Descriptor HowTo: Improve the fidelity of the member object simulation (GH-23475) (GH-23479)

This commit is contained in:
Miss Islington (bot) 2020-11-23 11:31:45 -08:00 committed by GitHub
parent 3e53301308
commit 2019e4ff98
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
1 changed files with 46 additions and 11 deletions

View File

@ -1079,6 +1079,8 @@ simulation where the actual C structure for slots is emulated by a private
``_slotvalues`` list. Reads and writes to that private structure are managed
by member descriptors::
null = object()
class Member:
def __init__(self, name, clsname, offset):
@ -1091,20 +1093,28 @@ by member descriptors::
def __get__(self, obj, objtype=None):
'Emulate member_get() in Objects/descrobject.c'
# Also see PyMember_GetOne() in Python/structmember.c
return obj._slotvalues[self.offset]
value = obj._slotvalues[self.offset]
if value is null:
raise AttributeError(self.name)
return value
def __set__(self, obj, value):
'Emulate member_set() in Objects/descrobject.c'
obj._slotvalues[self.offset] = value
def __delete__(self, obj):
'Emulate member_delete() in Objects/descrobject.c'
value = obj._slotvalues[self.offset]
if value is null:
raise AttributeError(self.name)
obj._slotvalues[self.offset] = null
def __repr__(self):
'Emulate member_repr() in Objects/descrobject.c'
return f'<Member {self.name!r} of {self.clsname!r}>'
The :meth:`type.__new__` method takes care of adding member objects to class
variables. The :meth:`object.__new__` method takes care of creating instances
that have slots instead of an instance dictionary. Here is a rough equivalent
in pure Python::
variables::
class Type(type):
'Simulate how the type metaclass adds member objects for slots'
@ -1117,6 +1127,10 @@ in pure Python::
mapping[name] = Member(name, clsname, offset)
return type.__new__(mcls, clsname, bases, mapping)
The :meth:`object.__new__` method takes care of creating instances that have
slots instead of an instance dictionary. Here is a rough simulation in pure
Python::
class Object:
'Simulate how object.__new__() allocates memory for __slots__'
@ -1124,13 +1138,33 @@ in pure Python::
'Emulate object_new() in Objects/typeobject.c'
inst = super().__new__(cls)
if hasattr(cls, 'slot_names'):
inst._slotvalues = [None] * len(cls.slot_names)
empty_slots = [null] * len(cls.slot_names)
object.__setattr__(inst, '_slotvalues', empty_slots)
return inst
def __setattr__(self, name, value):
'Emulate _PyObject_GenericSetAttrWithDict() Objects/object.c'
cls = type(self)
if hasattr(cls, 'slot_names') and name not in cls.slot_names:
raise AttributeError(
f'{type(self).__name__!r} object has no attribute {name!r}'
)
super().__setattr__(name, value)
def __delattr__(self, name):
'Emulate _PyObject_GenericSetAttrWithDict() Objects/object.c'
cls = type(self)
if hasattr(cls, 'slot_names') and name not in cls.slot_names:
raise AttributeError(
f'{type(self).__name__!r} object has no attribute {name!r}'
)
super().__delattr__(name)
To use the simulation in a real class, just inherit from :class:`Object` and
set the :term:`metaclass` to :class:`Type`::
class H(Object, metaclass=Type):
'Instance variables stored in slots'
slot_names = ['x', 'y']
@ -1143,11 +1177,11 @@ At this point, the metaclass has loaded member objects for *x* and *y*::
>>> import pprint
>>> pprint.pp(dict(vars(H)))
{'__module__': '__main__',
'__doc__': 'Instance variables stored in slots',
'slot_names': ['x', 'y'],
'__init__': <function H.__init__ at 0x7fb5d302f9d0>,
'x': <Member 'x' of 'H'>,
'y': <Member 'y' of 'H'>,
'__doc__': None}
'y': <Member 'y' of 'H'>}
When instances are created, they have a ``slot_values`` list where the
attributes are stored::
@ -1159,8 +1193,9 @@ attributes are stored::
>>> vars(h)
{'_slotvalues': [55, 20]}
Unlike the real ``__slots__``, this simulation does have an instance
dictionary just to hold the ``_slotvalues`` array. So, unlike the real code,
this simulation doesn't block assignments to misspelled attributes::
Misspelled or unassigned attributes will raise an exception::
>>> h.xz = 30 # For actual __slots__ this would raise an AttributeError
>>> h.xz
Traceback (most recent call last):
...
AttributeError: 'H' object has no attribute 'xz'