Take Tim's advice and have random.sample() support only sequences and sets.
This commit is contained in:
parent
28de64fd0f
commit
1acde190b2
|
@ -111,8 +111,8 @@ Functions for sequences:
|
||||||
|
|
||||||
.. function:: sample(population, k)
|
.. function:: sample(population, k)
|
||||||
|
|
||||||
Return a *k* length list of unique elements chosen from the population sequence.
|
Return a *k* length list of unique elements chosen from the population sequence
|
||||||
Used for random sampling without replacement.
|
or set. Used for random sampling without replacement.
|
||||||
|
|
||||||
Returns a new list containing elements from the population while leaving the
|
Returns a new list containing elements from the population while leaving the
|
||||||
original population unchanged. The resulting list is in selection order so that
|
original population unchanged. The resulting list is in selection order so that
|
||||||
|
|
|
@ -267,7 +267,7 @@ class Random(_random.Random):
|
||||||
x[i], x[j] = x[j], x[i]
|
x[i], x[j] = x[j], x[i]
|
||||||
|
|
||||||
def sample(self, population, k):
|
def sample(self, population, k):
|
||||||
"""Chooses k unique random elements from a population sequence.
|
"""Chooses k unique random elements from a population sequence or set.
|
||||||
|
|
||||||
Returns a new list containing elements from the population while
|
Returns a new list containing elements from the population while
|
||||||
leaving the original population unchanged. The resulting list is
|
leaving the original population unchanged. The resulting list is
|
||||||
|
@ -284,15 +284,6 @@ class Random(_random.Random):
|
||||||
large population: sample(range(10000000), 60)
|
large population: sample(range(10000000), 60)
|
||||||
"""
|
"""
|
||||||
|
|
||||||
# XXX Although the documentation says `population` is "a sequence",
|
|
||||||
# XXX attempts are made to cater to any iterable with a __len__
|
|
||||||
# XXX method. This has had mixed success. Examples from both
|
|
||||||
# XXX sides: sets work fine, and should become officially supported;
|
|
||||||
# XXX dicts are much harder, and have failed in various subtle
|
|
||||||
# XXX ways across attempts. Support for mapping types should probably
|
|
||||||
# XXX be dropped (and users should pass mapping.keys() or .values()
|
|
||||||
# XXX explicitly).
|
|
||||||
|
|
||||||
# Sampling without replacement entails tracking either potential
|
# Sampling without replacement entails tracking either potential
|
||||||
# selections (the pool) in a list or previous selections in a set.
|
# selections (the pool) in a list or previous selections in a set.
|
||||||
|
|
||||||
|
@ -303,37 +294,35 @@ class Random(_random.Random):
|
||||||
# preferred since the list takes less space than the
|
# preferred since the list takes less space than the
|
||||||
# set and it doesn't suffer from frequent reselections.
|
# set and it doesn't suffer from frequent reselections.
|
||||||
|
|
||||||
|
if isinstance(population, (set, frozenset)):
|
||||||
|
population = tuple(population)
|
||||||
|
if not hasattr(population, '__getitem__') or hasattr(population, 'keys'):
|
||||||
|
raise TypeError("Population must be a sequence or set. For dicts, use dict.keys().")
|
||||||
|
random = self.random
|
||||||
n = len(population)
|
n = len(population)
|
||||||
if not 0 <= k <= n:
|
if not 0 <= k <= n:
|
||||||
raise ValueError("sample larger than population")
|
raise ValueError("Sample larger than population")
|
||||||
random = self.random
|
|
||||||
_int = int
|
_int = int
|
||||||
result = [None] * k
|
result = [None] * k
|
||||||
setsize = 21 # size of a small set minus size of an empty list
|
setsize = 21 # size of a small set minus size of an empty list
|
||||||
if k > 5:
|
if k > 5:
|
||||||
setsize += 4 ** _ceil(_log(k * 3, 4)) # table size for big sets
|
setsize += 4 ** _ceil(_log(k * 3, 4)) # table size for big sets
|
||||||
if n <= setsize or hasattr(population, "keys"):
|
if n <= setsize:
|
||||||
# An n-length list is smaller than a k-length set, or this is a
|
# An n-length list is smaller than a k-length set
|
||||||
# mapping type so the other algorithm wouldn't work.
|
|
||||||
pool = list(population)
|
pool = list(population)
|
||||||
for i in range(k): # invariant: non-selected at [0,n-i)
|
for i in range(k): # invariant: non-selected at [0,n-i)
|
||||||
j = _int(random() * (n-i))
|
j = _int(random() * (n-i))
|
||||||
result[i] = pool[j]
|
result[i] = pool[j]
|
||||||
pool[j] = pool[n-i-1] # move non-selected item into vacancy
|
pool[j] = pool[n-i-1] # move non-selected item into vacancy
|
||||||
else:
|
else:
|
||||||
try:
|
selected = set()
|
||||||
selected = set()
|
selected_add = selected.add
|
||||||
selected_add = selected.add
|
for i in range(k):
|
||||||
for i in range(k):
|
j = _int(random() * n)
|
||||||
|
while j in selected:
|
||||||
j = _int(random() * n)
|
j = _int(random() * n)
|
||||||
while j in selected:
|
selected_add(j)
|
||||||
j = _int(random() * n)
|
result[i] = population[j]
|
||||||
selected_add(j)
|
|
||||||
result[i] = population[j]
|
|
||||||
except (TypeError, KeyError): # handle (at least) sets
|
|
||||||
if isinstance(population, list):
|
|
||||||
raise
|
|
||||||
return self.sample(tuple(population), k)
|
|
||||||
return result
|
return result
|
||||||
|
|
||||||
## -------------------- real-valued distributions -------------------
|
## -------------------- real-valued distributions -------------------
|
||||||
|
|
|
@ -84,26 +84,7 @@ class TestBasicOps(unittest.TestCase):
|
||||||
self.gen.sample(tuple('abcdefghijklmnopqrst'), 2)
|
self.gen.sample(tuple('abcdefghijklmnopqrst'), 2)
|
||||||
|
|
||||||
def test_sample_on_dicts(self):
|
def test_sample_on_dicts(self):
|
||||||
self.gen.sample(dict.fromkeys('abcdefghijklmnopqrst'), 2)
|
self.assertRaises(TypeError, self.gen.sample, dict.fromkeys('abcdef'), 2)
|
||||||
|
|
||||||
# SF bug #1460340 -- random.sample can raise KeyError
|
|
||||||
a = dict.fromkeys(list(range(10)) +
|
|
||||||
list(range(10,100,2)) +
|
|
||||||
list(range(100,110)))
|
|
||||||
self.gen.sample(a, 3)
|
|
||||||
|
|
||||||
# A followup to bug #1460340: sampling from a dict could return
|
|
||||||
# a subset of its keys or of its values, depending on the size of
|
|
||||||
# the subset requested.
|
|
||||||
N = 30
|
|
||||||
d = dict((i, complex(i, i)) for i in range(N))
|
|
||||||
for k in range(N+1):
|
|
||||||
samp = self.gen.sample(d, k)
|
|
||||||
# Verify that we got ints back (keys); the values are complex.
|
|
||||||
for x in samp:
|
|
||||||
self.assert_(type(x) is int)
|
|
||||||
samp.sort()
|
|
||||||
self.assertEqual(samp, list(range(N)))
|
|
||||||
|
|
||||||
def test_gauss(self):
|
def test_gauss(self):
|
||||||
# Ensure that the seed() method initializes all the hidden state. In
|
# Ensure that the seed() method initializes all the hidden state. In
|
||||||
|
|
|
@ -355,6 +355,9 @@ Library
|
||||||
- Removed defunct parts of the random module (the Wichmann-Hill generator
|
- Removed defunct parts of the random module (the Wichmann-Hill generator
|
||||||
and the jumpahead() method).
|
and the jumpahead() method).
|
||||||
|
|
||||||
|
- random.sample() now explicitly supports all sequences and sets while
|
||||||
|
explicitly excluding mappings.
|
||||||
|
|
||||||
- Patch #467924: add ZipFile.extract() and ZipFile.extractall() in the
|
- Patch #467924: add ZipFile.extract() and ZipFile.extractall() in the
|
||||||
zipfile module.
|
zipfile module.
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue