Remove some long obsolete files...

This commit is contained in:
Guido van Rossum 1998-04-06 14:16:12 +00:00
parent f62cf61548
commit 1ae297ae8b
5 changed files with 0 additions and 696 deletions

View File

@ -1,142 +0,0 @@
"""File-like objects that read/write an array buffer.
This implements (nearly) all stdio methods.
f = ArrayIO() # ready for writing
f = ArrayIO(buf) # ready for reading
f.close() # explicitly release resources held
flag = f.isatty() # always false
pos = f.tell() # get current position
f.seek(pos) # set current position
f.seek(pos, mode) # mode 0: absolute; 1: relative; 2: relative to EOF
buf = f.read() # read until EOF
buf = f.read(n) # read up to n bytes
buf = f.readline() # read until end of line ('\n') or EOF
list = f.readlines()# list of f.readline() results until EOF
f.write(buf) # write at current position
f.writelines(list) # for line in list: f.write(line)
f.getvalue() # return whole file's contents as a string
Notes:
- This is very similar to StringIO. StringIO is faster for reading,
but ArrayIO is faster for writing.
- ArrayIO uses an array object internally, but all its interfaces
accept and return strings.
- Using a real file is often faster (but less convenient).
- fileno() is left unimplemented so that code which uses it triggers
an exception early.
- Seeking far beyond EOF and then writing will insert real null
bytes that occupy space in the buffer.
- There's a simple test set (see end of this file).
"""
import string
from array import array
class ArrayIO:
def __init__(self, buf = ''):
self.buf = array('c', buf)
self.pos = 0
self.closed = 0
self.softspace = 0
def close(self):
if not self.closed:
self.closed = 1
del self.buf, self.pos
def isatty(self):
return 0
def seek(self, pos, mode = 0):
if mode == 1:
pos = pos + self.pos
elif mode == 2:
pos = pos + len(self.buf)
self.pos = max(0, pos)
def tell(self):
return self.pos
def read(self, n = -1):
if n < 0:
newpos = len(self.buf)
else:
newpos = min(self.pos+n, len(self.buf))
r = self.buf[self.pos:newpos].tostring()
self.pos = newpos
return r
def readline(self):
i = string.find(self.buf[self.pos:].tostring(), '\n')
if i < 0:
newpos = len(self.buf)
else:
newpos = self.pos+i+1
r = self.buf[self.pos:newpos].tostring()
self.pos = newpos
return r
def readlines(self):
lines = string.splitfields(self.read(), '\n')
if not lines:
return lines
for i in range(len(lines)-1):
lines[i] = lines[i] + '\n'
if not lines[-1]:
del lines[-1]
return lines
def write(self, s):
if not s: return
a = array('c', s)
n = self.pos - len(self.buf)
if n > 0:
self.buf[len(self.buf):] = array('c', '\0')*n
newpos = self.pos + len(a)
self.buf[self.pos:newpos] = a
self.pos = newpos
def writelines(self, list):
self.write(string.joinfields(list, ''))
def flush(self):
pass
def getvalue(self):
return self.buf.tostring()
# A little test suite
def test():
import sys
if sys.argv[1:]:
file = sys.argv[1]
else:
file = '/etc/passwd'
lines = open(file, 'r').readlines()
text = open(file, 'r').read()
f = ArrayIO()
for line in lines[:-2]:
f.write(line)
f.writelines(lines[-2:])
if f.getvalue() != text:
raise RuntimeError, 'write failed'
length = f.tell()
print 'File length =', length
f.seek(len(lines[0]))
f.write(lines[1])
f.seek(0)
print 'First line =', `f.readline()`
here = f.tell()
line = f.readline()
print 'Second line =', `line`
f.seek(-len(line), 1)
line2 = f.read(len(line))
if line != line2:
raise RuntimeError, 'bad result after seek back'
f.seek(len(line2), 1)
list = f.readlines()
line = list[-1]
f.seek(f.tell() - len(line))
line2 = f.read()
if line != line2:
raise RuntimeError, 'bad result after seek back from EOF'
print 'Read', len(list), 'more lines'
print 'File length =', f.tell()
if f.tell() != length:
raise RuntimeError, 'bad length'
f.close()
if __name__ == '__main__':
test()

