Added Greg Stein and Andrew Kuchling's sha module.
Fix comments about zlib version and URL.
This commit is contained in:
parent
4ec2698725
commit
29d2acc170
|
@ -199,6 +199,11 @@ errno errnomodule.c # posix (UNIX) errno values
|
|||
md5 md5module.c md5c.c
|
||||
|
||||
|
||||
# The sha module implements the SHA checksum algorithm.
|
||||
# (NIST's Secure Hash Algorithm.)
|
||||
sha shamodule.c
|
||||
|
||||
|
||||
# The mpz module interfaces to the GNU Multiple Precision library.
|
||||
# You need to ftp the GNU MP library.
|
||||
# The GMP variable must point to the GMP source directory.
|
||||
|
@ -399,7 +404,7 @@ cPickle cPickle.c
|
|||
#fpetest fpetestmodule.c
|
||||
|
||||
# Andrew Kuchling's zlib module.
|
||||
# This require zlib 1.0.4 (or later). See http://quest.jpl.nasa.gov/zlib/
|
||||
# This require zlib 1.1.3 (or later).
|
||||
# See http://www.cdrom.com/pub/infozip/zlib/
|
||||
#zlib zlibmodule.c -I$(prefix)/include -L$(exec_prefix)/lib -lz
|
||||
|
||||
|
|
|
@ -0,0 +1,604 @@
|
|||
/***********************************************************
|
||||
Copyright 1999 by Stichting Mathematisch Centrum, Amsterdam,
|
||||
The Netherlands.
|
||||
|
||||
All Rights Reserved
|
||||
|
||||
Permission to use, copy, modify, and distribute this software and its
|
||||
documentation for any purpose and without fee is hereby granted,
|
||||
provided that the above copyright notice appear in all copies and that
|
||||
both that copyright notice and this permission notice appear in
|
||||
supporting documentation, and that the names of Stichting Mathematisch
|
||||
Centrum or CWI or Corporation for National Research Initiatives or
|
||||
CNRI not be used in advertising or publicity pertaining to
|
||||
distribution of the software without specific, written prior
|
||||
permission.
|
||||
|
||||
While CWI is the initial source for this software, a modified version
|
||||
is made available by the Corporation for National Research Initiatives
|
||||
(CNRI) at the Internet address ftp://ftp.python.org.
|
||||
|
||||
STICHTING MATHEMATISCH CENTRUM AND CNRI DISCLAIM ALL WARRANTIES WITH
|
||||
REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF
|
||||
MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL STICHTING MATHEMATISCH
|
||||
CENTRUM OR CNRI BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL
|
||||
DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
|
||||
PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
|
||||
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
|
||||
PERFORMANCE OF THIS SOFTWARE.
|
||||
|
||||
******************************************************************/
|
||||
|
||||
/* SHA module */
|
||||
|
||||
/* This module provides an interface to NIST's Secure Hash Algorithm */
|
||||
|
||||
/* See below for information about the original code this module was
|
||||
based upon. Additional work performed by:
|
||||
|
||||
Andrew Kuchling (amk1@erols.com)
|
||||
Greg Stein (gstein@lyra.org)
|
||||
*/
|
||||
