Excise the sets module. SF #1500611 by Collin Winter.
This commit is contained in:
parent
902d6ebddd
commit
33552e92fe
|
@ -109,7 +109,6 @@ LIBFILES= $(MANSTYLES) $(INDEXSTYLES) $(COMMONTEX) \
|
|||
lib/libplatform.tex \
|
||||
lib/libfpectl.tex \
|
||||
lib/libgc.tex \
|
||||
lib/libsets.tex \
|
||||
lib/libweakref.tex \
|
||||
lib/libinspect.tex \
|
||||
lib/libpydoc.tex \
|
||||
|
|
|
@ -104,7 +104,6 @@ and how to embed it in other applications.
|
|||
\input{libheapq}
|
||||
\input{libbisect}
|
||||
\input{libarray}
|
||||
\input{libsets}
|
||||
\input{libsched}
|
||||
\input{libmutex}
|
||||
\input{libqueue}
|
||||
|
|
|
@ -1,264 +0,0 @@
|
|||
\section{\module{sets} ---
|
||||
Unordered collections of unique elements}
|
||||
|
||||
\declaremodule{standard}{sets}
|
||||
\modulesynopsis{Implementation of sets of unique elements.}
|
||||
\moduleauthor{Greg V. Wilson}{gvwilson@nevex.com}
|
||||
\moduleauthor{Alex Martelli}{aleax@aleax.it}
|
||||
\moduleauthor{Guido van Rossum}{guido@python.org}
|
||||
\sectionauthor{Raymond D. Hettinger}{python@rcn.com}
|
||||
|
||||
\versionadded{2.3}
|
||||
|
||||
The \module{sets} module provides classes for constructing and manipulating
|
||||
unordered collections of unique elements. Common uses include membership
|
||||
testing, removing duplicates from a sequence, and computing standard math
|
||||
operations on sets such as intersection, union, difference, and symmetric
|
||||
difference.
|
||||
|
||||
Like other collections, sets support \code{\var{x} in \var{set}},
|
||||
\code{len(\var{set})}, and \code{for \var{x} in \var{set}}. Being an
|
||||
unordered collection, sets do not record element position or order of
|
||||
insertion. Accordingly, sets do not support indexing, slicing, or
|
||||
other sequence-like behavior.
|
||||
|
||||
Most set applications use the \class{Set} class which provides every set
|
||||
method except for \method{__hash__()}. For advanced applications requiring
|
||||
a hash method, the \class{ImmutableSet} class adds a \method{__hash__()}
|
||||
method but omits methods which alter the contents of the set. Both
|
||||
\class{Set} and \class{ImmutableSet} derive from \class{BaseSet}, an
|
||||
abstract class useful for determining whether something is a set:
|
||||
\code{isinstance(\var{obj}, BaseSet)}.
|
||||
|
||||
The set classes are implemented using dictionaries. Accordingly, the
|
||||
requirements for set elements are the same as those for dictionary keys;
|
||||
namely, that the element defines both \method{__eq__} and \method{__hash__}.
|
||||
As a result, sets
|
||||
cannot contain mutable elements such as lists or dictionaries.
|
||||
However, they can contain immutable collections such as tuples or
|
||||
instances of \class{ImmutableSet}. For convenience in implementing
|
||||
sets of sets, inner sets are automatically converted to immutable
|
||||
form, for example, \code{Set([Set(['dog'])])} is transformed to
|
||||
\code{Set([ImmutableSet(['dog'])])}.
|
||||
|
||||
\begin{classdesc}{Set}{\optional{iterable}}
|
||||
Constructs a new empty \class{Set} object. If the optional \var{iterable}
|
||||
parameter is supplied, updates the set with elements obtained from iteration.
|
||||
All of the elements in \var{iterable} should be immutable or be transformable
|
||||
to an immutable using the protocol described in
|
||||
section~\ref{immutable-transforms}.
|
||||
\end{classdesc}
|
||||
|
||||
\begin{classdesc}{ImmutableSet}{\optional{iterable}}
|
||||
Constructs a new empty \class{ImmutableSet} object. If the optional
|
||||
\var{iterable} parameter is supplied, updates the set with elements obtained
|
||||
from iteration. All of the elements in \var{iterable} should be immutable or
|
||||
be transformable to an immutable using the protocol described in
|
||||
section~\ref{immutable-transforms}.
|
||||
|
||||
Because \class{ImmutableSet} objects provide a \method{__hash__()} method,
|
||||
they can be used as set elements or as dictionary keys. \class{ImmutableSet}
|
||||
objects do not have methods for adding or removing elements, so all of the
|
||||
elements must be known when the constructor is called.
|
||||
\end{classdesc}
|
||||
|
||||
|
||||
\subsection{Set Objects \label{set-objects}}
|
||||
|
||||
Instances of \class{Set} and \class{ImmutableSet} both provide
|
||||
the following operations:
|
||||
|
||||
\begin{tableiii}{c|c|l}{code}{Operation}{Equivalent}{Result}
|
||||
\lineiii{len(\var{s})}{}{cardinality of set \var{s}}
|
||||
|
||||
\hline
|
||||
\lineiii{\var{x} in \var{s}}{}
|
||||
{test \var{x} for membership in \var{s}}
|
||||
\lineiii{\var{x} not in \var{s}}{}
|
||||
{test \var{x} for non-membership in \var{s}}
|
||||
\lineiii{\var{s}.issubset(\var{t})}{\code{\var{s} <= \var{t}}}
|
||||
{test whether every element in \var{s} is in \var{t}}
|
||||
\lineiii{\var{s}.issuperset(\var{t})}{\code{\var{s} >= \var{t}}}
|
||||
{test whether every element in \var{t} is in \var{s}}
|
||||
|
||||
\hline
|
||||
\lineiii{\var{s}.union(\var{t})}{\var{s} \textbar{} \var{t}}
|
||||
{new set with elements from both \var{s} and \var{t}}
|
||||
\lineiii{\var{s}.intersection(\var{t})}{\var{s} \&\ \var{t}}
|
||||
{new set with elements common to \var{s} and \var{t}}
|
||||
\lineiii{\var{s}.difference(\var{t})}{\var{s} - \var{t}}
|
||||
{new set with elements in \var{s} but not in \var{t}}
|
||||
\lineiii{\var{s}.symmetric_difference(\var{t})}{\var{s} \^\ \var{t}}
|
||||
{new set with elements in either \var{s} or \var{t} but not both}
|
||||
\lineiii{\var{s}.copy()}{}
|
||||
{new set with a shallow copy of \var{s}}
|
||||
\end{tableiii}
|
||||
|
||||
Note, the non-operator versions of \method{union()},
|
||||
\method{intersection()}, \method{difference()}, and
|
||||
\method{symmetric_difference()} will accept any iterable as an argument.
|
||||
In contrast, their operator based counterparts require their arguments to
|
||||
be sets. This precludes error-prone constructions like
|
||||
\code{Set('abc') \&\ 'cbs'} in favor of the more readable
|
||||
\code{Set('abc').intersection('cbs')}.
|
||||
\versionchanged[Formerly all arguments were required to be sets]{2.3.1}
|
||||
|
||||
In addition, both \class{Set} and \class{ImmutableSet}
|
||||
support set to set comparisons. Two sets are equal if and only if
|
||||
every element of each set is contained in the other (each is a subset
|
||||
of the other).
|
||||
A set is less than another set if and only if the first set is a proper
|
||||
subset of the second set (is a subset, but is not equal).
|
||||
A set is greater than another set if and only if the first set is a proper
|
||||
superset of the second set (is a superset, but is not equal).
|
||||
|
||||
The subset and equality comparisons do not generalize to a complete
|
||||
ordering function. For example, any two disjoint sets are not equal and
|
||||
are not subsets of each other, so \emph{all} of the following return
|
||||
\code{False}: \code{\var{a}<\var{b}}, \code{\var{a}==\var{b}}, or
|
||||
\code{\var{a}>\var{b}}.
|
||||
Accordingly, sets do not implement the \method{__cmp__} method.
|
||||
|
||||
Since sets only define partial ordering (subset relationships), the output
|
||||
of the \method{list.sort()} method is undefined for lists of sets.
|
||||
|
||||
The following table lists operations available in \class{ImmutableSet}
|
||||
but not found in \class{Set}:
|
||||
|
||||
\begin{tableii}{c|l}{code}{Operation}{Result}
|
||||
\lineii{hash(\var{s})}{returns a hash value for \var{s}}
|
||||
\end{tableii}
|
||||
|
||||
The following table lists operations available in \class{Set}
|
||||
but not found in \class{ImmutableSet}:
|
||||
|
||||
\begin{tableiii}{c|c|l}{code}{Operation}{Equivalent}{Result}
|
||||
\lineiii{\var{s}.update(\var{t})}
|
||||
{\var{s} \textbar= \var{t}}
|
||||
{return set \var{s} with elements added from \var{t}}
|
||||
\lineiii{\var{s}.intersection_update(\var{t})}
|
||||
{\var{s} \&= \var{t}}
|
||||
{return set \var{s} keeping only elements also found in \var{t}}
|
||||
\lineiii{\var{s}.difference_update(\var{t})}
|
||||
{\var{s} -= \var{t}}
|
||||
{return set \var{s} after removing elements found in \var{t}}
|
||||
\lineiii{\var{s}.symmetric_difference_update(\var{t})}
|
||||
{\var{s} \textasciicircum= \var{t}}
|
||||
{return set \var{s} with elements from \var{s} or \var{t}
|
||||
but not both}
|
||||
|
||||
\hline
|
||||
\lineiii{\var{s}.add(\var{x})}{}
|
||||
{add element \var{x} to set \var{s}}
|
||||
\lineiii{\var{s}.remove(\var{x})}{}
|
||||
{remove \var{x} from set \var{s}; raises \exception{KeyError}
|
||||
if not present}
|
||||
\lineiii{\var{s}.discard(\var{x})}{}
|
||||
{removes \var{x} from set \var{s} if present}
|
||||
\lineiii{\var{s}.pop()}{}
|
||||
{remove and return an arbitrary element from \var{s}; raises
|
||||
\exception{KeyError} if empty}
|
||||
\lineiii{\var{s}.clear()}{}
|
||||
{remove all elements from set \var{s}}
|
||||
\end{tableiii}
|
||||
|
||||
Note, the non-operator versions of \method{update()},
|
||||
\method{intersection_update()}, \method{difference_update()}, and
|
||||
\method{symmetric_difference_update()} will accept any iterable as
|
||||
an argument.