View File

@ -1,241 +0,0 @@
"""Object-oriented interface to the parser module.
This module exports four classes which together provide an interface
to the parser module. Together, the three classes represent two ways
to create parsed representations of Python source and the two starting
data types (source text and tuple representations). Each class
provides interfaces which are identical other than the constructors.
The constructors are described in detail in the documentation for each
class and the remaining, shared portion of the interface is documented
below. Briefly, the classes provided are:
AST
Defines the primary interface to the AST objects and supports creation
from the tuple representation of the parse tree.
ExpressionAST
Supports creation of expression constructs from source text.
SuiteAST
Supports creation of statement suites from source text.
FileSuiteAST
Convenience subclass of the `SuiteAST' class; loads source text of the
suite from an external file.
Common Methods
--------------
Aside from the constructors, several methods are provided to allow
access to the various interpretations of the parse tree and to check
conditions of the construct represented by the parse tree.
ast()
Returns the corresponding `parser.ASTType' object.
code()
Returns the compiled code object.
filename()
Returns the name of the associated source file, if known.
isExpression()
Returns true value if parse tree represents an expression, or a false
value otherwise.
isSuite()
Returns true value if parse tree represents a suite of statements, or
a false value otherwise.
text()
Returns the source text, or None if not available.
tuple()
Returns the tuple representing the parse tree.
"""
__version__ = '$Revision$'
__copyright__ = """Copyright (c) 1995, 1996 by Fred L. Drake, Jr.
This software may be used and distributed freely for any purpose provided
that this notice is included unchanged on any and all copies. The author
does not warrant or guarantee this software in any way.
"""
class AST:
"""Base class for Abstract Syntax Tree objects.
Creates an Abstract Syntax Tree based on the tuple representation
of the parse tree. The parse tree can represent either an
expression or a suite; which will be recognized automatically.
This base class provides all of the query methods for subclass
objects defined in this module.
"""
import parser # import internally to avoid
_p = parser # namespace pollution at the
# top level
_text = None
_code = None
_ast = None
_type = 'unknown'
_tupl = None
def __init__(self, tuple):
"""Create an `AST' instance from a tuple-tree representation.
tuple
The tuple tree to convert.
The tuple-tree may represent either an expression or a suite; the
type will be determined automatically. Line number information may
optionally be present for any subset of the terminal tokens.
"""
if type(tuple) is not type(()):
raise TypeError, 'Base AST class requires tuple parameter.'
self._tupl = tuple
self._ast = self._p.tuple2ast(tuple)
self._type = (self._p.isexpr(self._ast) and 'expression') or 'suite'
def list(self, line_info = 0):
"""Returns a fresh list representing the parse tree.
line_info
If true, includes line number information for terminal tokens in
the output data structure,
"""
return self._p.ast2list(self._ast, line_info)
def tuple(self, line_info = 0):
"""Returns the tuple representing the parse tree.
line_info
If true, includes line number information for terminal tokens in
the output data structure,
"""
if self._tupl is None:
self._tupl = self._p.ast2tuple(self._ast, line_info)
return self._tupl
def code(self):
"""Returns the compiled code object.
The code object returned by this method may be passed to the
exec statement if `AST.isSuite()' is true or to the eval()
function if `AST.isExpression()' is true. All the usual rules
regarding execution of code objects apply.
"""
if not self._code:
self._code = self._p.compileast(self._ast)
return self._code
def ast(self):
"""Returns the corresponding `parser.ASTType' object.
"""
return self._ast
def filename(self):
"""Returns the name of the source file if known, or None.
"""
return None
def text(self):
"""Returns the source text, or None if not available.
If the instance is of class `AST', None is returned since no
source text is available. If of class `ExpressionAST' or
`SuiteAST', the source text passed to the constructor is
returned.
"""
return self._text
def isSuite(self):
"""Determine if `AST' instance represents a suite of statements.
"""
return self._type == 'suite'
def isExpression(self):
"""Determine if `AST' instance represents an expression.
"""
return self._type == 'expression'
class SuiteAST(AST):
"""Statement suite parse tree representation.
This subclass of the `AST' base class represents statement suites
parsed from the source text of a Python suite. If the source text
does not represent a parsable suite of statements, the appropriate
exception is raised by the parser.
"""
_type = 'suite'
def __init__(self, text):
"""Initialize a `SuiteAST' from source text.
text
Source text to parse.
"""
if type(text) is not type(''):
raise TypeError, 'SuiteAST requires source text parameter.'
self._text = text
self._ast = self._p.suite(text)
def isSuite(self):
return 1
def isExpression(self):
return 0
class FileSuiteAST(SuiteAST):
"""Representation of a python source file syntax tree.
This provides a convenience wrapper around the `SuiteAST' class to
load the source text from an external file.
"""
def __init__(self, fileName):
"""Initialize a `SuiteAST' from a source file.
fileName
Name of the external source file.
"""
self._fileName = fileName
SuiteAST.__init__(self, open(fileName).read())
def filename(self):
return self._fileName
class ExpressionAST(AST):
"""Expression parse tree representation.
This subclass of the `AST' base class represents expression
constructs parsed from the source text of a Python expression. If
the source text does not represent a parsable expression, the
appropriate exception is raised by the Python parser.
"""
_type = 'expression'
def __init__(self, text):
"""Initialize an expression AST from source text.
text
Source text to parse.
"""
if type(text) is not type(''):
raise TypeError, 'ExpressionAST requires source text parameter.'
self._text = text
self._ast = self._p.expr(text)
def isSuite(self):
return 0
def isExpression(self):
return 1
#
# end of file

