Merged revisions 63542-63544,63546,63553,63563-63564,63567,63569,63576 via svnmerge from
svn+ssh://pythondev@svn.python.org/python/trunk ........ r63542 | mark.dickinson | 2008-05-22 20:35:30 -0500 (Thu, 22 May 2008) | 5 lines Issue #2819: Add math.sum, a function that sums a sequence of floats efficiently but with no intermediate loss of precision. Based on Raymond Hettinger's ASPN recipe. Thanks Jean Brouwers for the patch. ........ r63543 | mark.dickinson | 2008-05-22 21:36:48 -0500 (Thu, 22 May 2008) | 2 lines Add tests for math.sum (Issue #2819) ........ r63544 | mark.dickinson | 2008-05-22 22:30:01 -0500 (Thu, 22 May 2008) | 2 lines Better error reporting in test_math.py ........ r63546 | raymond.hettinger | 2008-05-22 23:32:43 -0500 (Thu, 22 May 2008) | 1 line Tweak the comments and formatting. ........ r63553 | mark.dickinson | 2008-05-23 07:07:36 -0500 (Fri, 23 May 2008) | 3 lines Skip math.sum tests on non IEEE 754 platforms, and on IEEE 754 platforms that exhibit the problem described in issue #2937. ........ r63563 | martin.v.loewis | 2008-05-23 10:18:28 -0500 (Fri, 23 May 2008) | 3 lines Issue #1390: Raise ValueError in toxml when an invalid comment would otherwise be produced. ........ r63564 | raymond.hettinger | 2008-05-23 12:21:44 -0500 (Fri, 23 May 2008) | 1 line Issue 2909: show how to name unpacked fields. ........ r63567 | raymond.hettinger | 2008-05-23 12:34:34 -0500 (Fri, 23 May 2008) | 1 line Fix typo ........ r63569 | martin.v.loewis | 2008-05-23 14:33:13 -0500 (Fri, 23 May 2008) | 3 lines Mention that the leaking of variables from list comprehensions is fixed in 3.0. ........ r63576 | martin.v.loewis | 2008-05-24 04:36:45 -0500 (Sat, 24 May 2008) | 3 lines Don't try to get the window size if it was never set before. Fixes the test failure on Solaris. ........
This commit is contained in:
parent
1b466f25e1
commit
2b7411df5c
|
@ -113,7 +113,7 @@ Notes on using :class:`Set` and :class:`MutableSet` as a mixin:
|
|||
Since some set operations create new sets, the default mixin methods need
|
||||
a way to create new instances from an iterable. The class constructor is
|
||||
assumed to have a signature in the form ``ClassName(iterable)``.
|
||||
That assumption is factored-out to a single internal classmethod called
|
||||
That assumption is factored-out to an internal classmethod called
|
||||
:meth:`_from_iterable` which calls ``cls(iterable)`` to produce a new set.
|
||||
If the :class:`Set` mixin is being used in a class with a different
|
||||
constructor signature, you will need to override :meth:`from_iterable`
|
||||
|
|
|
@ -216,6 +216,16 @@ end, assuming longs are aligned on 4-byte boundaries. This only works when
|
|||
native size and alignment are in effect; standard size and alignment does not
|
||||
enforce any alignment.
|
||||
|
||||
Unpacked fields can be named by assigning them to variables or by wrapping
|
||||
the result in a named tuple::
|
||||
|
||||
>>> record = 'raymond \x32\x12\x08\x01\x08'
|
||||
>>> name, serialnum, school, gradelevel = unpack('<10sHHb', record)
|
||||
|
||||
>>> from collections import namedtuple
|
||||
>>> Student = namedtuple('Student', 'name serialnum school gradelevel')
|
||||
>>> Student._make(unpack('<10sHHb', s))
|
||||
Student(name='raymond ', serialnum=4658, school=264, gradelevel=8)
|
||||
|
||||
.. seealso::
|
||||
|
||||
|
|
|
@ -52,13 +52,10 @@ class IoctlTests(unittest.TestCase):
|
|||
set_winsz_opcode_maybe_neg, = struct.unpack("i",
|
||||
struct.pack("I", termios.TIOCSWINSZ))