|
||||
\versionchanged[Formerly all arguments were required to be sets]{2.3.1}
|
||||
|
||||
Also note, the module also includes a \method{union_update()} method
|
||||
which is an alias for \method{update()}. The method is included for
|
||||
backwards compatibility. Programmers should prefer the
|
||||
\method{update()} method because it is supported by the builtin
|
||||
\class{set()} and \class{frozenset()} types.
|
||||
|
||||
\subsection{Example \label{set-example}}
|
||||
|
||||
\begin{verbatim}
|
||||
>>> from sets import Set
|
||||
>>> engineers = Set(['John', 'Jane', 'Jack', 'Janice'])
|
||||
>>> programmers = Set(['Jack', 'Sam', 'Susan', 'Janice'])
|
||||
>>> managers = Set(['Jane', 'Jack', 'Susan', 'Zack'])
|
||||
>>> employees = engineers | programmers | managers # union
|
||||
>>> engineering_management = engineers & managers # intersection
|
||||
>>> fulltime_management = managers - engineers - programmers # difference
|
||||
>>> engineers.add('Marvin') # add element
|
||||
>>> print engineers
|
||||
Set(['Jane', 'Marvin', 'Janice', 'John', 'Jack'])
|
||||
>>> employees.issuperset(engineers) # superset test
|
||||
False
|
||||
>>> employees.union_update(engineers) # update from another set
|
||||
>>> employees.issuperset(engineers)
|
||||
True
|
||||
>>> for group in [engineers, programmers, managers, employees]:
|
||||
... group.discard('Susan') # unconditionally remove element
|
||||
... print group
|
||||
...
|
||||
Set(['Jane', 'Marvin', 'Janice', 'John', 'Jack'])
|
||||
Set(['Janice', 'Jack', 'Sam'])
|
||||
Set(['Jane', 'Zack', 'Jack'])
|
||||
Set(['Jack', 'Sam', 'Jane', 'Marvin', 'Janice', 'John', 'Zack'])
|
||||
\end{verbatim}
|
||||
|
||||
|
||||
\subsection{Protocol for automatic conversion to immutable
|
||||
\label{immutable-transforms}}
|
||||
|
||||
Sets can only contain immutable elements. For convenience, mutable
|
||||
\class{Set} objects are automatically copied to an \class{ImmutableSet}
|
||||
before being added as a set element.
|
||||
|
||||
The mechanism is to always add a hashable element, or if it is not
|
||||
hashable, the element is checked to see if it has an
|
||||
\method{__as_immutable__()} method which returns an immutable equivalent.
|
||||
|
||||
Since \class{Set} objects have a \method{__as_immutable__()} method
|
||||
returning an instance of \class{ImmutableSet}, it is possible to
|
||||
construct sets of sets.
|
||||
|
||||
A similar mechanism is needed by the \method{__contains__()} and
|
||||
\method{remove()} methods which need to hash an element to check
|
||||
for membership in a set. Those methods check an element for hashability
|
||||
and, if not, check for a \method{__as_temporarily_immutable__()} method
|
||||
which returns the element wrapped by a class that provides temporary
|
||||
methods for \method{__hash__()}, \method{__eq__()}, and \method{__ne__()}.
|
||||
|
||||
The alternate mechanism spares the need to build a separate copy of
|
||||
the original mutable object.
|
||||
|
||||
\class{Set} objects implement the \method{__as_temporarily_immutable__()}
|
||||
method which returns the \class{Set} object wrapped by a new class
|
||||
\class{_TemporarilyImmutableSet}.
|
||||
|
||||
The two mechanisms for adding hashability are normally invisible to the
|
||||
user; however, a conflict can arise in a multi-threaded environment
|
||||
where one thread is updating a set while another has temporarily wrapped it
|
||||
in \class{_TemporarilyImmutableSet}. In other words, sets of mutable sets
|
||||
are not thread-safe.
|
||||
|
||||
|
||||
\subsection{Comparison to the built-in \class{set} types
|
||||
\label{comparison-to-builtin-set}}
|
||||
|
||||
The built-in \class{set} and \class{frozenset} types were designed based
|
||||
on lessons learned from the \module{sets} module. The key differences are:
|
||||
|
||||
\begin{itemize}
|
||||
\item \class{Set} and \class{ImmutableSet} were renamed to \class{set} and
|
||||
\class{frozenset}.
|
||||
\item There is no equivalent to \class{BaseSet}. Instead, use
|
||||
\code{isinstance(x, (set, frozenset))}.
|
||||
\item The hash algorithm for the built-ins performs significantly better
|
||||
(fewer collisions) for most datasets.
|
||||
\item The built-in versions have more space efficient pickles.
|
||||
\item The built-in versions do not have a \method{union_update()} method.
|
||||
Instead, use the \method{update()} method which is equivalent.
|
||||
\item The built-in versions do not have a \method{_repr(sorted=True)} method.
|
||||
Instead, use the built-in \function{repr()} and \function{sorted()}
|
||||
functions: \code{repr(sorted(s))}.
|
||||
\item The built-in version does not have a protocol for automatic conversion
|
||||
to immutable. Many found this feature to be confusing and no one
|
||||
in the community reported having found real uses for it.
|
||||
\end{itemize}
|
|
@ -1334,16 +1334,6 @@ Note, the non-operator versions of the \method{update()},
|
|||
\method{intersection_update()}, \method{difference_update()}, and
|
||||
\method{symmetric_difference_update()} methods will accept any iterable
|
||||
as an argument.
|
||||
|
||||
The design of the set types was based on lessons learned from the
|
||||
\module{sets} module.
|
||||
|
||||
\begin{seealso}
|
||||
\seelink{comparison-to-builtin-set.html}
|
||||
{Comparison to the built-in set types}
|
||||
{Differences between the \module{sets} module and the
|
||||
built-in set types.}
|
||||
\end{seealso}
|
||||
|
||||
|
||||
\section{Mapping Types --- \class{dict} \label{typesmapping}}
|
||||
|
|
|
@ -2,7 +2,7 @@
|
|||
# Copyright (C) 2005 Martin v. Löwis
|
||||
# Licensed to PSF under a Contributor Agreement.
|
||||
from _msi import *
|
||||
import sets, os, string, re
|
||||
import os, string, re
|
||||
|
||||
Win64=0
|
||||
|
||||
|
@ -184,7 +184,7 @@ class CAB:
|
|||
def __init__(self, name):
|
||||
self.name = name
|
||||
self.files = []
|
||||
self.filenames = sets.Set()
|
||||
self.filenames = set()
|
||||
self.index = 0
|
||||
|
||||
def gen_id(self, file):
|
||||
|
@ -215,7 +215,7 @@ class CAB:
|
|||
os.unlink(filename)
|
||||
db.Commit()
|
||||
|
||||
_directories = sets.Set()
|
||||
_directories = set()
|
||||
class Directory:
|
||||
def __init__(self, db, cab, basedir, physical, _logical, default, componentflags=None):
|
||||
"""Create a new directory in the Directory table. There is a current component
|
||||
|
@ -239,8 +239,8 @@ class Directory:
|
|||
self.physical = physical
|
||||
self.logical = logical
|
||||
self.component = None
|
||||
self.short_names = sets.Set()
|
||||
self.ids = sets.Set()
|
||||
self.short_names = set()
|
||||
self.ids = set()
|
||||
self.keyfiles = {}
|
||||
self.componentflags = componentflags
|
||||
if basedir:
|
||||
|
|
577
Lib/sets.py
577
Lib/sets.py
|
@ -1,577 +0,0 @@
|
|||
"""Classes to represent arbitrary sets (including sets of sets).
|
||||
|
||||
This module implements sets using dictionaries whose values are
|
||||
ignored. The usual operations (union, intersection, deletion, etc.)
|
||||
are provided as both methods and operators.
|
||||
|
||||
Important: sets are not sequences! While they support 'x in s',
|
||||
'len(s)', and 'for x in s', none of those operations are unique for
|
||||
sequences; for example, mappings support all three as well. The
|
||||
characteristic operation for sequences is subscripting with small
|
||||
integers: s[i], for i in range(len(s)). Sets don't support
|
||||
subscripting at all. Also, sequences allow multiple occurrences and
|
||||
their elements have a definite order; sets on the other hand don't
|
||||
record multiple occurrences and don't remember the order of element
|
||||
insertion (which is why they don't support s[i]).
