Add cum_weights example (simulation of a cumulative binomial distribution).
This commit is contained in:
parent
a9e99b1a54
commit
16ef5d4ae1
|
@ -351,6 +351,13 @@ Basic usage::
|
|||
>>> choices(['red', 'black', 'green'], [18, 18, 2], k=6)
|
||||
['red', 'green', 'black', 'black', 'red', 'black']
|
||||
|
||||
# Probability of getting 5 or more heads from 7 spins of a biased coin
|
||||
# that settles on heads 60% of the time.
|
||||
>>> n = 10000
|
||||
>>> cw = [0.60, 1.00]
|
||||
>>> sum(choices('HT', cum_weights=cw, k=7).count('H') >= 5 for i in range(n)) / n
|
||||
0.4169
|
||||
|
||||
Example of `statistical bootstrapping
|
||||
<https://en.wikipedia.org/wiki/Bootstrapping_(statistics)>`_ using resampling
|
||||
with replacement to estimate a confidence interval for the mean of a small
|
||||
|
|
Loading…
Reference in New Issue