|
||||
|
||||
# We're just testing that these calls do not raise exceptions.
|
||||
saved_winsz = fcntl.ioctl(mfd, termios.TIOCGWINSZ, "\0"*8)
|
||||
our_winsz = struct.pack("HHHH",80,25,0,0)
|
||||
# test both with a positive and potentially negative ioctl code
|
||||
new_winsz = fcntl.ioctl(mfd, set_winsz_opcode_pos, our_winsz)
|
||||
new_winsz = fcntl.ioctl(mfd, set_winsz_opcode_maybe_neg, our_winsz)
|
||||
fcntl.ioctl(mfd, set_winsz_opcode_maybe_neg, saved_winsz)
|
||||
finally:
|
||||
os.close(mfd)
|
||||
os.close(sfd)
|
||||
|
|
|
@ -626,6 +626,158 @@ class MathTests(unittest.TestCase):
|
|||
self.assertRaises(ValueError, math.sqrt, NINF)
|
||||
self.assert_(math.isnan(math.sqrt(NAN)))
|
||||
|
||||
def testSum(self):
|
||||
# math.sum relies on exact rounding for correct operation.
|
||||
# There's a known problem with IA32 floating-point that causes
|
||||
# inexact rounding in some situations, and will cause the
|
||||
# math.sum tests below to fail; see issue #2937. On non IEEE
|
||||
# 754 platforms, and on IEEE 754 platforms that exhibit the
|
||||
# problem described in issue #2937, we simply skip the whole
|
||||
# test.
|
||||
|
||||
if not float.__getformat__("double").startswith("IEEE"):
|
||||
return
|
||||
|
||||
# on IEEE 754 compliant machines, both of the expressions
|
||||
# below should round to 10000000000000002.0.
|
||||
if 1e16+2.999 != 1e16+2.9999:
|
||||
return
|
||||
|
||||
# Python version of math.sum algorithm, for comparison
|
||||
def msum(iterable):
|
||||
"""Full precision sum of values in iterable. Returns the value of
|
||||
the sum, rounded to the nearest representable floating-point number
|
||||
using the round-half-to-even rule.
|
||||
|
||||
"""
|
||||
# Stage 1: accumulate partials
|
||||
partials = []
|
||||
for x in iterable:
|
||||
i = 0
|
||||
for y in partials:
|
||||
if abs(x) < abs(y):
|
||||
x, y = y, x
|
||||
hi = x + y
|
||||
lo = y - (hi - x)
|
||||
if lo:
|
||||
partials[i] = lo
|
||||
i += 1
|
||||
x = hi
|
||||
partials[i:] = [x] if x else []
|
||||
|
||||
# Stage 2: sum partials
|
||||
if not partials:
|
||||
return 0.0
|
||||
|
||||
# sum from the top, stopping as soon as the sum is inexact.
|
||||
total = partials.pop()
|
||||
while partials:
|
||||
x = partials.pop()
|
||||
old_total, total = total, total + x
|
||||
error = x - (total - old_total)
|
||||
if error != 0.0:
|
||||
# adjust for correct rounding if necessary
|
||||
if partials and (partials[-1] > 0.0) == (error > 0.0) and \
|
||||
total + 2*error - total == 2*error:
|
||||
total += 2*error
|
||||
break
|
||||
return total
|
||||
|
||||
from sys import float_info
|
||||
maxfloat = float_info.max
|
||||
twopow = 2.**(float_info.max_exp - 1)
|
||||
|
||||
test_values = [
|
||||
([], 0.0),
|
||||
([0.0], 0.0),
|
||||
([1e100, 1.0, -1e100, 1e-100, 1e50, -1.0, -1e50], 1e-100),
|
||||
([1e308, 1e308, -1e308], OverflowError),
|
||||
([-1e308, 1e308, 1e308], 1e308),
|
||||
([1e308, -1e308, 1e308], 1e308),
|
||||
([2.0**1023, 2.0**1023, -2.0**1000], OverflowError),
|
||||
([twopow, twopow, twopow, twopow, -twopow, -twopow, -twopow],
|
||||
OverflowError),
|
||||
([2.0**53, -0.5, -2.0**-54], 2.0**53-1.0),
|
||||
([2.0**53, 1.0, 2.0**-100], 2.0**53+2.0),
|
||||
([2.0**53+10.0, 1.0, 2.0**-100], 2.0**53+12.0),
|
||||
|
||||
([2.0**53-4.0, 0.5, 2.0**-54], 2.0**53-3.0),
|
||||
([2.0**1023-2.0**970, -1.0, 2.0**1023], OverflowError),
|
||||
([maxfloat, maxfloat*2.**-54], maxfloat),
|
||||
([maxfloat, maxfloat*2.**-53], OverflowError),
|
||||
([1./n for n in range(1, 1001)], 7.4854708605503451),
|
||||
([(-1.)**n/n for n in range(1, 1001)], -0.69264743055982025),
|
||||
([1.7**(i+1)-1.7**i for i in range(1000)] + [-1.7**1000], -1.0),
|
||||
([INF, -INF, NAN], ValueError),
|
||||
([NAN, INF, -INF], ValueError),
|
||||
([INF, NAN, INF], ValueError),
|
||||
|
||||
([INF, INF], OverflowError),
|
||||
([INF, -INF], ValueError),
|
||||
([-INF, 1e308, 1e308, -INF], OverflowError),
|
||||
([2.0**1023-2.0**970, 0.0, 2.0**1023], OverflowError),
|
||||
([2.0**1023-2.0**970, 1.0, 2.0**1023], OverflowError),
|
||||
([2.0**1023, 2.0**1023], OverflowError),
|
||||
([2.0**1023, 2.0**1023, -1.0], OverflowError),
|
||||
([twopow, twopow, twopow, twopow, -twopow, -twopow],
|
||||
OverflowError),
|
||||
([twopow, twopow, twopow, twopow, -twopow, twopow], OverflowError),
|
||||
([-twopow, -twopow, -twopow, -twopow], OverflowError),
|
||||
|
||||
([2.**1023, 2.**1023, -2.**971], OverflowError),
|
||||
([2.**1023, 2.**1023, -2.**970], OverflowError),
|
||||
([-2.**970, 2.**1023, 2.**1023, -2.**-1074], OverflowError),
|
||||
([ 2.**1023, 2.**1023, -2.**970, 2.**-1074], OverflowError),
|
||||
([-2.**1023, 2.**971, -2.**1023], -maxfloat),
|
||||
([-2.**1023, -2.**1023, 2.**970], OverflowError),
|
||||
([-2.**1023, -2.**1023, 2.**970, 2.**-1074], OverflowError),
|
||||
([-2.**-1074, -2.**1023, -2.**1023, 2.**970], OverflowError),
|
||||
([2.**930, -2.**980, 2.**1023, 2.**1023, twopow, -twopow],
|
||||
OverflowError),
|
||||
([2.**1023, 2.**1023, -1e307], OverflowError),
|
||||
([1e16, 1., 1e-16], 10000000000000002.0),
|
||||
([1e16-2., 1.-2.**53, -(1e16-2.), -(1.-2.**53)], 0.0),
|
||||
]
|
||||
|
||||
for i, (vals, s) in enumerate(test_values):
|
||||
if isinstance(s, type) and issubclass(s, Exception):
|
||||
try:
|
||||
m = math.sum(vals)
|
||||
except s:
|
||||
pass
|
||||
else:
|
||||
self.fail("test %d failed: got %r, expected %r "
|
||||
"for math.sum(%.100r)" %
|
||||
(i, m, s.__name__, vals))
|
||||
else:
|
||||
try:
|
||||
self.assertEqual(math.sum(vals), s)
|
||||
except OverflowError:
|
||||
self.fail("test %d failed: got OverflowError, expected %r "
|
||||
"for math.sum(%.100r)" % (i, s, vals))
|
||||
except ValueError:
|
||||
self.fail("test %d failed: got ValueError, expected %r "
|
||||
"for math.sum(%.100r)" % (i, s, vals))
|
||||
|
||||
# compare with output of msum above, but only when
|
||||
# result isn't an IEEE special or an exception
|
||||
if not math.isinf(s) and not math.isnan(s):
|
||||
self.assertEqual(msum(vals), s)
|
||||
|
||||
from random import random, gauss, shuffle
|
||||
for j in range(1000):
|
||||
vals = [7, 1e100, -7, -1e100, -9e-20, 8e-20] * 10
|
||||
s = 0
|
||||
for i in range(200):
|
||||
v = gauss(0, random()) ** 7 - s
|
||||
s += v
|
||||
vals.append(v)
|
||||
shuffle(vals)
|
||||
|
||||
s = msum(vals)
|
||||
self.assertEqual(msum(vals), math.sum(vals))
|
||||
|
||||
|
||||
def testTan(self):
|
||||
self.assertRaises(TypeError, math.tan)
|
||||
self.ftest('tan(0)', math.tan(0), 0)
|
||||
|
@ -763,6 +915,10 @@ class MathTests(unittest.TestCase):
|
|||
message = (("Unexpected ValueError: %s\n " +
|
||||
"in test %s:%s(%r)\n") % (exc.args[0], id, fn, ar))
|
||||
self.fail(message)
|
||||
except OverflowError:
|
||||
message = ("Unexpected OverflowError in " +
|
||||
"test %s:%s(%r)\n" % (id, fn, ar))
|
||||
self.fail(message)
|
||||
self.ftest("%s:%s(%r)" % (id, fn, ar), result, er)
|
||||
|
||||
def test_main():
|
||||
|
|
|
@ -1314,6 +1314,11 @@ class MinidomTest(unittest.TestCase):
|
|||
for i in range(len(n1.childNodes)):
|
||||
stack.append((n1.childNodes[i], n2.childNodes[i]))
|
||||
|
||||
def testSerializeCommentNodeWithDoubleHyphen(self):
|
||||
doc = create_doc_without_doctype()
|
||||
doc.appendChild(doc.createComment("foo--bar"))
|
||||
self.assertRaises(ValueError, doc.toxml)
|
||||
|
||||
def test_main():
|
||||
run_unittest(MinidomTest)
|
||||
|
||||
|
|
|
@ -1132,6 +1132,8 @@ class Comment(CharacterData):
|
|||
self.data = self.nodeValue = data
|
||||
|
||||
def writexml(self, writer, indent="", addindent="", newl=""):
|
||||
if "--" in self.data:
|
||||
raise ValueError("'--' is not allowed in a comment node")
|
||||
writer.write("%s<!--%s-->%s" % (indent, self.data, newl))
|
||||
|
||||
|
||||
|
|
|
@ -362,6 +362,199 @@ FUNC1(tan, tan, 0,
|
|||
FUNC1(tanh, tanh, 0,
|
||||
"tanh(x)\n\nReturn the hyperbolic tangent of x.")
|
||||
|
||||
/* Precision summation function as msum() by Raymond Hettinger in
|
||||
<http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/393090>,
|
||||
enhanced with the exact partials sum and roundoff from Mark
|
||||
Dickinson's post at <http://bugs.python.org/file10357/msum4.py>.
|
||||
See those links for more details, proofs and other references.
|
||||
|
||||
Note 1: IEEE 754R floating point semantics are assumed,
|
||||
but the current implementation does not re-establish special
|
||||
value semantics across iterations (i.e. handling -Inf + Inf).
|
||||
|
||||
Note 2: No provision is made for intermediate overflow handling;
|
||||
therefore, sum([1e+308, 1e-308, 1e+308]) returns result 1e+308 while
|
||||
sum([1e+308, 1e+308, 1e-308]) raises an OverflowError due to the
|
||||
overflow of the first partial sum.
|
||||
|
||||
Note 3: Aggressively optimizing compilers can potentially eliminate the
|
||||
residual values needed for accurate summation. For instance, the statements
|
||||
"hi = x + y; lo = y - (hi - x);" could be mis-transformed to
|
||||
"hi = x + y; lo = 0.0;" which defeats the computation of residuals.