|
||||
|
||||
The following classes are provided:
|
||||
|
||||
BaseSet -- All the operations common to both mutable and immutable
|
||||
sets. This is an abstract class, not meant to be directly
|
||||
instantiated.
|
||||
|
||||
Set -- Mutable sets, subclass of BaseSet; not hashable.
|
||||
|
||||
ImmutableSet -- Immutable sets, subclass of BaseSet; hashable.
|
||||
An iterable argument is mandatory to create an ImmutableSet.
|
||||
|
||||
_TemporarilyImmutableSet -- A wrapper around a Set, hashable,
|
||||
giving the same hash value as the immutable set equivalent
|
||||
would have. Do not use this class directly.
|
||||
|
||||
Only hashable objects can be added to a Set. In particular, you cannot
|
||||
really add a Set as an element to another Set; if you try, what is
|
||||
actually added is an ImmutableSet built from it (it compares equal to
|
||||
the one you tried adding).
|
||||
|
||||
When you ask if `x in y' where x is a Set and y is a Set or
|
||||
ImmutableSet, x is wrapped into a _TemporarilyImmutableSet z, and
|
||||
what's tested is actually `z in y'.
|
||||
|
||||
"""
|
||||
|
||||
# Code history:
|
||||
#
|
||||
# - Greg V. Wilson wrote the first version, using a different approach
|
||||
# to the mutable/immutable problem, and inheriting from dict.
|
||||
#
|
||||
# - Alex Martelli modified Greg's version to implement the current
|
||||
# Set/ImmutableSet approach, and make the data an attribute.
|
||||
#
|
||||
# - Guido van Rossum rewrote much of the code, made some API changes,
|
||||
# and cleaned up the docstrings.
|
||||
#
|
||||
# - Raymond Hettinger added a number of speedups and other
|
||||
# improvements.
|
||||
|
||||
from __future__ import generators
|
||||
try:
|
||||
from itertools import ifilter, ifilterfalse
|
||||
except ImportError:
|
||||
# Code to make the module run under Py2.2
|
||||
def ifilter(predicate, iterable):
|
||||
if predicate is None:
|
||||
def predicate(x):
|
||||
return x
|
||||
for x in iterable:
|
||||
if predicate(x):
|
||||
yield x
|
||||
def ifilterfalse(predicate, iterable):
|
||||
if predicate is None:
|
||||
def predicate(x):
|
||||
return x
|
||||
for x in iterable:
|
||||
if not predicate(x):
|
||||
yield x
|
||||
try:
|
||||
True, False
|
||||
except NameError:
|
||||
True, False = (0==0, 0!=0)
|
||||
|
||||
__all__ = ['BaseSet', 'Set', 'ImmutableSet']
|
||||
|
||||
class BaseSet(object):
|
||||
"""Common base class for mutable and immutable sets."""
|
||||
|
||||
__slots__ = ['_data']
|
||||
|
||||
# Constructor
|
||||
|
||||
def __init__(self):
|
||||
"""This is an abstract class."""
|
||||
# Don't call this from a concrete subclass!
|
||||
if self.__class__ is BaseSet:
|
||||
raise TypeError, ("BaseSet is an abstract class. "
|
||||
"Use Set or ImmutableSet.")
|
||||
|
||||
# Standard protocols: __len__, __repr__, __str__, __iter__
|
||||
|
||||
def __len__(self):
|
||||
"""Return the number of elements of a set."""
|
||||
return len(self._data)
|
||||
|
||||
def __repr__(self):
|
||||
"""Return string representation of a set.
|
||||
|
||||
This looks like 'Set([<list of elements>])'.
|
||||
"""
|
||||
return self._repr()
|
||||
|
||||
# __str__ is the same as __repr__
|
||||
__str__ = __repr__
|
||||
|
||||
def _repr(self, sorted=False):
|
||||
elements = self._data.keys()
|
||||
if sorted:
|
||||
elements.sort()
|
||||
return '%s(%r)' % (self.__class__.__name__, elements)
|
||||
|
||||
def __iter__(self):
|
||||
"""Return an iterator over the elements or a set.
|
||||
|
||||
This is the keys iterator for the underlying dict.
|
||||
"""
|
||||
return self._data.iterkeys()
|
||||
|
||||
# Three-way comparison is not supported. However, because __eq__ is
|
||||
# tried before __cmp__, if Set x == Set y, x.__eq__(y) returns True and
|
||||
# then cmp(x, y) returns 0 (Python doesn't actually call __cmp__ in this
|
||||
# case).
|
||||
|
||||
def __cmp__(self, other):
|
||||
raise TypeError, "can't compare sets using cmp()"
|
||||
|
||||
# Equality comparisons using the underlying dicts. Mixed-type comparisons
|
||||
# are allowed here, where Set == z for non-Set z always returns False,
|
||||
# and Set != z always True. This allows expressions like "x in y" to
|
||||
# give the expected result when y is a sequence of mixed types, not
|
||||
# raising a pointless TypeError just because y contains a Set, or x is
|
||||
# a Set and y contain's a non-set ("in" invokes only __eq__).
|
||||
# Subtle: it would be nicer if __eq__ and __ne__ could return
|
||||
# NotImplemented instead of True or False. Then the other comparand
|
||||
# would get a chance to determine the result, and if the other comparand
|
||||
# also returned NotImplemented then it would fall back to object address
|
||||
# comparison (which would always return False for __eq__ and always
|
||||
# True for __ne__). However, that doesn't work, because this type
|
||||
# *also* implements __cmp__: if, e.g., __eq__ returns NotImplemented,
|
||||
# Python tries __cmp__ next, and the __cmp__ here then raises TypeError.
|
||||
|
||||
def __eq__(self, other):
|
||||
if isinstance(other, BaseSet):
|
||||
return self._data == other._data
|
||||
else:
|
||||
return False
|
||||
|
||||
def __ne__(self, other):
|
||||
if isinstance(other, BaseSet):
|
||||
return self._data != other._data
|
||||
else:
|
||||
return True
|
||||
|
||||
# Copying operations
|
||||
|
||||
def copy(self):
|
||||
"""Return a shallow copy of a set."""
|
||||
result = self.__class__()
|
||||
result._data.update(self._data)
|
||||
return result
|
||||
|
||||
__copy__ = copy # For the copy module
|
||||
|
||||
def __deepcopy__(self, memo):
|
||||
"""Return a deep copy of a set; used by copy module."""
|
||||
# This pre-creates the result and inserts it in the memo
|
||||
# early, in case the deep copy recurses into another reference
|
||||
# to this same set. A set can't be an element of itself, but
|
||||
# it can certainly contain an object that has a reference to
|
||||
# itself.
|
||||
from copy import deepcopy
|
||||
result = self.__class__()
|
||||
memo[id(self)] = result
|
||||
data = result._data
|
||||
value = True
|
||||
for elt in self:
|
||||
data[deepcopy(elt, memo)] = value
|
||||
return result
|
||||
|
||||
# Standard set operations: union, intersection, both differences.
|
||||
# Each has an operator version (e.g. __or__, invoked with |) and a
|
||||
# method version (e.g. union).
|
||||
# Subtle: Each pair requires distinct code so that the outcome is
|
||||
# correct when the type of other isn't suitable. For example, if
|
||||
# we did "union = __or__" instead, then Set().union(3) would return
|
||||
# NotImplemented instead of raising TypeError (albeit that *why* it
|
||||
# raises TypeError as-is is also a bit subtle).
|
||||
|
||||
def __or__(self, other):
|
||||
"""Return the union of two sets as a new set.
|
||||
|
||||
(I.e. all elements that are in either set.)
|
||||
"""
|
||||
if not isinstance(other, BaseSet):
|
||||
return NotImplemented
|
||||
return self.union(other)
|
||||
|
||||
def union(self, other):
|
||||
"""Return the union of two sets as a new set.
|
||||
|
||||
(I.e. all elements that are in either set.)
|
||||
"""
|
||||
result = self.__class__(self)
|
||||
result._update(other)
|
||||
return result
|
||||
|
||||
def __and__(self, other):
|
||||
"""Return the intersection of two sets as a new set.
|
||||
|
||||
(I.e. all elements that are in both sets.)
|
||||
"""
|
||||
if not isinstance(other, BaseSet):
|
||||
return NotImplemented
|
||||
return self.intersection(other)
|
||||
|
||||
def intersection(self, other):
|
||||
"""Return the intersection of two sets as a new set.
|
||||
|
||||
(I.e. all elements that are in both sets.)
|
||||
"""
|
||||
if not isinstance(other, BaseSet):
|
||||
other = Set(other)
|
||||
if len(self) <= len(other):
|
||||
little, big = self, other
|
||||
else:
|
||||
little, big = other, self
|
||||
common = ifilter(big._data.__contains__, little)
|
||||
return self.__class__(common)
|
||||
|
||||
def __xor__(self, other):
|
||||
"""Return the symmetric difference of two sets as a new set.
|
||||
|
||||
(I.e. all elements that are in exactly one of the sets.)
|
||||
"""
|
||||
if not isinstance(other, BaseSet):
|
||||
return NotImplemented
|
||||
return self.symmetric_difference(other)
|
||||
|
||||
def symmetric_difference(self, other):
|
||||
"""Return the symmetric difference of two sets as a new set.
|
||||
|
||||
(I.e. all elements that are in exactly one of the sets.)
