Rename weighted_choices() to just choices()
This commit is contained in:
parent
c98b26a6ac
commit
28aa4a0684
|
@ -124,7 +124,7 @@ Functions for sequences:
|
||||||
Return a random element from the non-empty sequence *seq*. If *seq* is empty,
|
Return a random element from the non-empty sequence *seq*. If *seq* is empty,
|
||||||
raises :exc:`IndexError`.
|
raises :exc:`IndexError`.
|
||||||
|
|
||||||
.. function:: weighted_choices(k, population, weights=None, *, cum_weights=None)
|
.. function:: choices(k, population, weights=None, *, cum_weights=None)
|
||||||
|
|
||||||
Return a *k* sized list of elements chosen from the *population* with replacement.
|
Return a *k* sized list of elements chosen from the *population* with replacement.
|
||||||
If the *population* is empty, raises :exc:`IndexError`.
|
If the *population* is empty, raises :exc:`IndexError`.
|
||||||
|
|
|
@ -51,7 +51,7 @@ __all__ = ["Random","seed","random","uniform","randint","choice","sample",
|
||||||
"randrange","shuffle","normalvariate","lognormvariate",
|
"randrange","shuffle","normalvariate","lognormvariate",
|
||||||
"expovariate","vonmisesvariate","gammavariate","triangular",
|
"expovariate","vonmisesvariate","gammavariate","triangular",
|
||||||
"gauss","betavariate","paretovariate","weibullvariate",
|
"gauss","betavariate","paretovariate","weibullvariate",
|
||||||
"getstate","setstate", "getrandbits", "weighted_choices",
|
"getstate","setstate", "getrandbits", "choices",
|
||||||
"SystemRandom"]
|
"SystemRandom"]
|
||||||
|
|
||||||
NV_MAGICCONST = 4 * _exp(-0.5)/_sqrt(2.0)
|
NV_MAGICCONST = 4 * _exp(-0.5)/_sqrt(2.0)
|
||||||
|
@ -337,7 +337,7 @@ class Random(_random.Random):
|
||||||
result[i] = population[j]
|
result[i] = population[j]
|
||||||
return result
|
return result
|
||||||
|
|
||||||
def weighted_choices(self, k, population, weights=None, *, cum_weights=None):
|
def choices(self, k, population, weights=None, *, cum_weights=None):
|
||||||
"""Return a k sized list of population elements chosen with replacement.
|
"""Return a k sized list of population elements chosen with replacement.
|
||||||
|
|
||||||
If the relative weights or cumulative weights are not specified,
|
If the relative weights or cumulative weights are not specified,
|
||||||
|
@ -749,7 +749,7 @@ choice = _inst.choice
|
||||||
randrange = _inst.randrange
|
randrange = _inst.randrange
|
||||||
sample = _inst.sample
|
sample = _inst.sample
|
||||||
shuffle = _inst.shuffle
|
shuffle = _inst.shuffle
|
||||||
weighted_choices = _inst.weighted_choices
|
choices = _inst.choices
|
||||||
normalvariate = _inst.normalvariate
|
normalvariate = _inst.normalvariate
|
||||||
lognormvariate = _inst.lognormvariate
|
lognormvariate = _inst.lognormvariate
|
||||||
expovariate = _inst.expovariate
|
expovariate = _inst.expovariate
|
||||||
|
|
|
@ -142,8 +142,8 @@ class TestBasicOps:
|
||||||
def test_sample_on_dicts(self):
|
def test_sample_on_dicts(self):
|
||||||
self.assertRaises(TypeError, self.gen.sample, dict.fromkeys('abcdef'), 2)
|
self.assertRaises(TypeError, self.gen.sample, dict.fromkeys('abcdef'), 2)
|
||||||
|
|
||||||
def test_weighted_choices(self):
|
def test_choices(self):
|
||||||
weighted_choices = self.gen.weighted_choices
|
choices = self.gen.choices
|
||||||
data = ['red', 'green', 'blue', 'yellow']
|
data = ['red', 'green', 'blue', 'yellow']
|
||||||
str_data = 'abcd'
|
str_data = 'abcd'
|
||||||
range_data = range(4)
|
range_data = range(4)
|
||||||
|
@ -151,63 +151,63 @@ class TestBasicOps:
|
||||||
|
|
||||||
# basic functionality
|
# basic functionality
|
||||||
for sample in [
|
for sample in [
|
||||||
weighted_choices(5, data),
|
choices(5, data),
|
||||||
weighted_choices(5, data, range(4)),
|
choices(5, data, range(4)),
|
||||||
weighted_choices(k=5, population=data, weights=range(4)),
|
choices(k=5, population=data, weights=range(4)),
|
||||||
weighted_choices(k=5, population=data, cum_weights=range(4)),
|
choices(k=5, population=data, cum_weights=range(4)),
|
||||||
]:
|
]:
|
||||||
self.assertEqual(len(sample), 5)
|
self.assertEqual(len(sample), 5)
|
||||||
self.assertEqual(type(sample), list)
|
self.assertEqual(type(sample), list)
|
||||||
self.assertTrue(set(sample) <= set(data))
|
self.assertTrue(set(sample) <= set(data))
|
||||||
|
|
||||||
# test argument handling
|
# test argument handling
|
||||||
with self.assertRaises(TypeError): # missing arguments
|
with self.assertRaises(TypeError): # missing arguments
|
||||||
weighted_choices(2)
|
choices(2)
|
||||||
|
|
||||||
self.assertEqual(weighted_choices(0, data), []) # k == 0
|
self.assertEqual(choices(0, data), []) # k == 0
|
||||||
self.assertEqual(weighted_choices(-1, data), []) # negative k behaves like ``[0] * -1``
|
self.assertEqual(choices(-1, data), []) # negative k behaves like ``[0] * -1``
|
||||||
with self.assertRaises(TypeError):
|
with self.assertRaises(TypeError):
|
||||||
weighted_choices(2.5, data) # k is a float
|
choices(2.5, data) # k is a float
|
||||||
|
|
||||||
self.assertTrue(set(weighted_choices(5, str_data)) <= set(str_data)) # population is a string sequence
|
self.assertTrue(set(choices(5, str_data)) <= set(str_data)) # population is a string sequence
|
||||||
self.assertTrue(set(weighted_choices(5, range_data)) <= set(range_data)) # population is a range
|
self.assertTrue(set(choices(5, range_data)) <= set(range_data)) # population is a range
|
||||||
with self.assertRaises(TypeError):
|
with self.assertRaises(TypeError):
|
||||||
weighted_choices(2.5, set_data) # population is not a sequence
|
choices(2.5, set_data) # population is not a sequence
|
||||||
|
|
||||||
self.assertTrue(set(weighted_choices(5, data, None)) <= set(data)) # weights is None
|
self.assertTrue(set(choices(5, data, None)) <= set(data)) # weights is None
|
||||||
self.assertTrue(set(weighted_choices(5, data, weights=None)) <= set(data))
|
self.assertTrue(set(choices(5, data, weights=None)) <= set(data))
|
||||||
with self.assertRaises(ValueError):
|
with self.assertRaises(ValueError):
|
||||||
weighted_choices(5, data, [1,2]) # len(weights) != len(population)
|
choices(5, data, [1,2]) # len(weights) != len(population)
|
||||||
with self.assertRaises(IndexError):
|
with self.assertRaises(IndexError):
|
||||||
weighted_choices(5, data, [0]*4) # weights sum to zero
|
choices(5, data, [0]*4) # weights sum to zero
|
||||||
with self.assertRaises(TypeError):
|
with self.assertRaises(TypeError):
|
||||||
weighted_choices(5, data, 10) # non-iterable weights
|
choices(5, data, 10) # non-iterable weights
|
||||||
with self.assertRaises(TypeError):
|
with self.assertRaises(TypeError):
|
||||||
weighted_choices(5, data, [None]*4) # non-numeric weights
|
choices(5, data, [None]*4) # non-numeric weights
|
||||||
for weights in [
|
for weights in [
|
||||||