|
||||
|
||||
Note 4: A similar implementation is in Modules/cmathmodule.c.
|
||||
Be sure to update both when making changes.
|
||||
|
||||
Note 5: The signature of math.sum() differs from __builtin__.sum()
|
||||
because the start argument doesn't make sense in the context of
|
||||
accurate summation. Since the partials table is collapsed before
|
||||
returning a result, sum(seq2, start=sum(seq1)) may not equal the
|
||||
accurate result returned by sum(itertools.chain(seq1, seq2)).
|
||||
*/
|
||||
|
||||
#define NUM_PARTIALS 32 /* initial partials array size, on stack */
|
||||
|
||||
/* Extend the partials array p[] by doubling its size. */
|
||||
static int /* non-zero on error */
|
||||
_sum_realloc(double **p_ptr, Py_ssize_t n,
|
||||
double *ps, Py_ssize_t *m_ptr)
|
||||
{
|
||||
void *v = NULL;
|
||||
Py_ssize_t m = *m_ptr;
|
||||
|
||||
m += m; /* double */
|
||||
if (n < m && m < (PY_SSIZE_T_MAX / sizeof(double))) {
|
||||
double *p = *p_ptr;
|
||||
if (p == ps) {
|
||||
v = PyMem_Malloc(sizeof(double) * m);
|
||||
if (v != NULL)
|
||||
memcpy(v, ps, sizeof(double) * n);
|
||||
}
|
||||
else
|
||||
v = PyMem_Realloc(p, sizeof(double) * m);
|
||||
}
|
||||
if (v == NULL) { /* size overflow or no memory */
|
||||
PyErr_SetString(PyExc_MemoryError, "math sum partials");
|
||||
return 1;
|
||||
}
|
||||
*p_ptr = (double*) v;
|
||||
*m_ptr = m;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Full precision summation of a sequence of floats.
|
||||
|
||||
def msum(iterable):
|
||||
partials = [] # sorted, non-overlapping partial sums
|
||||
for x in iterable:
|
||||
i = 0
|
||||
for y in partials:
|
||||
if abs(x) < abs(y):
|
||||
x, y = y, x
|
||||
hi = x + y
|
||||
lo = y - (hi - x)
|
||||
if lo:
|
||||
partials[i] = lo
|
||||
i += 1
|
||||
x = hi
|
||||
partials[i:] = [x]
|
||||
return sum_exact(partials)
|
||||
|
||||
Rounded x+y stored in hi with the roundoff stored in lo. Together hi+lo
|
||||
are exactly equal to x+y. The inner loop applies hi/lo summation to each
|
||||
partial so that the list of partial sums remains exact.
|
||||
|
||||
Sum_exact() adds the partial sums exactly and correctly rounds the final
|
||||
result (using the round-half-to-even rule). The items in partials remain
|
||||
non-zero, non-special, non-overlapping and strictly increasing in
|
||||
magnitude, but possibly not all having the same sign.
|
||||
|
||||
Depends on IEEE 754 arithmetic guarantees and half-even rounding.