|
||||
/* SHA objects */
|
||||
|
||||
#include "Python.h"
|
||||
|
||||
|
||||
/* Endianness testing and definitions */
|
||||
#define TestEndianness(variable) {int i=1; variable=PCT_BIG_ENDIAN;\
|
||||
if (*((char*)&i)==1) variable=PCT_LITTLE_ENDIAN;}
|
||||
|
||||
#define PCT_LITTLE_ENDIAN 1
|
||||
#define PCT_BIG_ENDIAN 0
|
||||
|
||||
/* Some useful types */
|
||||
|
||||
typedef unsigned char SHA_BYTE;
|
||||
|
||||
#if SIZEOF_INT == 4
|
||||
typedef unsigned int SHA_INT32; /* 32-bit integer */
|
||||
#else
|
||||
/* not defined. compilation will die. */
|
||||
#endif
|
||||
|
||||
/* The SHA block size and message digest sizes, in bytes */
|
||||
|
||||
#define SHA_BLOCKSIZE 64
|
||||
#define SHA_DIGESTSIZE 20
|
||||
|
||||
/* The structure for storing SHS info */
|
||||
|
||||
typedef struct {
|
||||
PyObject_HEAD
|
||||
SHA_INT32 digest[5]; /* Message digest */
|
||||
SHA_INT32 count_lo, count_hi; /* 64-bit bit count */
|
||||
SHA_BYTE data[SHA_BLOCKSIZE]; /* SHA data buffer */
|
||||
int Endianness;
|
||||
int local; /* unprocessed amount in data */
|
||||
} SHAobject;
|
||||
|
||||
/* When run on a little-endian CPU we need to perform byte reversal on an
|
||||
array of longwords. */
|
||||
|
||||
static void longReverse(buffer, byteCount, Endianness)
|
||||
SHA_INT32 *buffer;
|
||||
int byteCount, Endianness;
|
||||
{
|
||||
SHA_INT32 value;
|
||||
|
||||
if ( Endianness == PCT_BIG_ENDIAN )
|
||||
return;
|
||||
|
||||
byteCount /= sizeof(*buffer);
|
||||
while( byteCount-- )
|
||||
{
|
||||
value = *buffer;
|
||||
value = ( ( value & 0xFF00FF00L ) >> 8 ) | \
|
||||
( ( value & 0x00FF00FFL ) << 8 );
|
||||
*buffer++ = ( value << 16 ) | ( value >> 16 );
|
||||
}
|
||||
}
|
||||
|
||||
static void SHAcopy(src, dest)
|
||||
SHAobject *src, *dest;
|
||||
{
|
||||
dest->Endianness = src->Endianness;
|
||||
dest->local = src->local;
|
||||
dest->count_lo = src->count_lo;
|
||||
dest->count_hi = src->count_hi;
|
||||
memcpy(dest->digest, src->digest, sizeof(src->digest));
|
||||
memcpy(dest->data, src->data, sizeof(src->data));
|
||||
}
|
||||
|
||||
|
||||
/* ------------------------------------------------------------------------
|
||||
*
|
||||
* This code for the SHA algorithm was noted as public domain. The original
|
||||
* headers are pasted below.
|
||||
*
|
||||
* Several changes have been made to make it more compatible with the
|
||||
* Python environment and desired interface.
|
||||
*
|
||||
*/
|
||||
|
||||
/* NIST Secure Hash Algorithm */
|
||||
/* heavily modified by Uwe Hollerbach <uh@alumni.caltech edu> */
|
||||
/* from Peter C. Gutmann's implementation as found in */
|
||||
/* Applied Cryptography by Bruce Schneier */
|
||||
/* Further modifications to include the "UNRAVEL" stuff, below */
|
||||
|
||||
/* This code is in the public domain */
|
||||
|
||||
/* UNRAVEL should be fastest & biggest */
|
||||
/* UNROLL_LOOPS should be just as big, but slightly slower */
|
||||
/* both undefined should be smallest and slowest */