[15, 10, 25, 30], # integer weights
|
[15, 10, 25, 30], # integer weights
|
||||||
[15.1, 10.2, 25.2, 30.3], # float weights
|
[15.1, 10.2, 25.2, 30.3], # float weights
|
||||||
[Fraction(1, 3), Fraction(2, 6), Fraction(3, 6), Fraction(4, 6)], # fractional weights
|
[Fraction(1, 3), Fraction(2, 6), Fraction(3, 6), Fraction(4, 6)], # fractional weights
|
||||||
[True, False, True, False] # booleans (include / exclude)
|
[True, False, True, False] # booleans (include / exclude)
|
||||||
]:
|
]:
|
||||||
self.assertTrue(set(weighted_choices(5, data, weights)) <= set(data))
|
self.assertTrue(set(choices(5, data, weights)) <= set(data))
|
||||||
|
|
||||||
with self.assertRaises(ValueError):
|
with self.assertRaises(ValueError):
|
||||||
weighted_choices(5, data, cum_weights=[1,2]) # len(weights) != len(population)
|
choices(5, data, cum_weights=[1,2]) # len(weights) != len(population)
|
||||||
with self.assertRaises(IndexError):
|
with self.assertRaises(IndexError):
|
||||||
weighted_choices(5, data, cum_weights=[0]*4) # cum_weights sum to zero
|
choices(5, data, cum_weights=[0]*4) # cum_weights sum to zero
|
||||||
with self.assertRaises(TypeError):
|
with self.assertRaises(TypeError):
|
||||||
weighted_choices(5, data, cum_weights=10) # non-iterable cum_weights
|
choices(5, data, cum_weights=10) # non-iterable cum_weights
|
||||||
with self.assertRaises(TypeError):
|
with self.assertRaises(TypeError):
|
||||||
weighted_choices(5, data, cum_weights=[None]*4) # non-numeric cum_weights
|
choices(5, data, cum_weights=[None]*4) # non-numeric cum_weights
|
||||||
with self.assertRaises(TypeError):
|
with self.assertRaises(TypeError):
|
||||||
weighted_choices(5, data, range(4), cum_weights=range(4)) # both weights and cum_weights
|
choices(5, data, range(4), cum_weights=range(4)) # both weights and cum_weights
|
||||||
for weights in [
|
for weights in [
|
||||||
[15, 10, 25, 30], # integer cum_weights
|
[15, 10, 25, 30], # integer cum_weights
|
||||||
[15.1, 10.2, 25.2, 30.3], # float cum_weights
|
[15.1, 10.2, 25.2, 30.3], # float cum_weights
|
||||||
[Fraction(1, 3), Fraction(2, 6), Fraction(3, 6), Fraction(4, 6)], # fractional cum_weights
|
[Fraction(1, 3), Fraction(2, 6), Fraction(3, 6), Fraction(4, 6)], # fractional cum_weights
|
||||||
]:
|
]:
|
||||||
self.assertTrue(set(weighted_choices(5, data, cum_weights=weights)) <= set(data))
|
self.assertTrue(set(choices(5, data, cum_weights=weights)) <= set(data))
|
||||||
|
|
||||||
def test_gauss(self):
|
def test_gauss(self):
|
||||||
# Ensure that the seed() method initializes all the hidden state. In
|
# Ensure that the seed() method initializes all the hidden state. In
|
||||||
|
|
|
@ -101,7 +101,7 @@ Library
|
||||||
- Issue #27691: Fix ssl module's parsing of GEN_RID subject alternative name
|
- Issue #27691: Fix ssl module's parsing of GEN_RID subject alternative name
|
||||||
fields in X.509 certs.
|
fields in X.509 certs.
|
||||||
|
|
||||||
- Issue #18844: Add random.weighted_choices().
|
- Issue #18844: Add random.choices().
|
||||||
|
|
||||||
- Issue #25761: Improved error reporting about truncated pickle data in
|
- Issue #25761: Improved error reporting about truncated pickle data in
|
||||||
C implementation of unpickler. UnpicklingError is now raised instead of
|
C implementation of unpickler. UnpicklingError is now raised instead of
|
||||||
|
|
Loading…
Reference in New Issue