIsIterable = True
#------------------------------------------------------------------------------
class TestOnlySetsofSets(TestOnlySetsInBinaryOps):
def setUp(self):
self.set = Set((1, 2, 3))
self.other = [Set('ab'), ImmutableSet('cd')]
self.otherIsIterable = True
#==============================================================================
class TestCopying(unittest.TestCase):
def test_copy(self):
dup = self.set.copy()
dup_list = sorted(dup, key=repr)
set_list = sorted(self.set, key=repr)
self.assertEqual(len(dup_list), len(set_list))
for i in range(len(dup_list)):
self.failUnless(dup_list[i] is set_list[i])
def test_deep_copy(self):
dup = copy.deepcopy(self.set)
##print type(dup), repr(dup)
dup_list = sorted(dup, key=repr)
set_list = sorted(self.set, key=repr)
self.assertEqual(len(dup_list), len(set_list))
for i in range(len(dup_list)):
self.assertEqual(dup_list[i], set_list[i])
#------------------------------------------------------------------------------
class TestCopyingEmpty(TestCopying):
def setUp(self):
self.set = Set()
#------------------------------------------------------------------------------
class TestCopyingSingleton(TestCopying):
def setUp(self):
self.set = Set(["hello"])
#------------------------------------------------------------------------------
class TestCopyingTriple(TestCopying):
def setUp(self):
self.set = Set(["zero", 0, None])
#------------------------------------------------------------------------------
class TestCopyingTuple(TestCopying):
def setUp(self):
self.set = Set([(1, 2)])
#------------------------------------------------------------------------------
class TestCopyingNested(TestCopying):
def setUp(self):
self.set = Set([((1, 2), (3, 4))])
#==============================================================================
class TestIdentities(unittest.TestCase):
def setUp(self):
self.a = Set([random.randrange(100) for i in xrange(50)])
self.b = Set([random.randrange(100) for i in xrange(50)])
def test_binopsVsSubsets(self):
a, b = self.a, self.b
self.assert_(a - b <= a)
self.assert_(b - a <= b)
self.assert_(a & b <= a)
self.assert_(a & b <= b)
self.assert_(a | b >= a)
self.assert_(a | b >= b)
self.assert_(a ^ b <= a | b)
def test_commutativity(self):
a, b = self.a, self.b
self.assertEqual(a&b, b&a)
self.assertEqual(a|b, b|a)
self.assertEqual(a^b, b^a)
if a != b:
self.assertNotEqual(a-b, b-a)
def test_reflexsive_relations(self):
a, zero = self.a, Set()
self.assertEqual(a ^ a, zero)
self.assertEqual(a - a, zero)
self.assertEqual(a | a, a)
self.assertEqual(a & a, a)
self.assert_(a <= a)
self.assert_(a >= a)
self.assert_(a == a)
def test_summations(self):
# check that sums of parts equal the whole
a, b = self.a, self.b
self.assertEqual((a-b)|(a&b)|(b-a), a|b)
self.assertEqual((a&b)|(a^b), a|b)
self.assertEqual(a|(b-a), a|b)
self.assertEqual((a-b)|b, a|b)
self.assertEqual((a-b)|(a&b), a)
self.assertEqual((b-a)|(a&b), b)
self.assertEqual((a-b)|(b-a), a^b)
def test_exclusion(self):
# check that inverse operations do not overlap
a, b, zero = self.a, self.b, Set()
self.assertEqual((a-b)&b, zero)
self.assertEqual((b-a)&a, zero)
self.assertEqual((a&b)&(a^b), zero)
def test_cardinality_relations(self):
a, b = self.a, self.b
self.assertEqual(len(a), len(a-b) + len(a&b))
self.assertEqual(len(b), len(b-a) + len(a&b))
self.assertEqual(len(a^b), len(a-b) + len(b-a))
self.assertEqual(len(a|b), len(a-b) + len(a&b) + len(b-a))
self.assertEqual(len(a^b) + len(a&b), len(a|b))
#==============================================================================
libreftest = """
Example from the Library Reference: Doc/lib/libsets.tex
>>> from sets import Set as Base # override _repr to get sorted output
>>> class Set(Base):
... def _repr(self):
... return Base._repr(self, sorted=True)
>>> engineers = Set(['John', 'Jane', 'Jack', 'Janice'])
>>> programmers = Set(['Jack', 'Sam', 'Susan', 'Janice'])
>>> managers = Set(['Jane', 'Jack', 'Susan', 'Zack'])
>>> employees = engineers | programmers | managers # union
>>> engineering_management = engineers & managers # intersection
>>> fulltime_management = managers - engineers - programmers # difference
>>> engineers.add('Marvin')
>>> print engineers
Set(['Jack', 'Jane', 'Janice', 'John', 'Marvin'])
>>> employees.issuperset(engineers) # superset test
False
>>> employees.union_update(engineers) # update from another set
>>> employees.issuperset(engineers)
True
>>> for group in [engineers, programmers, managers, employees]:
... group.discard('Susan') # unconditionally remove element
... print group
...
Set(['Jack', 'Jane', 'Janice', 'John', 'Marvin'])
Set(['Jack', 'Janice', 'Sam'])
Set(['Jack', 'Jane', 'Zack'])
Set(['Jack', 'Jane', 'Janice', 'John', 'Marvin', 'Sam', 'Zack'])
"""
#==============================================================================
__test__ = {'libreftest' : libreftest}
def test_main(verbose=None):
import doctest
from test import test_sets
test_support.run_unittest(
TestSetOfSets,
TestExceptionPropagation,
TestBasicOpsEmpty,
TestBasicOpsSingleton,
TestBasicOpsTuple,
TestBasicOpsTriple,
TestBinaryOps,
TestUpdateOps,
TestMutate,
TestSubsetEqualEmpty,
TestSubsetEqualNonEmpty,
TestSubsetEmptyNonEmpty,
TestSubsetPartial,
TestSubsetNonOverlap,
TestOnlySetsNumeric,
TestOnlySetsDict,
TestOnlySetsOperator,
TestOnlySetsTuple,
TestOnlySetsString,
TestOnlySetsGenerator,
TestOnlySetsofSets,
TestCopyingEmpty,
TestCopyingSingleton,
TestCopyingTriple,
TestCopyingTuple,
TestCopyingNested,
TestIdentities,
doctest.DocTestSuite(test_sets),
)
if __name__ == "__main__":
test_main(verbose=True)