|
||||
"""
|
||||
result = self.__class__()
|
||||
data = result._data
|
||||
value = True
|
||||
selfdata = self._data
|
||||
try:
|
||||
otherdata = other._data
|
||||
except AttributeError:
|
||||
otherdata = Set(other)._data
|
||||
for elt in ifilterfalse(otherdata.__contains__, selfdata):
|
||||
data[elt] = value
|
||||
for elt in ifilterfalse(selfdata.__contains__, otherdata):
|
||||
data[elt] = value
|
||||
return result
|
||||
|
||||
def __sub__(self, other):
|
||||
"""Return the difference of two sets as a new Set.
|
||||
|
||||
(I.e. all elements that are in this set and not in the other.)
|
||||
"""
|
||||
if not isinstance(other, BaseSet):
|
||||
return NotImplemented
|
||||
return self.difference(other)
|
||||
|
||||
def difference(self, other):
|
||||
"""Return the difference of two sets as a new Set.
|
||||
|
||||
(I.e. all elements that are in this set and not in the other.)
|
||||
"""
|
||||
result = self.__class__()
|
||||
data = result._data
|
||||
try:
|
||||
otherdata = other._data
|
||||
except AttributeError:
|
||||
otherdata = Set(other)._data
|
||||
value = True
|
||||
for elt in ifilterfalse(otherdata.__contains__, self):
|
||||
data[elt] = value
|
||||
return result
|
||||
|
||||
# Membership test
|
||||
|
||||
def __contains__(self, element):
|
||||
"""Report whether an element is a member of a set.
|
||||
|
||||
(Called in response to the expression `element in self'.)
|
||||
"""
|
||||
try:
|
||||
return element in self._data
|
||||
except TypeError:
|
||||
transform = getattr(element, "__as_temporarily_immutable__", None)
|
||||
if transform is None:
|
||||
raise # re-raise the TypeError exception we caught
|
||||
return transform() in self._data
|
||||
|
||||
# Subset and superset test
|
||||
|
||||
def issubset(self, other):
|
||||
"""Report whether another set contains this set."""
|
||||
self._binary_sanity_check(other)
|
||||
if len(self) > len(other): # Fast check for obvious cases
|
||||
return False
|
||||
for elt in ifilterfalse(other._data.__contains__, self):
|
||||
return False
|
||||
return True
|
||||
|
||||
def issuperset(self, other):
|
||||
"""Report whether this set contains another set."""
|
||||
self._binary_sanity_check(other)
|
||||
if len(self) < len(other): # Fast check for obvious cases
|
||||
return False
|
||||
for elt in ifilterfalse(self._data.__contains__, other):
|
||||
return False
|
||||
return True
|
||||
|
||||
# Inequality comparisons using the is-subset relation.
|
||||
__le__ = issubset
|
||||
__ge__ = issuperset
|
||||
|
||||
def __lt__(self, other):
|
||||
self._binary_sanity_check(other)
|
||||
return len(self) < len(other) and self.issubset(other)
|
||||
|
||||
def __gt__(self, other):
|
||||
self._binary_sanity_check(other)
|
||||
return len(self) > len(other) and self.issuperset(other)
|
||||
|
||||
# Assorted helpers
|
||||
|
||||
def _binary_sanity_check(self, other):
|
||||
# Check that the other argument to a binary operation is also
|
||||
# a set, raising a TypeError otherwise.
|
||||
if not isinstance(other, BaseSet):
|
||||
raise TypeError, "Binary operation only permitted between sets"
|
||||
|
||||
def _compute_hash(self):
|
||||
# Calculate hash code for a set by xor'ing the hash codes of
|
||||
# the elements. This ensures that the hash code does not depend
|
||||
# on the order in which elements are added to the set. This is
|
||||
# not called __hash__ because a BaseSet should not be hashable;
|
||||
# only an ImmutableSet is hashable.
|
||||
result = 0
|
||||
for elt in self:
|
||||
result ^= hash(elt)
|
||||
return result
|
||||
|
||||
def _update(self, iterable):
|
||||
# The main loop for update() and the subclass __init__() methods.
|
||||
data = self._data
|
||||
|
||||
# Use the fast update() method when a dictionary is available.
|
||||
if isinstance(iterable, BaseSet):
|
||||
data.update(iterable._data)
|
||||
return
|
||||
|
||||
value = True
|
||||
|
||||
if type(iterable) in (list, tuple, xrange):
|
||||
# Optimized: we know that __iter__() and next() can't
|
||||
# raise TypeError, so we can move 'try:' out of the loop.
|
||||
it = iter(iterable)
|
||||
while True:
|
||||
try:
|
||||
for element in it:
|
||||
data[element] = value
|
||||
return
|
||||
except TypeError:
|
||||
transform = getattr(element, "__as_immutable__", None)
|
||||
if transform is None:
|
||||
raise # re-raise the TypeError exception we caught
|
||||
data[transform()] = value
|
||||
else:
|
||||
# Safe: only catch TypeError where intended
|
||||
for element in iterable:
|
||||
try:
|
||||
data[element] = value
|
||||
except TypeError:
|
||||
transform = getattr(element, "__as_immutable__", None)
|
||||
if transform is None:
|
||||
raise # re-raise the TypeError exception we caught
|
||||
data[transform()] = value
|
||||
|
||||
|
||||
class ImmutableSet(BaseSet):
|
||||
"""Immutable set class."""
|
||||
|
||||
__slots__ = ['_hashcode']
|
||||
|
||||
# BaseSet + hashing
|
||||
|
||||
def __init__(self, iterable=None):
|
||||
"""Construct an immutable set from an optional iterable."""
|
||||
self._hashcode = None
|
||||
self._data = {}
|
||||
if iterable is not None:
|
||||
self._update(iterable)
|
||||
|
||||
def __hash__(self):
|
||||
if self._hashcode is None:
|
||||
self._hashcode = self._compute_hash()
|
||||
return self._hashcode
|
||||
|
||||
def __getstate__(self):
|
||||
return self._data, self._hashcode
|
||||
|
||||
def __setstate__(self, state):
|
||||
self._data, self._hashcode = state
|
||||
|
||||
class Set(BaseSet):
|
||||
""" Mutable set class."""
|
||||
|
||||
__slots__ = []
|
||||
|
||||
# BaseSet + operations requiring mutability; no hashing
|
||||
|
||||
def __init__(self, iterable=None):
|
||||
"""Construct a set from an optional iterable."""
|
||||
self._data = {}
|
||||
if iterable is not None:
|
||||
self._update(iterable)
|
||||
|
||||
def __getstate__(self):
|
||||
# getstate's results are ignored if it is not
|
||||
return self._data,
|
||||
|
||||
def __setstate__(self, data):
|
||||
self._data, = data
|
||||
|
||||
def __hash__(self):
|
||||
"""A Set cannot be hashed."""
|
||||
# We inherit object.__hash__, so we must deny this explicitly
|
||||
raise TypeError, "Can't hash a Set, only an ImmutableSet."
|
||||
|
||||
# In-place union, intersection, differences.
|
||||
# Subtle: The xyz_update() functions deliberately return None,
|
||||
# as do all mutating operations on built-in container types.
|
||||
# The __xyz__ spellings have to return self, though.
|
||||
|
||||
def __ior__(self, other):
|
||||
"""Update a set with the union of itself and another."""
|
||||
self._binary_sanity_check(other)
|
||||
self._data.update(other._data)
|
||||
return self
|
||||
|
||||
def union_update(self, other):
|
||||
"""Update a set with the union of itself and another."""
|
||||
self._update(other)
|
||||
|
||||
def __iand__(self, other):
|
||||
"""Update a set with the intersection of itself and another."""
|
||||
self._binary_sanity_check(other)
|
||||
self._data = (self & other)._data
|
||||
return self
|
||||
|
||||
def intersection_update(self, other):
|
||||
"""Update a set with the intersection of itself and another."""
|
||||
if isinstance(other, BaseSet):
|
||||
self &= other
|
||||
else:
|
||||
self._data = (self.intersection(other))._data
|
||||
|
||||
def __ixor__(self, other):
|
||||
"""Update a set with the symmetric difference of itself and another."""
|
||||
self._binary_sanity_check(other)
|
||||
self.symmetric_difference_update(other)
|
||||
return self
|
||||
|
||||
def symmetric_difference_update(self, other):
|
||||
"""Update a set with the symmetric difference of itself and another."""
|
||||
data = self._data
|
||||
value = True
|
||||
if not isinstance(other, BaseSet):
|
||||
other = Set(other)
|
||||
if self is other:
|
||||
self.clear()
|
||||
for elt in other:
|
||||
if elt in data:
|
||||
del data[elt]
|
||||
else:
|
||||
data[elt] = value
|
||||
|
||||
def __isub__(self, other):
|
||||
"""Remove all elements of another set from this set."""
|
||||
self._binary_sanity_check(other)
|
||||
self.difference_update(other)
|
||||
return self
|
||||
|
||||
def difference_update(self, other):
|
||||
"""Remove all elements of another set from this set."""
|
||||
data = self._data
|
||||
if not isinstance(other, BaseSet):
|
||||
other = Set(other)
|
||||
if self is other:
|
||||
self.clear()
|
||||
for elt in ifilter(data.__contains__, other):
|
||||
del data[elt]
|
||||
|
||||
# Python dict-like mass mutations: update, clear
|
||||
|
||||
def update(self, iterable):
|
||||
"""Add all values from an iterable (such as a list or file)."""
|
||||
self._update(iterable)
|
||||
|
||||
def clear(self):
|
||||
"""Remove all elements from this set."""
