bpo-37798: Add C fastpath for statistics.NormalDist.inv_cdf() (GH-15266)

This commit is contained in:
Dong-hee Na 2019-08-24 07:20:30 +09:00 committed by Raymond Hettinger
parent 5be666010e
commit 0a18ee4be7
9 changed files with 264 additions and 73 deletions

View File

@ -824,6 +824,81 @@ def pstdev(data, mu=None):
## Normal Distribution ##################################################### ## Normal Distribution #####################################################
def _normal_dist_inv_cdf(p, mu, sigma):
# There is no closed-form solution to the inverse CDF for the normal
# distribution, so we use a rational approximation instead:
# Wichura, M.J. (1988). "Algorithm AS241: The Percentage Points of the
# Normal Distribution". Applied Statistics. Blackwell Publishing. 37
# (3): 477484. doi:10.2307/2347330. JSTOR 2347330.
q = p - 0.5
if fabs(q) <= 0.425:
r = 0.180625 - q * q
# Hash sum: 55.88319_28806_14901_4439
num = (((((((2.50908_09287_30122_6727e+3 * r +
3.34305_75583_58812_8105e+4) * r +
6.72657_70927_00870_0853e+4) * r +
4.59219_53931_54987_1457e+4) * r +
1.37316_93765_50946_1125e+4) * r +
1.97159_09503_06551_4427e+3) * r +
1.33141_66789_17843_7745e+2) * r +
3.38713_28727_96366_6080e+0) * q
den = (((((((5.22649_52788_52854_5610e+3 * r +
2.87290_85735_72194_2674e+4) * r +
3.93078_95800_09271_0610e+4) * r +
2.12137_94301_58659_5867e+4) * r +
5.39419_60214_24751_1077e+3) * r +
6.87187_00749_20579_0830e+2) * r +
4.23133_30701_60091_1252e+1) * r +
1.0)
x = num / den
return mu + (x * sigma)
r = p if q <= 0.0 else 1.0 - p
r = sqrt(-log(r))
if r <= 5.0:
r = r - 1.6
# Hash sum: 49.33206_50330_16102_89036
num = (((((((7.74545_01427_83414_07640e-4 * r +
2.27238_44989_26918_45833e-2) * r +
2.41780_72517_74506_11770e-1) * r +
1.27045_82524_52368_38258e+0) * r +
3.64784_83247_63204_60504e+0) * r +
5.76949_72214_60691_40550e+0) * r +
4.63033_78461_56545_29590e+0) * r +
1.42343_71107_49683_57734e+0)
den = (((((((1.05075_00716_44416_84324e-9 * r +
5.47593_80849_95344_94600e-4) * r +
1.51986_66563_61645_71966e-2) * r +
1.48103_97642_74800_74590e-1) * r +
6.89767_33498_51000_04550e-1) * r +
1.67638_48301_83803_84940e+0) * r +
2.05319_16266_37758_82187e+0) * r +
1.0)
else:
r = r - 5.0
# Hash sum: 47.52583_31754_92896_71629
num = (((((((2.01033_43992_92288_13265e-7 * r +
2.71155_55687_43487_57815e-5) * r +
1.24266_09473_88078_43860e-3) * r +
2.65321_89526_57612_30930e-2) * r +
2.96560_57182_85048_91230e-1) * r +
1.78482_65399_17291_33580e+0) * r +
5.46378_49111_64114_36990e+0) * r +
6.65790_46435_01103_77720e+0)
den = (((((((2.04426_31033_89939_78564e-15 * r +
1.42151_17583_16445_88870e-7) * r +
1.84631_83175_10054_68180e-5) * r +
7.86869_13114_56132_59100e-4) * r +
1.48753_61290_85061_48525e-2) * r +
1.36929_88092_27358_05310e-1) * r +
5.99832_20655_58879_37690e-1) * r +
1.0)
x = num / den
if q < 0.0:
x = -x