|
||||
|
||||
#define UNRAVEL
|
||||
/* #define UNROLL_LOOPS */
|
||||
|
||||
/* The SHA f()-functions. The f1 and f3 functions can be optimized to
|
||||
save one boolean operation each - thanks to Rich Schroeppel,
|
||||
rcs@cs.arizona.edu for discovering this */
|
||||
|
||||
/*#define f1(x,y,z) ((x & y) | (~x & z)) // Rounds 0-19 */
|
||||
#define f1(x,y,z) (z ^ (x & (y ^ z))) /* Rounds 0-19 */
|
||||
#define f2(x,y,z) (x ^ y ^ z) /* Rounds 20-39 */
|
||||
/*#define f3(x,y,z) ((x & y) | (x & z) | (y & z)) // Rounds 40-59 */
|
||||
#define f3(x,y,z) ((x & y) | (z & (x | y))) /* Rounds 40-59 */
|
||||
#define f4(x,y,z) (x ^ y ^ z) /* Rounds 60-79 */
|
||||
|
||||
/* SHA constants */
|
||||
|
||||
#define CONST1 0x5a827999L /* Rounds 0-19 */
|
||||
#define CONST2 0x6ed9eba1L /* Rounds 20-39 */
|
||||
#define CONST3 0x8f1bbcdcL /* Rounds 40-59 */
|
||||
#define CONST4 0xca62c1d6L /* Rounds 60-79 */
|
||||
|
||||
/* 32-bit rotate */
|
||||
|
||||
#define R32(x,n) ((x << n) | (x >> (32 - n)))
|
||||
|
||||
/* the generic case, for when the overall rotation is not unraveled */
|
||||
|
||||
#define FG(n) \
|
||||
T = R32(A,5) + f##n(B,C,D) + E + *WP++ + CONST##n; \
|
||||
E = D; D = C; C = R32(B,30); B = A; A = T
|
||||
|
||||
/* specific cases, for when the overall rotation is unraveled */
|
||||
|
||||
#define FA(n) \
|
||||
T = R32(A,5) + f##n(B,C,D) + E + *WP++ + CONST##n; B = R32(B,30)
|
||||
|
||||
#define FB(n) \
|
||||
E = R32(T,5) + f##n(A,B,C) + D + *WP++ + CONST##n; A = R32(A,30)
|
||||
|
||||
#define FC(n) \
|
||||
D = R32(E,5) + f##n(T,A,B) + C + *WP++ + CONST##n; T = R32(T,30)
|
||||
|
||||
#define FD(n) \
|
||||
C = R32(D,5) + f##n(E,T,A) + B + *WP++ + CONST##n; E = R32(E,30)
|
||||
|
||||
#define FE(n) \
|
||||
B = R32(C,5) + f##n(D,E,T) + A + *WP++ + CONST##n; D = R32(D,30)
|
||||
|
||||
#define FT(n) \
|
||||
A = R32(B,5) + f##n(C,D,E) + T + *WP++ + CONST##n; C = R32(C,30)
|
||||
|
||||
/* do SHA transformation */
|
||||
|
||||
static void
|
||||
sha_transform(sha_info)
|
||||
SHAobject *sha_info;
|
||||
{
|
||||
int i;
|
||||
SHA_INT32 T, A, B, C, D, E, W[80], *WP;
|
||||
|
||||
memcpy(W, sha_info->data, sizeof(sha_info->data));
|
||||
longReverse(W, sizeof(sha_info->data), sha_info->Endianness);
|
||||
|
||||
for (i = 16; i < 80; ++i) {
|
||||
W[i] = W[i-3] ^ W[i-8] ^ W[i-14] ^ W[i-16];
|
||||
|
||||
/* extra rotation fix */
|
||||
W[i] = R32(W[i], 1);
|
||||
}
|
||||
A = sha_info->digest[0];
|
||||
B = sha_info->digest[1];
|
||||
C = sha_info->digest[2];
|
||||
D = sha_info->digest[3];
|
||||
E = sha_info->digest[4];
|
||||
WP = W;
|
||||
#ifdef UNRAVEL
|
||||
FA(1); FB(1); FC(1); FD(1); FE(1); FT(1); FA(1); FB(1); FC(1); FD(1);
|
||||
FE(1); FT(1); FA(1); FB(1); FC(1); FD(1); FE(1); FT(1); FA(1); FB(1);
|
||||
FC(2); FD(2); FE(2); FT(2); FA(2); FB(2); FC(2); FD(2); FE(2); FT(2);
|
||||
FA(2); FB(2); FC(2); FD(2); FE(2); FT(2); FA(2); FB(2); FC(2); FD(2);
|
||||
FE(3); FT(3); FA(3); FB(3); FC(3); FD(3); FE(3); FT(3); FA(3); FB(3);