|
||||
self._data.clear()
|
||||
|
||||
# Single-element mutations: add, remove, discard
|
||||
|
||||
def add(self, element):
|
||||
"""Add an element to a set.
|
||||
|
||||
This has no effect if the element is already present.
|
||||
"""
|
||||
try:
|
||||
self._data[element] = True
|
||||
except TypeError:
|
||||
transform = getattr(element, "__as_immutable__", None)
|
||||
if transform is None:
|
||||
raise # re-raise the TypeError exception we caught
|
||||
self._data[transform()] = True
|
||||
|
||||
def remove(self, element):
|
||||
"""Remove an element from a set; it must be a member.
|
||||
|
||||
If the element is not a member, raise a KeyError.
|
||||
"""
|
||||
try:
|
||||
del self._data[element]
|
||||
except TypeError:
|
||||
transform = getattr(element, "__as_temporarily_immutable__", None)
|
||||
if transform is None:
|
||||
raise # re-raise the TypeError exception we caught
|
||||
del self._data[transform()]
|
||||
|
||||
def discard(self, element):
|
||||
"""Remove an element from a set if it is a member.
|
||||
|
||||
If the element is not a member, do nothing.
|
||||
"""
|
||||
try:
|
||||
self.remove(element)
|
||||
except KeyError:
|
||||
pass
|
||||
|
||||
def pop(self):
|
||||
"""Remove and return an arbitrary set element."""
|
||||
return self._data.popitem()[0]
|
||||
|
||||
def __as_immutable__(self):
|
||||
# Return a copy of self as an immutable set
|
||||
return ImmutableSet(self)
|
||||
|
||||
def __as_temporarily_immutable__(self):
|
||||
# Return self wrapped in a temporarily immutable set
|
||||
return _TemporarilyImmutableSet(self)
|
||||
|
||||
|
||||
class _TemporarilyImmutableSet(BaseSet):
|
||||
# Wrap a mutable set as if it was temporarily immutable.
|
||||
# This only supplies hashing and equality comparisons.
|
||||
|
||||
def __init__(self, set):
|
||||
self._set = set
|
||||
self._data = set._data # Needed by ImmutableSet.__eq__()
|
||||
|
||||
def __hash__(self):
|
||||
return self._set._compute_hash()
|
|
@ -1723,7 +1723,6 @@ class LWPCookieTests(TestCase):
|
|||
|
||||
|
||||
def test_main(verbose=None):
|
||||
from test import test_sets
|
||||
test_support.run_unittest(
|
||||
DateTimeTests,
|
||||
HeaderTests,
|
||||
|
|
|
@ -1451,7 +1451,6 @@ class TestVariousIteratorArgs(unittest.TestCase):
|
|||
#==============================================================================
|
||||
|
||||
def test_main(verbose=None):
|
||||
from test import test_sets
|
||||
test_classes = (
|
||||
TestSet,
|
||||
TestSetSubclass,
|
||||
|
|
|
@ -1,853 +0,0 @@
|
|||
#!/usr/bin/env python
|
||||
|
||||
import unittest, operator, copy, pickle, random
|
||||
from sets import Set, ImmutableSet
|
||||
from test import test_support
|
||||
|
||||
empty_set = Set()
|
||||
|
||||
#==============================================================================
|
||||
|
||||
class TestBasicOps(unittest.TestCase):
|
||||
|
||||
def test_repr(self):
|
||||
if self.repr is not None:
|
||||
self.assertEqual(repr(self.set), self.repr)
|
||||
|
||||
def test_length(self):
|
||||
self.assertEqual(len(self.set), self.length)
|
||||
|
||||
def test_self_equality(self):
|
||||
self.assertEqual(self.set, self.set)
|
||||
|
||||
def test_equivalent_equality(self):
|
||||
self.assertEqual(self.set, self.dup)
|
||||
|
||||
def test_copy(self):
|
||||
self.assertEqual(self.set.copy(), self.dup)
|
||||
|
||||
def test_self_union(self):
|
||||
result = self.set | self.set
|
||||
self.assertEqual(result, self.dup)
|
||||
|
||||
def test_empty_union(self):
|
||||
result = self.set | empty_set
|
||||
self.assertEqual(result, self.dup)
|
||||
|
||||
def test_union_empty(self):
|
||||
result = empty_set | self.set
|
||||
self.assertEqual(result, self.dup)
|
||||
|
||||
def test_self_intersection(self):
|
||||
result = self.set & self.set
|
||||
self.assertEqual(result, self.dup)
|
||||
|
||||
def test_empty_intersection(self):
|
||||
result = self.set & empty_set
|
||||
self.assertEqual(result, empty_set)
|
||||
|
||||
def test_intersection_empty(self):
|
||||
result = empty_set & self.set
|
||||
self.assertEqual(result, empty_set)
|
||||
|
||||
def test_self_symmetric_difference(self):
|
||||
result = self.set ^ self.set
|
||||
self.assertEqual(result, empty_set)
|
||||
|
||||
def checkempty_symmetric_difference(self):
|
||||
result = self.set ^ empty_set
|
||||
self.assertEqual(result, self.set)
|
||||
|
||||
def test_self_difference(self):
|
||||
result = self.set - self.set
|
||||
self.assertEqual(result, empty_set)
|
||||
|
||||
def test_empty_difference(self):
|
||||
result = self.set - empty_set
|
||||
self.assertEqual(result, self.dup)
|
||||
|
||||
def test_empty_difference_rev(self):
|
||||
result = empty_set - self.set
|
||||
self.assertEqual(result, empty_set)
|
||||
|
||||
def test_iteration(self):
|
||||
for v in self.set:
|
||||
self.assert_(v in self.values)
|
||||
|
||||
def test_pickling(self):
|
||||
p = pickle.dumps(self.set)
|
||||
copy = pickle.loads(p)
|
||||
self.assertEqual(self.set, copy,
|
||||
"%s != %s" % (self.set, copy))
|
||||
|
||||
#------------------------------------------------------------------------------
|
||||
|
||||
class TestBasicOpsEmpty(TestBasicOps):
|
||||
def setUp(self):
|
||||
self.case = "empty set"
|
||||
self.values = []
|
||||
self.set = Set(self.values)
|
||||
self.dup = Set(self.values)
|
||||
self.length = 0
|
||||
self.repr = "Set([])"
|
||||
|
||||
#------------------------------------------------------------------------------
|
||||
|
||||
class TestBasicOpsSingleton(TestBasicOps):
|
||||
def setUp(self):
|
||||
self.case = "unit set (number)"
|
||||
self.values = [3]
|
||||
self.set = Set(self.values)
|
||||
self.dup = Set(self.values)
|
||||
self.length = 1
|
||||
self.repr = "Set([3])"
|
||||
|
||||
def test_in(self):
|
||||
self.failUnless(3 in self.set)
|
||||
|
||||
def test_not_in(self):
|
||||
self.failUnless(2 not in self.set)
|
||||
|
||||
#------------------------------------------------------------------------------
|
||||
|
||||
class TestBasicOpsTuple(TestBasicOps):
|
||||
def setUp(self):
|
||||
self.case = "unit set (tuple)"
|
||||
self.values = [(0, "zero")]
|
||||
self.set = Set(self.values)
|
||||
self.dup = Set(self.values)
|
||||
self.length = 1
|
||||
self.repr = "Set([(0, 'zero')])"
|
||||
|
||||
def test_in(self):
|
||||
self.failUnless((0, "zero") in self.set)
|
||||
|
||||
def test_not_in(self):
|
||||
self.failUnless(9 not in self.set)
|
||||
|
||||
#------------------------------------------------------------------------------
|
||||
|
||||
class TestBasicOpsTriple(TestBasicOps):
|
||||
def setUp(self):
|
||||
self.case = "triple set"
|
||||
self.values = [0, "zero", operator.add]
|
||||
self.set = Set(self.values)
|
||||
self.dup = Set(self.values)
|
||||
self.length = 3
|
||||
self.repr = None
|
||||
|
||||
#==============================================================================
|
||||
|
||||
def baditer():
|
||||
raise TypeError
|
||||
yield True
|
||||
|
||||
def gooditer():
|
||||
yield True
|
||||
|
||||
class TestExceptionPropagation(unittest.TestCase):
|
||||
"""SF 628246: Set constructor should not trap iterator TypeErrors"""
|
||||
|
||||
def test_instanceWithException(self):
|
||||
self.assertRaises(TypeError, Set, baditer())
|
||||
|
||||
def test_instancesWithoutException(self):