|
||||
*/
|
||||
|
||||
static PyObject*
|
||||
math_sum(PyObject *self, PyObject *seq)
|
||||
{
|
||||
PyObject *item, *iter, *sum = NULL;
|
||||
Py_ssize_t i, j, n = 0, m = NUM_PARTIALS;
|
||||
double x, y, hi, lo=0.0, ps[NUM_PARTIALS], *p = ps;
|
||||
|
||||
iter = PyObject_GetIter(seq);
|
||||
if (iter == NULL)
|
||||
return NULL;
|
||||
|
||||
PyFPE_START_PROTECT("sum", Py_DECREF(iter); return NULL)
|
||||
|
||||
for(;;) { /* for x in iterable */
|
||||
assert(0 <= n && n <= m);
|
||||
assert((m == NUM_PARTIALS && p == ps) ||
|
||||
(m > NUM_PARTIALS && p != NULL));
|
||||
|
||||
item = PyIter_Next(iter);
|
||||
if (item == NULL) {
|
||||
if (PyErr_Occurred())
|
||||
goto _sum_error;
|
||||
break;
|
||||
}
|
||||
x = PyFloat_AsDouble(item);
|
||||
Py_DECREF(item);
|
||||
if (PyErr_Occurred())
|
||||
goto _sum_error;
|
||||
|
||||
for (i = j = 0; j < n; j++) { /* for y in partials */
|
||||
y = p[j];
|
||||
hi = x + y;
|
||||
lo = fabs(x) < fabs(y)
|
||||
? x - (hi - y)
|
||||
: y - (hi - x);
|
||||
if (lo != 0.0)
|
||||
p[i++] = lo;
|
||||
x = hi;
|
||||
}
|
||||
|
||||
n = i; /* ps[i:] = [x] */
|
||||
if (x != 0.0) {
|
||||
/* If non-finite, reset partials, effectively
|
||||
adding subsequent items without roundoff
|
||||
and yielding correct non-finite results,
|
||||
provided IEEE 754 rules are observed */
|
||||
if (! Py_IS_FINITE(x))
|
||||
n = 0;
|
||||
else if (n >= m && _sum_realloc(&p, n, ps, &m))
|
||||
goto _sum_error;
|
||||
p[n++] = x;
|
||||
}
|
||||
}
|
||||
|
||||
if (n > 0) {
|
||||
hi = p[--n];
|
||||
if (Py_IS_FINITE(hi)) {
|
||||
/* sum_exact(ps, hi) from the top, stop when the sum becomes inexact. */
|
||||
while (n > 0) {
|
||||
x = p[--n];
|
||||
y = hi;
|
||||
hi = x + y;
|
||||
assert(fabs(x) < fabs(y));
|
||||
lo = x - (hi - y);
|
||||
if (lo != 0.0)
|
||||
break;
|
||||
}
|
||||
/* Little dance to allow half-even rounding across multiple partials.
|
||||
Needed so that sum([1e-16, 1, 1e16]) will round-up to two instead
|
||||
of down to zero (the 1e16 makes the 1 slightly closer to two). */
|
||||
if (n > 0 && ((lo < 0.0 && p[n-1] < 0.0) ||
|
||||
(lo > 0.0 && p[n-1] > 0.0))) {
|
||||
y = lo * 2.0;
|
||||
x = hi + y;
|
||||
if (y == (x - hi))
|
||||
hi = x;
|
||||
}
|
||||
}
|
||||
else { /* raise corresponding error */
|
||||
errno = Py_IS_NAN(hi) ? EDOM : ERANGE;
|
||||
if (is_error(hi))
|
||||
goto _sum_error;
|
||||
}
|
||||
}
|
||||
else /* default */
|
||||
hi = 0.0;
|
||||
sum = PyFloat_FromDouble(hi);
|
||||
|
||||
_sum_error:
|
||||
PyFPE_END_PROTECT(hi)
|
||||
Py_DECREF(iter);
|
||||
if (p != ps)
|
||||
PyMem_Free(p);
|
||||
return sum;
|
||||
}
|
||||
|
||||
#undef NUM_PARTIALS
|
||||
|
||||
PyDoc_STRVAR(math_sum_doc,
|
||||
"sum(iterable)\n\n\
|
||||
Return an accurate floating point sum of values in the iterable.\n\
|
||||
Assumes IEEE-754 floating point arithmetic.");
|
||||
|
||||
static PyObject *
|
||||
math_trunc(PyObject *self, PyObject *number)
|
||||
{
|
||||
|
@ -833,6 +1026,7 @@ static PyMethodDef math_methods[] = {
|
|||
{"sin", math_sin, METH_O, math_sin_doc},
|
||||
{"sinh", math_sinh, METH_O, math_sinh_doc},
|
||||
{"sqrt", math_sqrt, METH_O, math_sqrt_doc},
|
||||
{"sum", math_sum, METH_O, math_sum_doc},
|
||||
{"tan", math_tan, METH_O, math_tan_doc},
|
||||
{"tanh", math_tanh, METH_O, math_tanh_doc},
|
||||
{"trunc", math_trunc, METH_O, math_trunc_doc},
|
||||
|
|
Loading…
Reference in New Issue