|
||||
FC(3); FD(3); FE(3); FT(3); FA(3); FB(3); FC(3); FD(3); FE(3); FT(3);
|
||||
FA(4); FB(4); FC(4); FD(4); FE(4); FT(4); FA(4); FB(4); FC(4); FD(4);
|
||||
FE(4); FT(4); FA(4); FB(4); FC(4); FD(4); FE(4); FT(4); FA(4); FB(4);
|
||||
sha_info->digest[0] += E;
|
||||
sha_info->digest[1] += T;
|
||||
sha_info->digest[2] += A;
|
||||
sha_info->digest[3] += B;
|
||||
sha_info->digest[4] += C;
|
||||
#else /* !UNRAVEL */
|
||||
#ifdef UNROLL_LOOPS
|
||||
FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1);
|
||||
FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1);
|
||||
FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2);
|
||||
FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2);
|
||||
FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3);
|
||||
FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3);
|
||||
FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4);
|
||||
FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4);
|
||||
#else /* !UNROLL_LOOPS */
|
||||
for (i = 0; i < 20; ++i) { FG(1); }
|
||||
for (i = 20; i < 40; ++i) { FG(2); }
|
||||
for (i = 40; i < 60; ++i) { FG(3); }
|
||||
for (i = 60; i < 80; ++i) { FG(4); }
|
||||
#endif /* !UNROLL_LOOPS */
|
||||
sha_info->digest[0] += A;
|
||||
sha_info->digest[1] += B;
|
||||
sha_info->digest[2] += C;
|
||||
sha_info->digest[3] += D;
|
||||
sha_info->digest[4] += E;
|
||||
#endif /* !UNRAVEL */
|
||||
}
|
||||
|
||||
/* initialize the SHA digest */
|
||||
|
||||
static void
|
||||
sha_init(sha_info)
|
||||
SHAobject *sha_info;
|
||||
{
|
||||
TestEndianness(sha_info->Endianness)
|
||||
|
||||
sha_info->digest[0] = 0x67452301L;
|
||||
sha_info->digest[1] = 0xefcdab89L;
|
||||
sha_info->digest[2] = 0x98badcfeL;
|
||||
sha_info->digest[3] = 0x10325476L;
|
||||
sha_info->digest[4] = 0xc3d2e1f0L;
|
||||
sha_info->count_lo = 0L;
|
||||
sha_info->count_hi = 0L;
|
||||
sha_info->local = 0;
|
||||
}
|
||||
|
||||
/* update the SHA digest */
|
||||
|
||||
static void
|
||||
sha_update(sha_info, buffer, count)
|
||||
SHAobject *sha_info;
|
||||
SHA_BYTE *buffer;
|
||||
int count;
|
||||
{
|
||||
int i;
|
||||
SHA_INT32 clo;
|
||||
|
||||
clo = sha_info->count_lo + ((SHA_INT32) count << 3);
|
||||
if (clo < sha_info->count_lo) {
|
||||
++sha_info->count_hi;
|
||||
}
|
||||
sha_info->count_lo = clo;
|
||||
sha_info->count_hi += (SHA_INT32) count >> 29;
|
||||
if (sha_info->local) {
|
||||
i = SHA_BLOCKSIZE - sha_info->local;
|
||||
if (i > count) {
|
||||
i = count;
|
||||
}
|
||||
memcpy(((SHA_BYTE *) sha_info->data) + sha_info->local,
|
||||
buffer, i);
|
||||
count -= i;
|
||||
buffer += i;
|
||||
sha_info->local += i;
|
||||
if (sha_info->local == SHA_BLOCKSIZE) {
|
||||
sha_transform(sha_info);
|
||||
} else {
|
||||
return;
|
||||
}
|
||||
}
|
||||
while (count >= SHA_BLOCKSIZE) {
|
||||
memcpy(sha_info->data, buffer, SHA_BLOCKSIZE);
|
||||
buffer += SHA_BLOCKSIZE;
|
||||
count -= SHA_BLOCKSIZE;
|
||||
sha_transform(sha_info);
|
||||
}
|
||||
memcpy(sha_info->data, buffer, count);
|
||||
sha_info->local = count;
|
||||
}
|
||||
|
||||
/* finish computing the SHA digest */
|
||||
|
||||
static void
|
||||
sha_final(digest, sha_info)
|
||||
unsigned char digest[20];
|
||||
SHAobject *sha_info;
|
||||
{
|
||||
int count;
|
||||
SHA_INT32 lo_bit_count, hi_bit_count;
|
||||
|
||||
lo_bit_count = sha_info->count_lo;
|
||||
hi_bit_count = sha_info->count_hi;
|
||||
count = (int) ((lo_bit_count >> 3) & 0x3f);
|
||||
((SHA_BYTE *) sha_info->data)[count++] = 0x80;
|
||||
if (count > SHA_BLOCKSIZE - 8)
|
||||
{
|
||||
memset(((SHA_BYTE *) sha_info->data) + count, 0,
|
||||
SHA_BLOCKSIZE - count);
|
||||
sha_transform(sha_info);
|
||||
memset((SHA_BYTE *) sha_info->data, 0, SHA_BLOCKSIZE - 8);
|
||||
}
|
||||
else
|
||||
{
|
||||
memset(((SHA_BYTE *) sha_info->data) + count, 0,
|
||||
SHA_BLOCKSIZE - 8 - count);
|
||||
}
|
||||
|
||||
/* GJS: note that we add the hi/lo in big-endian. sha_transform will
|
||||
swap these values into host-order. */
|
||||
sha_info->data[56] = (hi_bit_count >> 24) & 0xff;
|
||||
sha_info->data[57] = (hi_bit_count >> 16) & 0xff;
|
||||
sha_info->data[58] = (hi_bit_count >> 8) & 0xff;
|
||||
sha_info->data[59] = (hi_bit_count >> 0) & 0xff;
|
||||
sha_info->data[60] = (lo_bit_count >> 24) & 0xff;
|
||||
sha_info->data[61] = (lo_bit_count >> 16) & 0xff;
|
||||
sha_info->data[62] = (lo_bit_count >> 8) & 0xff;
|
||||
sha_info->data[63] = (lo_bit_count >> 0) & 0xff;
|
||||
sha_transform(sha_info);
|
||||
digest[ 0] = (unsigned char) ((sha_info->digest[0] >> 24) & 0xff);
|
||||
digest[ 1] = (unsigned char) ((sha_info->digest[0] >> 16) & 0xff);
|
||||
digest[ 2] = (unsigned char) ((sha_info->digest[0] >> 8) & 0xff);
|
||||
digest[ 3] = (unsigned char) ((sha_info->digest[0] ) & 0xff);
|
||||
digest[ 4] = (unsigned char) ((sha_info->digest[1] >> 24) & 0xff);
|
||||
digest[ 5] = (unsigned char) ((sha_info->digest[1] >> 16) & 0xff);
|
||||
digest[ 6] = (unsigned char) ((sha_info->digest[1] >> 8) & 0xff);
|
||||
digest[ 7] = (unsigned char) ((sha_info->digest[1] ) & 0xff);
|
||||
digest[ 8] = (unsigned char) ((sha_info->digest[2] >> 24) & 0xff);
|
||||
digest[ 9] = (unsigned char) ((sha_info->digest[2] >> 16) & 0xff);
|
||||
digest[10] = (unsigned char) ((sha_info->digest[2] >> 8) & 0xff);
|
||||
digest[11] = (unsigned char) ((sha_info->digest[2] ) & 0xff);
|
||||
digest[12] = (unsigned char) ((sha_info->digest[3] >> 24) & 0xff);
|
||||
digest[13] = (unsigned char) ((sha_info->digest[3] >> 16) & 0xff);
|
||||
digest[14] = (unsigned char) ((sha_info->digest[3] >> 8) & 0xff);
|
||||
digest[15] = (unsigned char) ((sha_info->digest[3] ) & 0xff);
|
||||
digest[16] = (unsigned char) ((sha_info->digest[4] >> 24) & 0xff);
|
||||
digest[17] = (unsigned char) ((sha_info->digest[4] >> 16) & 0xff);
|
||||
digest[18] = (unsigned char) ((sha_info->digest[4] >> 8) & 0xff);
|
||||
digest[19] = (unsigned char) ((sha_info->digest[4] ) & 0xff);
|
||||
}
|
||||
|
||||
/*
|
||||
* End of copied SHA code.
|
||||
*
|
||||
* ------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
staticforward PyTypeObject SHAtype;
|
||||
|
||||
|
||||
static SHAobject *
|
||||
newSHAobject()
|
||||
{
|
||||
return (SHAobject *)PyObject_NEW(SHAobject, &SHAtype);
|
||||
}
|
||||
|
||||
/* Internal methods for a hashing object */
|
||||
|
||||
static void
|
||||
SHA_dealloc(ptr)
|
||||
PyObject *ptr;
|
||||
{
|
||||
PyMem_DEL(ptr);
|
||||
}
|
||||
|
||||
|
||||
/* External methods for a hashing object */
|
||||
|
||||
static char SHA_copy__doc__[] =
|
||||
"Return a copy of the hashing object.";
|
||||
|
||||
static PyObject *
|
||||
SHA_copy(self, args)
|
||||
SHAobject *self;
|
||||
PyObject *args;
|
||||
{
|
||||
SHAobject *newobj;
|
||||
|
||||
if (!PyArg_NoArgs(args)) {
|
||||
return NULL;
|
||||
}
|
||||
|
||||
if ( (newobj = newSHAobject())==NULL)
|
||||
return NULL;
|
||||
|
||||
SHAcopy(self, newobj);
|
||||
return (PyObject *)newobj;
|
||||
}
|
||||
|
||||
static char SHA_digest__doc__[] =
|
||||
"Return the digest value as a string of binary data.";
|
||||
|
||||
static PyObject *
|
||||
SHA_digest(self, args)
|
||||
SHAobject *self;
|
||||
PyObject *args;
|
||||
{
|
||||
unsigned char digest[SHA_DIGESTSIZE];
|
||||
SHAobject temp;
|
||||
|
||||
if (!PyArg_NoArgs(args))
|
||||
return NULL;
|
||||
|
||||
SHAcopy(self, &temp);
|
||||
sha_final(digest, &temp);
|
||||
return PyString_FromStringAndSize(digest, sizeof(digest));
|
||||
}
|
||||
|
||||
static char SHA_hexdigest__doc__[] =
|
||||
"Return the digest value as a string of hexadecimal digits.";
|
||||
|
||||
static PyObject *
|
||||
SHA_hexdigest(self, args)
|
||||
SHAobject *self;
|
||||
PyObject *args;
|
||||
{
|
||||
unsigned char digest[SHA_DIGESTSIZE];
|
||||
SHAobject temp;
|
||||
PyObject *retval;
|
||||
char *hex_digest;
|
||||
int i, j;
|
||||
|
||||
if (!PyArg_NoArgs(args))
|
||||
return NULL;
|
||||
|
||||
/* Get the raw (binary) digest value */
|
||||
SHAcopy(self, &temp);
|
||||
sha_final(digest, &temp);
|
||||
|
||||
/* Create a new string */
|
||||
retval = PyString_FromStringAndSize(NULL, sizeof(digest) * 2);
|
||||
hex_digest = PyString_AsString(retval);
|
||||
|
||||
/* Make hex version of the digest */
|
||||
for(i=j=0; i<sizeof(digest); i++)
|
||||
{
|
||||
char c;
|
||||
c = digest[i] / 16; c = (c>9) ? c+'a'-10 : c + '0';
|
||||
hex_digest[j++] = c;
|
||||
c = digest[i] % 16; c = (c>9) ? c+'a'-10 : c + '0';
|
||||
hex_digest[j++] = c;
|
||||
}
|
||||
|
||||
return retval;
|
||||
}
|
||||
|
||||
static char SHA_update__doc__[] =
|
||||
"Update this hashing object's state with the provided string.";
|
||||
|
||||
static PyObject *
|
||||
SHA_update(self, args)
|
||||
SHAobject *self;
|
||||
PyObject *args;
|
||||
{
|
||||
unsigned char *cp;
|
||||
int len;
|
||||
|
||||
if (!PyArg_Parse(args, "s#", &cp, &len))
|
||||
return NULL;
|
||||
|
||||
sha_update(self, cp, len);
|
||||
|
||||
Py_INCREF(Py_None);
|
||||
return Py_None;
|
||||
}
|
||||
|
||||
static PyMethodDef SHA_methods[] = {
|
||||
{"copy", (PyCFunction)SHA_copy, 0, SHA_copy__doc__},