|
||||
# All of these iterables should load without exception.
|
||||
Set([1,2,3])
|
||||
Set((1,2,3))
|
||||
Set({'one':1, 'two':2, 'three':3})
|
||||
Set(xrange(3))
|
||||
Set('abc')
|
||||
Set(gooditer())
|
||||
|
||||
#==============================================================================
|
||||
|
||||
class TestSetOfSets(unittest.TestCase):
|
||||
def test_constructor(self):
|
||||
inner = Set([1])
|
||||
outer = Set([inner])
|
||||
element = outer.pop()
|
||||
self.assertEqual(type(element), ImmutableSet)
|
||||
outer.add(inner) # Rebuild set of sets with .add method
|
||||
outer.remove(inner)
|
||||
self.assertEqual(outer, Set()) # Verify that remove worked
|
||||
outer.discard(inner) # Absence of KeyError indicates working fine
|
||||
|
||||
#==============================================================================
|
||||
|
||||
class TestBinaryOps(unittest.TestCase):
|
||||
def setUp(self):
|
||||
self.set = Set((2, 4, 6))
|
||||
|
||||
def test_eq(self): # SF bug 643115
|
||||
self.assertEqual(self.set, Set({2:1,4:3,6:5}))
|
||||
|
||||
def test_union_subset(self):
|
||||
result = self.set | Set([2])
|
||||
self.assertEqual(result, Set((2, 4, 6)))
|
||||
|
||||
def test_union_superset(self):
|
||||
result = self.set | Set([2, 4, 6, 8])
|
||||
self.assertEqual(result, Set([2, 4, 6, 8]))
|
||||
|
||||
def test_union_overlap(self):
|
||||
result = self.set | Set([3, 4, 5])
|
||||
self.assertEqual(result, Set([2, 3, 4, 5, 6]))
|
||||
|
||||
def test_union_non_overlap(self):
|
||||
result = self.set | Set([8])
|
||||
self.assertEqual(result, Set([2, 4, 6, 8]))
|
||||
|
||||
def test_intersection_subset(self):
|
||||
result = self.set & Set((2, 4))
|
||||
self.assertEqual(result, Set((2, 4)))
|
||||
|
||||
def test_intersection_superset(self):
|
||||
result = self.set & Set([2, 4, 6, 8])
|
||||
self.assertEqual(result, Set([2, 4, 6]))
|
||||
|
||||
def test_intersection_overlap(self):
|
||||
result = self.set & Set([3, 4, 5])
|
||||
self.assertEqual(result, Set([4]))
|
||||
|
||||
def test_intersection_non_overlap(self):
|
||||
result = self.set & Set([8])
|
||||
self.assertEqual(result, empty_set)
|
||||
|
||||
def test_sym_difference_subset(self):
|
||||
result = self.set ^ Set((2, 4))
|
||||
self.assertEqual(result, Set([6]))
|
||||
|
||||
def test_sym_difference_superset(self):
|
||||
result = self.set ^ Set((2, 4, 6, 8))
|
||||
self.assertEqual(result, Set([8]))
|
||||
|
||||
def test_sym_difference_overlap(self):
|
||||
result = self.set ^ Set((3, 4, 5))
|
||||
self.assertEqual(result, Set([2, 3, 5, 6]))
|
||||
|
||||
def test_sym_difference_non_overlap(self):
|
||||
result = self.set ^ Set([8])
|
||||
self.assertEqual(result, Set([2, 4, 6, 8]))
|
||||
|
||||
def test_cmp(self):
|
||||
a, b = Set('a'), Set('b')
|
||||
self.assertRaises(TypeError, cmp, a, b)
|
||||
|
||||
# In py3k, this works!
|
||||
self.assertRaises(TypeError, cmp, a, a)
|
||||
|
||||
self.assertRaises(TypeError, cmp, a, 12)
|
||||
self.assertRaises(TypeError, cmp, "abc", a)
|
||||
|
||||
def test_inplace_on_self(self):
|
||||
t = self.set.copy()
|
||||
t |= t
|
||||
self.assertEqual(t, self.set)
|
||||
t &= t
|
||||
self.assertEqual(t, self.set)
|
||||
t -= t
|
||||
self.assertEqual(len(t), 0)
|
||||
t = self.set.copy()
|
||||
t ^= t
|
||||
self.assertEqual(len(t), 0)
|
||||
|
||||
|
||||
#==============================================================================
|
||||
|
||||
class TestUpdateOps(unittest.TestCase):
|
||||
def setUp(self):
|
||||
self.set = Set((2, 4, 6))
|
||||
|
||||
def test_union_subset(self):
|
||||
self.set |= Set([2])
|
||||
self.assertEqual(self.set, Set((2, 4, 6)))
|
||||
|
||||
def test_union_superset(self):
|
||||
self.set |= Set([2, 4, 6, 8])
|
||||
self.assertEqual(self.set, Set([2, 4, 6, 8]))
|
||||
|
||||
def test_union_overlap(self):
|
||||
self.set |= Set([3, 4, 5])
|
||||
self.assertEqual(self.set, Set([2, 3, 4, 5, 6]))
|
||||
|
||||
def test_union_non_overlap(self):
|
||||
self.set |= Set([8])
|
||||
self.assertEqual(self.set, Set([2, 4, 6, 8]))
|
||||
|
||||
def test_union_method_call(self):
|
||||
self.set.union_update(Set([3, 4, 5]))
|
||||
self.assertEqual(self.set, Set([2, 3, 4, 5, 6]))
|
||||
|
||||
def test_intersection_subset(self):
|
||||
self.set &= Set((2, 4))
|
||||
self.assertEqual(self.set, Set((2, 4)))
|
||||
|
||||
def test_intersection_superset(self):
|
||||
self.set &= Set([2, 4, 6, 8])
|
||||
self.assertEqual(self.set, Set([2, 4, 6]))
|
||||
|
||||
def test_intersection_overlap(self):
|
||||
self.set &= Set([3, 4, 5])
|
||||
self.assertEqual(self.set, Set([4]))
|
||||
|
||||
def test_intersection_non_overlap(self):
|
||||
self.set &= Set([8])
|
||||
self.assertEqual(self.set, empty_set)
|
||||
|
||||
def test_intersection_method_call(self):
|
||||
self.set.intersection_update(Set([3, 4, 5]))
|
||||
self.assertEqual(self.set, Set([4]))
|
||||
|
||||
def test_sym_difference_subset(self):
|
||||
self.set ^= Set((2, 4))
|
||||
self.assertEqual(self.set, Set([6]))
|
||||
|
||||
def test_sym_difference_superset(self):
|
||||
self.set ^= Set((2, 4, 6, 8))
|
||||
self.assertEqual(self.set, Set([8]))
|
||||
|
||||
def test_sym_difference_overlap(self):
|
||||
self.set ^= Set((3, 4, 5))
|
||||
self.assertEqual(self.set, Set([2, 3, 5, 6]))
|
||||
|
||||
def test_sym_difference_non_overlap(self):
|
||||
self.set ^= Set([8])
|
||||
self.assertEqual(self.set, Set([2, 4, 6, 8]))
|
||||
|
||||
def test_sym_difference_method_call(self):
|
||||
self.set.symmetric_difference_update(Set([3, 4, 5]))
|
||||
self.assertEqual(self.set, Set([2, 3, 5, 6]))
|
||||
|
||||
def test_difference_subset(self):
|
||||
self.set -= Set((2, 4))
|
||||
self.assertEqual(self.set, Set([6]))
|
||||
|
||||
def test_difference_superset(self):
|
||||
self.set -= Set((2, 4, 6, 8))
|
||||
self.assertEqual(self.set, Set([]))
|
||||
|
||||
def test_difference_overlap(self):
|
||||
self.set -= Set((3, 4, 5))
|
||||
self.assertEqual(self.set, Set([2, 6]))
|
||||
|
||||
def test_difference_non_overlap(self):
|
||||
self.set -= Set([8])
|
||||
self.assertEqual(self.set, Set([2, 4, 6]))
|
||||
|
||||
def test_difference_method_call(self):
|
||||
self.set.difference_update(Set([3, 4, 5]))
|
||||
self.assertEqual(self.set, Set([2, 6]))
|
||||
|
||||
#==============================================================================
|
||||
|
||||
class TestMutate(unittest.TestCase):
|
||||
def setUp(self):
|
||||
self.values = ["a", "b", "c"]
|
||||
self.set = Set(self.values)
|
||||
|
||||
def test_add_present(self):
|
||||
self.set.add("c")
|
||||
self.assertEqual(self.set, Set("abc"))
|
||||
|
||||
def test_add_absent(self):
|
||||
self.set.add("d")
|
||||
self.assertEqual(self.set, Set("abcd"))
|
||||
|
||||
def test_add_until_full(self):
|
||||
tmp = Set()
|
||||
expected_len = 0
|
||||
for v in self.values:
|
||||
tmp.add(v)
|
||||
expected_len += 1
|
||||
self.assertEqual(len(tmp), expected_len)
|
||||
self.assertEqual(tmp, self.set)
|
||||
|
||||
def test_remove_present(self):
|
||||
self.set.remove("b")
|
||||
self.assertEqual(self.set, Set("ac"))
|
||||
|
||||
def test_remove_absent(self):
|
||||
try:
|
||||
self.set.remove("d")
|
||||
self.fail("Removing missing element should have raised LookupError")
|
||||
except LookupError:
|
||||
pass
|
||||
|
||||
def test_remove_until_empty(self):
|
||||
expected_len = len(self.set)
|
||||
for v in self.values:
|
||||
self.set.remove(v)
|
||||
expected_len -= 1
|
||||
self.assertEqual(len(self.set), expected_len)
|
||||
|
||||
def test_discard_present(self):
|
||||
self.set.discard("c")
|
||||
self.assertEqual(self.set, Set("ab"))
|
||||
|
||||
def test_discard_absent(self):
|
||||
self.set.discard("d")
|
||||
self.assertEqual(self.set, Set("abc"))
|
||||
|
||||
def test_clear(self):
|
||||
self.set.clear()
|
||||
self.assertEqual(len(self.set), 0)
|
||||
|
||||
def test_pop(self):
|
||||
popped = {}
|
||||
while self.set:
|
||||
popped[self.set.pop()] = None
|
||||
self.assertEqual(len(popped), len(self.values))
|
||||
for v in self.values:
|
||||
self.failUnless(v in popped)
|
||||
|
||||
def test_update_empty_tuple(self):
|
||||
self.set.union_update(())
|
||||
self.assertEqual(self.set, Set(self.values))
|
||||
|
||||
def test_update_unit_tuple_overlap(self):
|
||||
self.set.union_update(("a",))
|
||||
self.assertEqual(self.set, Set(self.values))
|
||||
|
||||
def test_update_unit_tuple_non_overlap(self):
|
||||
self.set.union_update(("a", "z"))
|
||||
self.assertEqual(self.set, Set(self.values + ["z"]))
|
||||
|
||||
#==============================================================================
|
||||
|
||||
class TestSubsets(unittest.TestCase):
|
||||
|
||||
case2method = {"<=": "issubset",
|
||||
">=": "issuperset",
|
||||
}
|
||||
|
||||
reverse = {"==": "==",
|
||||
"!=": "!=",
|
||||
"<": ">",
|
||||
">": "<",
|
||||
"<=": ">=",
|
||||
">=": "<=",
|
||||
}
|
||||
|
||||
def test_issubset(self):
|
||||
x = self.left
|
||||
y = self.right
|
||||
for case in "!=", "==", "<", "<=", ">", ">=":