View File

@ -1,275 +0,0 @@
# Complex numbers
# ---------------
# This module represents complex numbers as instances of the class Complex.
# A Complex instance z has two data attribues, z.re (the real part) and z.im
# (the imaginary part). In fact, z.re and z.im can have any value -- all
# arithmetic operators work regardless of the type of z.re and z.im (as long
# as they support numerical operations).
#
# The following functions exist (Complex is actually a class):
# Complex([re [,im]) -> creates a complex number from a real and an imaginary part
# IsComplex(z) -> true iff z is a complex number (== has .re and .im attributes)
# Polar([r [,phi [,fullcircle]]]) ->
# the complex number z for which r == z.radius() and phi == z.angle(fullcircle)
# (r and phi default to 0)
#
# Complex numbers have the following methods:
# z.abs() -> absolute value of z
# z.radius() == z.abs()
# z.angle([fullcircle]) -> angle from positive X axis; fullcircle gives units
# z.phi([fullcircle]) == z.angle(fullcircle)
#
# These standard functions and unary operators accept complex arguments:
# abs(z)
# -z
# +z
# not z
# repr(z) == `z`
# str(z)
# hash(z) -> a combination of hash(z.re) and hash(z.im) such that if z.im is zero
# the result equals hash(z.re)
# Note that hex(z) and oct(z) are not defined.
#
# These conversions accept complex arguments only if their imaginary part is zero:
# int(z)
# long(z)
# float(z)
#
# The following operators accept two complex numbers, or one complex number
# and one real number (int, long or float):
# z1 + z2
# z1 - z2
# z1 * z2
# z1 / z2
# pow(z1, z2)
# cmp(z1, z2)
# Note that z1 % z2 and divmod(z1, z2) are not defined,
# nor are shift and mask operations.
#
# The standard module math does not support complex numbers.
# (I suppose it would be easy to implement a cmath module.)
#
# Idea:
# add a class Polar(r, phi) and mixed-mode arithmetic which
# chooses the most appropriate type for the result:
# Complex for +,-,cmp
# Polar for *,/,pow
import types, math
if not hasattr(math, 'hypot'):
def hypot(x, y):
# XXX I know there's a way to compute this without possibly causing
# overflow, but I can't remember what it is right now...
return math.sqrt(x*x + y*y)
math.hypot = hypot
twopi = math.pi*2.0
halfpi = math.pi/2.0
def IsComplex(obj):
return hasattr(obj, 're') and hasattr(obj, 'im')
def Polar(r = 0, phi = 0, fullcircle = twopi):
phi = phi * (twopi / fullcircle)
return Complex(math.cos(phi)*r, math.sin(phi)*r)
class Complex:
def __init__(self, re=0, im=0):
if IsComplex(re):
im = im + re.im
re = re.re
if IsComplex(im):
re = re - im.im
im = im.re
self.re = re
self.im = im
def __setattr__(self, name, value):
if hasattr(self, name):
raise TypeError, "Complex numbers have set-once attributes"
self.__dict__[name] = value
def __repr__(self):
if not self.im:
return 'Complex(%s)' % `self.re`
else:
return 'Complex(%s, %s)' % (`self.re`, `self.im`)
def __str__(self):
if not self.im:
return `self.re`
else:
return 'Complex(%s, %s)' % (`self.re`, `self.im`)
def __coerce__(self, other):
if IsComplex(other):
return self, other
return self, Complex(other) # May fail
def __cmp__(self, other):
return cmp(self.re, other.re) or cmp(self.im, other.im)
def __hash__(self):
if not self.im: return hash(self.re)
mod = sys.maxint + 1L
return int((hash(self.re) + 2L*hash(self.im) + mod) % (2L*mod) - mod)
def __neg__(self):
return Complex(-self.re, -self.im)
def __pos__(self):
return self
def __abs__(self):
return math.hypot(self.re, self.im)
##return math.sqrt(self.re*self.re + self.im*self.im)
def __int__(self):
if self.im:
raise ValueError, "can't convert Complex with nonzero im to int"
return int(self.re)
def __long__(self):
if self.im:
raise ValueError, "can't convert Complex with nonzero im to long"
return long(self.re)
def __float__(self):
if self.im:
raise ValueError, "can't convert Complex with nonzero im to float"
return float(self.re)
def __nonzero__(self):
return not (self.re == self.im == 0)