|
||||
{"digest", (PyCFunction)SHA_digest, 0, SHA_digest__doc__},
|
||||
{"hexdigest", (PyCFunction)SHA_hexdigest, 0, SHA_hexdigest__doc__},
|
||||
{"update", (PyCFunction)SHA_update, 0, SHA_update__doc__},
|
||||
{NULL, NULL} /* sentinel */
|
||||
};
|
||||
|
||||
static PyObject *
|
||||
SHA_getattr(self, name)
|
||||
SHAobject *self;
|
||||
char *name;
|
||||
{
|
||||
if (strcmp(name, "blocksize")==0)
|
||||
return PyInt_FromLong(1);
|
||||
if (strcmp(name, "digestsize")==0)
|
||||
return PyInt_FromLong(20);
|
||||
|
||||
return Py_FindMethod(SHA_methods, (PyObject *)self, name);
|
||||
}
|
||||
|
||||
static PyTypeObject SHAtype = {
|
||||
PyObject_HEAD_INIT(NULL)
|
||||
0, /*ob_size*/
|
||||
"SHA", /*tp_name*/
|
||||
sizeof(SHAobject), /*tp_size*/
|
||||
0, /*tp_itemsize*/
|
||||
/* methods */
|
||||
SHA_dealloc, /*tp_dealloc*/
|
||||
0, /*tp_print*/
|
||||
SHA_getattr, /*tp_getattr*/
|
||||
};
|
||||
|
||||
|
||||
/* The single module-level function: new() */
|
||||
|
||||
static char SHA_new__doc__[] =
|
||||
"Return a new SHA hashing object. An optional string "
|
||||
"argument may be provided; if present, this string will be "
|
||||
" automatically hashed.";
|
||||
|
||||
static PyObject *
|
||||
SHA_new(self, args, kwdict)
|
||||
PyObject *self;
|
||||
PyObject *args;
|
||||
PyObject *kwdict;
|
||||
{
|
||||
static char *kwlist[] = {"string", NULL};
|
||||
SHAobject *new;
|
||||
unsigned char *cp = NULL;
|
||||
int len;
|
||||
|
||||
if ((new = newSHAobject()) == NULL)
|
||||
return NULL;
|
||||
|
||||
if (!PyArg_ParseTupleAndKeywords(args, kwdict, "|s#", kwlist,
|
||||
&cp, &len)) {
|
||||
Py_DECREF(new);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
sha_init(new);
|
||||
|
||||
if (PyErr_Occurred()) {
|
||||
Py_DECREF(new);
|
||||
return NULL;
|
||||
}
|
||||
if (cp)
|
||||
sha_update(new, cp, len);
|
||||
|
||||
return (PyObject *)new;
|
||||
}
|
||||
|
||||
|
||||
/* List of functions exported by this module */
|
||||
|
||||
static struct PyMethodDef SHA_functions[] = {
|
||||
{"new", (PyCFunction)SHA_new, METH_VARARGS|METH_KEYWORDS, SHA_new__doc__},
|
||||
{"sha", (PyCFunction)SHA_new, METH_VARARGS|METH_KEYWORDS, SHA_new__doc__},
|
||||
{NULL, NULL} /* Sentinel */
|
||||
};
|
||||
|
||||
|
||||
/* Initialize this module. */
|
||||
|
||||
#define insint(n,v) { PyObject *o=PyInt_FromLong(v); \
|
||||
if (o!=NULL) PyDict_SetItemString(d,n,o); \
|
||||
Py_XDECREF(o); }
|
||||
|
||||
void
|
||||
initsha()
|
||||
{
|
||||
PyObject *d, *m;
|
||||
|
||||
SHAtype.ob_type = &PyType_Type;
|
||||
m = Py_InitModule("sha", SHA_functions);
|
||||
|
||||
/* Add some symbolic constants to the module */
|
||||
d = PyModule_GetDict(m);
|
||||
insint("blocksize", 1); /* For future use, in case some hash
|
||||
functions require an integral number of
|
||||
blocks */
|
||||
insint("digestsize", 20);
|
||||
|
||||
/* Check for errors */
|
||||
if (PyErr_Occurred())
|
||||
Py_FatalError("can't initialize module SHA");
|
||||
}
|
||||
|
Loading…
Reference in New Issue