|
||||
expected = case in self.cases
|
||||
# Test the binary infix spelling.
|
||||
result = eval("x" + case + "y", locals())
|
||||
self.assertEqual(result, expected)
|
||||
# Test the "friendly" method-name spelling, if one exists.
|
||||
if case in TestSubsets.case2method:
|
||||
method = getattr(x, TestSubsets.case2method[case])
|
||||
result = method(y)
|
||||
self.assertEqual(result, expected)
|
||||
|
||||
# Now do the same for the operands reversed.
|
||||
rcase = TestSubsets.reverse[case]
|
||||
result = eval("y" + rcase + "x", locals())
|
||||
self.assertEqual(result, expected)
|
||||
if rcase in TestSubsets.case2method:
|
||||
method = getattr(y, TestSubsets.case2method[rcase])
|
||||
result = method(x)
|
||||
self.assertEqual(result, expected)
|
||||
#------------------------------------------------------------------------------
|
||||
|
||||
class TestSubsetEqualEmpty(TestSubsets):
|
||||
left = Set()
|
||||
right = Set()
|
||||
name = "both empty"
|
||||
cases = "==", "<=", ">="
|
||||
|
||||
#------------------------------------------------------------------------------
|
||||
|
||||
class TestSubsetEqualNonEmpty(TestSubsets):
|
||||
left = Set([1, 2])
|
||||
right = Set([1, 2])
|
||||
name = "equal pair"
|
||||
cases = "==", "<=", ">="
|
||||
|
||||
#------------------------------------------------------------------------------
|
||||
|
||||
class TestSubsetEmptyNonEmpty(TestSubsets):
|
||||
left = Set()
|
||||
right = Set([1, 2])
|
||||
name = "one empty, one non-empty"
|
||||
cases = "!=", "<", "<="
|
||||
|
||||
#------------------------------------------------------------------------------
|
||||
|
||||
class TestSubsetPartial(TestSubsets):
|
||||
left = Set([1])
|
||||
right = Set([1, 2])
|
||||
name = "one a non-empty proper subset of other"
|
||||
cases = "!=", "<", "<="
|
||||
|
||||
#------------------------------------------------------------------------------
|
||||
|
||||
class TestSubsetNonOverlap(TestSubsets):
|
||||
left = Set([1])
|
||||
right = Set([2])
|
||||
name = "neither empty, neither contains"
|
||||
cases = "!="
|
||||
|
||||
#==============================================================================
|
||||
|
||||
class TestOnlySetsInBinaryOps(unittest.TestCase):
|
||||
|
||||
def test_eq_ne(self):
|
||||
# Unlike the others, this is testing that == and != *are* allowed.
|
||||
self.assertEqual(self.other == self.set, False)
|
||||
self.assertEqual(self.set == self.other, False)
|
||||
self.assertEqual(self.other != self.set, True)
|
||||
self.assertEqual(self.set != self.other, True)
|
||||
|
||||
def test_ge_gt_le_lt(self):
|
||||
self.assertRaises(TypeError, lambda: self.set < self.other)
|
||||
self.assertRaises(TypeError, lambda: self.set <= self.other)
|
||||
self.assertRaises(TypeError, lambda: self.set > self.other)
|
||||
self.assertRaises(TypeError, lambda: self.set >= self.other)
|
||||
|
||||
self.assertRaises(TypeError, lambda: self.other < self.set)
|
||||
self.assertRaises(TypeError, lambda: self.other <= self.set)
|
||||
self.assertRaises(TypeError, lambda: self.other > self.set)
|
||||
self.assertRaises(TypeError, lambda: self.other >= self.set)
|
||||
|
||||
def test_union_update_operator(self):
|
||||
try:
|
||||
self.set |= self.other
|
||||
except TypeError:
|
||||
pass
|
||||
else:
|
||||
self.fail("expected TypeError")
|
||||
|
||||
def test_union_update(self):
|
||||
if self.otherIsIterable:
|
||||
self.set.union_update(self.other)
|
||||
else:
|
||||
self.assertRaises(TypeError, self.set.union_update, self.other)
|
||||
|
||||
def test_union(self):
|
||||
self.assertRaises(TypeError, lambda: self.set | self.other)
|
||||
self.assertRaises(TypeError, lambda: self.other | self.set)
|
||||
if self.otherIsIterable:
|
||||
self.set.union(self.other)
|
||||
else:
|
||||
self.assertRaises(TypeError, self.set.union, self.other)
|
||||
|
||||
def test_intersection_update_operator(self):
|
||||
try:
|
||||
self.set &= self.other
|
||||
except TypeError:
|
||||
pass
|
||||
else:
|
||||
self.fail("expected TypeError")
|
||||
|
||||
def test_intersection_update(self):
|
||||
if self.otherIsIterable:
|
||||
self.set.intersection_update(self.other)
|
||||
else:
|
||||
self.assertRaises(TypeError,
|
||||
self.set.intersection_update,
|
||||
self.other)
|
||||
|
||||
def test_intersection(self):
|
||||
self.assertRaises(TypeError, lambda: self.set & self.other)
|
||||
self.assertRaises(TypeError, lambda: self.other & self.set)
|
||||
if self.otherIsIterable:
|
||||
self.set.intersection(self.other)
|
||||
else:
|
||||
self.assertRaises(TypeError, self.set.intersection, self.other)
|
||||
|
||||
def test_sym_difference_update_operator(self):
|
||||
try:
|
||||
self.set ^= self.other
|
||||
except TypeError:
|
||||
pass
|
||||
else:
|
||||
self.fail("expected TypeError")
|
||||
|
||||
def test_sym_difference_update(self):
|
||||
if self.otherIsIterable:
|
||||
self.set.symmetric_difference_update(self.other)
|
||||
else:
|
||||
self.assertRaises(TypeError,
|
||||
self.set.symmetric_difference_update,
|
||||
self.other)
|
||||
|
||||
def test_sym_difference(self):
|
||||
self.assertRaises(TypeError, lambda: self.set ^ self.other)
|
||||
self.assertRaises(TypeError, lambda: self.other ^ self.set)
|
||||
if self.otherIsIterable:
|
||||
self.set.symmetric_difference(self.other)
|
||||
else:
|
||||
self.assertRaises(TypeError, self.set.symmetric_difference, self.other)
|
||||
|
||||
def test_difference_update_operator(self):
|
||||
try:
|
||||
self.set -= self.other
|
||||
except TypeError:
|
||||
pass
|
||||
else:
|
||||
self.fail("expected TypeError")
|
||||
|
||||
def test_difference_update(self):
|
||||
if self.otherIsIterable:
|
||||
self.set.difference_update(self.other)
|
||||
else:
|
||||
self.assertRaises(TypeError,
|
||||
self.set.difference_update,
|
||||
self.other)
|
||||
|
||||
def test_difference(self):
|
||||
self.assertRaises(TypeError, lambda: self.set - self.other)
|
||||
self.assertRaises(TypeError, lambda: self.other - self.set)
|
||||
if self.otherIsIterable:
|
||||
self.set.difference(self.other)
|
||||
else:
|
||||
self.assertRaises(TypeError, self.set.difference, self.other)
|
||||
|
||||
#------------------------------------------------------------------------------
|
||||
|
||||
class TestOnlySetsNumeric(TestOnlySetsInBinaryOps):
|
||||
def setUp(self):
|
||||
self.set = Set((1, 2, 3))
|
||||
self.other = 19
|
||||
self.otherIsIterable = False
|
||||
|
||||
#------------------------------------------------------------------------------
|
||||
|
||||
class TestOnlySetsDict(TestOnlySetsInBinaryOps):
|
||||
def setUp(self):
|
||||
self.set = Set((1, 2, 3))
|
||||
self.other = {1:2, 3:4}
|
||||
self.otherIsIterable = True
|
||||
|
||||
#------------------------------------------------------------------------------
|
||||
|
||||
class TestOnlySetsOperator(TestOnlySetsInBinaryOps):
|
||||
def setUp(self):
|
||||
self.set = Set((1, 2, 3))
|
||||
self.other = operator.add
|
||||
self.otherIsIterable = False
|
||||
|
||||
#------------------------------------------------------------------------------
|
||||
|
||||
class TestOnlySetsTuple(TestOnlySetsInBinaryOps):
|
||||
def setUp(self):
|
||||
self.set = Set((1, 2, 3))
|
||||
self.other = (2, 4, 6)
|
||||
self.otherIsIterable = True
|
||||
|
||||
#------------------------------------------------------------------------------
|
||||
|
||||