abs = radius = __abs__
def angle(self, fullcircle = twopi):
return (fullcircle/twopi) * ((halfpi - math.atan2(self.re, self.im)) % twopi)
phi = angle
def __add__(self, other):
return Complex(self.re + other.re, self.im + other.im)
__radd__ = __add__
def __sub__(self, other):
return Complex(self.re - other.re, self.im - other.im)
def __rsub__(self, other):
return Complex(other.re - self.re, other.im - self.im)
def __mul__(self, other):
return Complex(self.re*other.re - self.im*other.im,
self.re*other.im + self.im*other.re)
__rmul__ = __mul__
def __div__(self, other):
# Deviating from the general principle of not forcing re or im
# to be floats, we cast to float here, otherwise division
# of Complex numbers with integer re and im parts would use
# the (truncating) integer division
d = float(other.re*other.re + other.im*other.im)
if not d: raise ZeroDivisionError, 'Complex division'
return Complex((self.re*other.re + self.im*other.im) / d,
(self.im*other.re - self.re*other.im) / d)
def __rdiv__(self, other):
return other / self
def __pow__(self, n, z=None):
if z is not None:
raise TypeError, 'Complex does not support ternary pow()'
if IsComplex(n):
if n.im: raise TypeError, 'Complex to the Complex power'
n = n.re
r = pow(self.abs(), n)
phi = n*self.angle()
return Complex(math.cos(phi)*r, math.sin(phi)*r)
def __rpow__(self, base):
return pow(base, self)
# Everything below this point is part of the test suite
def checkop(expr, a, b, value, fuzz = 1e-6):
import sys
print ' ', a, 'and', b,
try:
result = eval(expr)
except:
result = sys.exc_type
print '->', result
if (type(result) == type('') or type(value) == type('')):
ok = result == value
else:
ok = abs(result - value) <= fuzz
if not ok:
print '!!\t!!\t!! should be', value, 'diff', abs(result - value)
def test():
testsuite = {
'a+b': [
(1, 10, 11),
(1, Complex(0,10), Complex(1,10)),
(Complex(0,10), 1, Complex(1,10)),
(Complex(0,10), Complex(1), Complex(1,10)),
(Complex(1), Complex(0,10), Complex(1,10)),
],
'a-b': [
(1, 10, -9),
(1, Complex(0,10), Complex(1,-10)),
(Complex(0,10), 1, Complex(-1,10)),
(Complex(0,10), Complex(1), Complex(-1,10)),
(Complex(1), Complex(0,10), Complex(1,-10)),
],
'a*b': [
(1, 10, 10),
(1, Complex(0,10), Complex(0, 10)),
(Complex(0,10), 1, Complex(0,10)),
(Complex(0,10), Complex(1), Complex(0,10)),
(Complex(1), Complex(0,10), Complex(0,10)),
],
'a/b': [
(1., 10, 0.1),
(1, Complex(0,10), Complex(0, -0.1)),
(Complex(0, 10), 1, Complex(0, 10)),
(Complex(0, 10), Complex(1), Complex(0, 10)),
(Complex(1), Complex(0,10), Complex(0, -0.1)),
],
'pow(a,b)': [
(1, 10, 1),
(1, Complex(0,10), 'TypeError'),
(Complex(0,10), 1, Complex(0,10)),
(Complex(0,10), Complex(1), Complex(0,10)),
(Complex(1), Complex(0,10), 'TypeError'),
(2, Complex(4,0), 16),
],
'cmp(a,b)': [
(1, 10, -1),
(1, Complex(0,10), 1),
(Complex(0,10), 1, -1),
(Complex(0,10), Complex(1), -1),
(Complex(1), Complex(0,10), 1),
],
}
exprs = testsuite.keys()
exprs.sort()
for expr in exprs:
print expr + ':'
t = (expr,)
for item in testsuite[expr]:
apply(checkop, t+item)
if __name__ == '__main__':
test()

View File

@ -1,36 +0,0 @@
# THIS IS OBSOLETE -- USE MODULE 'compileall' INSTEAD!
# Utility module to import all modules in the path, in the hope
# that this will update their ".pyc" files.
import os
import sys
# Sabotage 'gl' and 'stdwin' to prevent windows popping up...
for m in 'gl', 'stdwin', 'fl', 'fm':
sys.modules[m] = sys
exceptions = ['importall']
for dir in sys.path:
print 'Listing', dir
try:
names = os.listdir(dir)
except os.error:
print 'Can\'t list', dir
names = []
names.sort()
for name in names:
head, tail = name[:-3], name[-3:]
if tail == '.py' and head not in exceptions:
s = 'import ' + head
print s
try:
exec s + '\n'
except KeyboardInterrupt:
del names[:]
print '\n[interrupt]'
break
except:
print 'Sorry:', sys.exc_type + ':',
print sys.exc_value

View File

@ -1,2 +0,0 @@
import sys
sys.modules['ni'] = sys.modules[__name__]