class TestOnlySetsString(TestOnlySetsInBinaryOps):
|
||||
def setUp(self):
|
||||
self.set = Set((1, 2, 3))
|
||||
self.other = 'abc'
|
||||
self.otherIsIterable = True
|
||||
|
||||
#------------------------------------------------------------------------------
|
||||
|
||||
class TestOnlySetsGenerator(TestOnlySetsInBinaryOps):
|
||||
def setUp(self):
|
||||
def gen():
|
||||
for i in xrange(0, 10, 2):
|
||||
yield i
|
||||
self.set = Set((1, 2, 3))
|
||||
self.other = gen()
|
||||
self.otherIsIterable = True
|
||||
|
||||
#------------------------------------------------------------------------------
|
||||
|
||||
class TestOnlySetsofSets(TestOnlySetsInBinaryOps):
|
||||
def setUp(self):
|
||||
self.set = Set((1, 2, 3))
|
||||
self.other = [Set('ab'), ImmutableSet('cd')]
|
||||
self.otherIsIterable = True
|
||||
|
||||
#==============================================================================
|
||||
|
||||
class TestCopying(unittest.TestCase):
|
||||
|
||||
def test_copy(self):
|
||||
dup = self.set.copy()
|
||||
dup_list = sorted(dup, key=repr)
|
||||
set_list = sorted(self.set, key=repr)
|
||||
self.assertEqual(len(dup_list), len(set_list))
|
||||
for i in range(len(dup_list)):
|
||||
self.failUnless(dup_list[i] is set_list[i])
|
||||
|
||||
def test_deep_copy(self):
|
||||
dup = copy.deepcopy(self.set)
|
||||
##print type(dup), repr(dup)
|
||||
dup_list = sorted(dup, key=repr)
|
||||
set_list = sorted(self.set, key=repr)
|
||||
self.assertEqual(len(dup_list), len(set_list))
|
||||
for i in range(len(dup_list)):
|
||||
self.assertEqual(dup_list[i], set_list[i])
|
||||
|
||||
#------------------------------------------------------------------------------
|
||||
|
||||
class TestCopyingEmpty(TestCopying):
|
||||
def setUp(self):
|
||||
self.set = Set()
|
||||
|
||||
#------------------------------------------------------------------------------
|
||||
|
||||
class TestCopyingSingleton(TestCopying):
|
||||
def setUp(self):
|
||||
self.set = Set(["hello"])
|
||||
|
||||
#------------------------------------------------------------------------------
|
||||
|
||||
class TestCopyingTriple(TestCopying):
|
||||
def setUp(self):
|
||||
self.set = Set(["zero", 0, None])
|
||||
|
||||
#------------------------------------------------------------------------------
|
||||
|
||||
class TestCopyingTuple(TestCopying):
|
||||
def setUp(self):
|
||||
self.set = Set([(1, 2)])
|
||||
|
||||
#------------------------------------------------------------------------------
|
||||
|
||||
class TestCopyingNested(TestCopying):
|
||||
def setUp(self):
|
||||
self.set = Set([((1, 2), (3, 4))])
|
||||
|
||||
#==============================================================================
|
||||
|
||||
class TestIdentities(unittest.TestCase):
|
||||
def setUp(self):
|
||||
self.a = Set([random.randrange(100) for i in xrange(50)])
|
||||
self.b = Set([random.randrange(100) for i in xrange(50)])
|
||||
|
||||
def test_binopsVsSubsets(self):
|
||||
a, b = self.a, self.b
|
||||
self.assert_(a - b <= a)
|
||||
self.assert_(b - a <= b)
|
||||
self.assert_(a & b <= a)
|
||||
self.assert_(a & b <= b)
|
||||
self.assert_(a | b >= a)
|
||||
self.assert_(a | b >= b)
|
||||
self.assert_(a ^ b <= a | b)
|
||||
|
||||
def test_commutativity(self):
|
||||
a, b = self.a, self.b
|
||||
self.assertEqual(a&b, b&a)
|
||||
self.assertEqual(a|b, b|a)
|
||||
self.assertEqual(a^b, b^a)
|
||||
if a != b:
|
||||
self.assertNotEqual(a-b, b-a)
|
||||
|
||||
def test_reflexsive_relations(self):
|
||||
a, zero = self.a, Set()
|
||||
self.assertEqual(a ^ a, zero)
|
||||
self.assertEqual(a - a, zero)
|
||||
self.assertEqual(a | a, a)
|
||||
self.assertEqual(a & a, a)
|
||||
self.assert_(a <= a)
|
||||
self.assert_(a >= a)
|
||||
self.assert_(a == a)
|
||||
|
||||
def test_summations(self):
|
||||
# check that sums of parts equal the whole
|
||||
a, b = self.a, self.b
|
||||
self.assertEqual((a-b)|(a&b)|(b-a), a|b)
|
||||
self.assertEqual((a&b)|(a^b), a|b)
|
||||
self.assertEqual(a|(b-a), a|b)
|
||||
self.assertEqual((a-b)|b, a|b)
|
||||
self.assertEqual((a-b)|(a&b), a)
|
||||
self.assertEqual((b-a)|(a&b), b)
|
||||
self.assertEqual((a-b)|(b-a), a^b)
|
||||
|
||||
def test_exclusion(self):
|
||||
# check that inverse operations do not overlap
|
||||
a, b, zero = self.a, self.b, Set()
|
||||
self.assertEqual((a-b)&b, zero)
|
||||
self.assertEqual((b-a)&a, zero)
|
||||
self.assertEqual((a&b)&(a^b), zero)
|
||||
|
||||
def test_cardinality_relations(self):
|
||||
a, b = self.a, self.b
|
||||
self.assertEqual(len(a), len(a-b) + len(a&b))
|
||||
self.assertEqual(len(b), len(b-a) + len(a&b))
|
||||
self.assertEqual(len(a^b), len(a-b) + len(b-a))
|
||||
self.assertEqual(len(a|b), len(a-b) + len(a&b) + len(b-a))
|
||||
self.assertEqual(len(a^b) + len(a&b), len(a|b))
|
||||
|
||||
#==============================================================================
|
||||
|
||||
libreftest = """
|
||||
Example from the Library Reference: Doc/lib/libsets.tex
|
||||
|
||||
>>> from sets import Set as Base # override _repr to get sorted output
|
||||
>>> class Set(Base):
|
||||
... def _repr(self):
|
||||
... return Base._repr(self, sorted=True)
|
||||
>>> engineers = Set(['John', 'Jane', 'Jack', 'Janice'])
|
||||
>>> programmers = Set(['Jack', 'Sam', 'Susan', 'Janice'])
|
||||
>>> managers = Set(['Jane', 'Jack', 'Susan', 'Zack'])
|
||||
>>> employees = engineers | programmers | managers # union
|
||||
>>> engineering_management = engineers & managers # intersection
|
||||
>>> fulltime_management = managers - engineers - programmers # difference
|
||||
>>> engineers.add('Marvin')
|
||||
>>> print engineers
|
||||
Set(['Jack', 'Jane', 'Janice', 'John', 'Marvin'])
|
||||
>>> employees.issuperset(engineers) # superset test
|
||||
False
|
||||
>>> employees.union_update(engineers) # update from another set
|
||||
>>> employees.issuperset(engineers)
|
||||
True
|
||||
>>> for group in [engineers, programmers, managers, employees]:
|
||||
... group.discard('Susan') # unconditionally remove element
|
||||
... print group
|
||||
...
|
||||
Set(['Jack', 'Jane', 'Janice', 'John', 'Marvin'])
|
||||
Set(['Jack', 'Janice', 'Sam'])
|
||||
Set(['Jack', 'Jane', 'Zack'])
|
||||
Set(['Jack', 'Jane', 'Janice', 'John', 'Marvin', 'Sam', 'Zack'])
|
||||
"""
|
||||
|
||||
#==============================================================================
|
||||
|
||||
__test__ = {'libreftest' : libreftest}
|
||||
|
||||
def test_main(verbose=None):
|
||||
import doctest
|
||||
from test import test_sets
|
||||
test_support.run_unittest(
|
||||
TestSetOfSets,
|
||||
TestExceptionPropagation,
|
||||
TestBasicOpsEmpty,
|
||||
TestBasicOpsSingleton,
|
||||
TestBasicOpsTuple,
|
||||
TestBasicOpsTriple,
|
||||
TestBinaryOps,
|
||||
TestUpdateOps,
|
||||
TestMutate,
|
||||
TestSubsetEqualEmpty,
|
||||
TestSubsetEqualNonEmpty,
|
||||
TestSubsetEmptyNonEmpty,
|
||||
TestSubsetPartial,
|
||||
TestSubsetNonOverlap,
|
||||
TestOnlySetsNumeric,
|
||||
TestOnlySetsDict,
|
||||
TestOnlySetsOperator,
|
||||
TestOnlySetsTuple,
|
||||
TestOnlySetsString,
|
||||
TestOnlySetsGenerator,
|
||||
TestOnlySetsofSets,
|
||||
TestCopyingEmpty,
|
||||
TestCopyingSingleton,
|
||||
TestCopyingTriple,
|
||||
TestCopyingTuple,
|
||||
TestCopyingNested,
|
||||
TestIdentities,
|
||||
doctest.DocTestSuite(test_sets),
|
||||
)
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_main(verbose=True)
|
Loading…
Reference in New Issue