return mu + (x * sigma)
class NormalDist: class NormalDist:
"Normal distribution of a random variable" "Normal distribution of a random variable"
# https://en.wikipedia.org/wiki/Normal_distribution # https://en.wikipedia.org/wiki/Normal_distribution
@ -882,79 +957,7 @@ class NormalDist:
raise StatisticsError('p must be in the range 0.0 < p < 1.0') raise StatisticsError('p must be in the range 0.0 < p < 1.0')
if self._sigma <= 0.0: if self._sigma <= 0.0:
raise StatisticsError('cdf() not defined when sigma at or below zero') raise StatisticsError('cdf() not defined when sigma at or below zero')
return _normal_dist_inv_cdf(p, self._mu, self._sigma)
# There is no closed-form solution to the inverse CDF for the normal
# distribution, so we use a rational approximation instead:
# Wichura, M.J. (1988). "Algorithm AS241: The Percentage Points of the
# Normal Distribution". Applied Statistics. Blackwell Publishing. 37
# (3): 477484. doi:10.2307/2347330. JSTOR 2347330.
q = p - 0.5
if fabs(q) <= 0.425:
r = 0.180625 - q * q
# Hash sum: 55.88319_28806_14901_4439
num = (((((((2.50908_09287_30122_6727e+3 * r +
3.34305_75583_58812_8105e+4) * r +
6.72657_70927_00870_0853e+4) * r +
4.59219_53931_54987_1457e+4) * r +
1.37316_93765_50946_1125e+4) * r +
1.97159_09503_06551_4427e+3) * r +
1.33141_66789_17843_7745e+2) * r +
3.38713_28727_96366_6080e+0) * q
den = (((((((5.22649_52788_52854_5610e+3 * r +
2.87290_85735_72194_2674e+4) * r +
3.93078_95800_09271_0610e+4) * r +
2.12137_94301_58659_5867e+4) * r +
5.39419_60214_24751_1077e+3) * r +
6.87187_00749_20579_0830e+2) * r +
4.23133_30701_60091_1252e+1) * r +
1.0)
x = num / den
return self._mu + (x * self._sigma)
r = p if q <= 0.0 else 1.0 - p
r = sqrt(-log(r))
if r <= 5.0:
r = r - 1.6
# Hash sum: 49.33206_50330_16102_89036
num = (((((((7.74545_01427_83414_07640e-4 * r +
2.27238_44989_26918_45833e-2) * r +
2.41780_72517_74506_11770e-1) * r +
1.27045_82524_52368_38258e+0) * r +
3.64784_83247_63204_60504e+0) * r +
5.76949_72214_60691_40550e+0) * r +
4.63033_78461_56545_29590e+0) * r +
1.42343_71107_49683_57734e+0)
den = (((((((1.05075_00716_44416_84324e-9 * r +
5.47593_80849_95344_94600e-4) * r +
1.51986_66563_61645_71966e-2) * r +
1.48103_97642_74800_74590e-1) * r +
6.89767_33498_51000_04550e-1) * r +
1.67638_48301_83803_84940e+0) * r +
2.05319_16266_37758_82187e+0) * r +
1.0)
else:
r = r - 5.0
# Hash sum: 47.52583_31754_92896_71629
num = (((((((2.01033_43992_92288_13265e-7 * r +
2.71155_55687_43487_57815e-5) * r +
1.24266_09473_88078_43860e-3) * r +
2.65321_89526_57612_30930e-2) * r +
2.96560_57182_85048_91230e-1) * r +
1.78482_65399_17291_33580e+0) * r +
5.46378_49111_64114_36990e+0) * r +
6.65790_46435_01103_77720e+0)
den = (((((((2.04426_31033_89939_78564e-15 * r +
1.42151_17583_16445_88870e-7) * r +
1.84631_83175_10054_68180e-5) * r +
7.86869_13114_56132_59100e-4) * r +
1.48753_61290_85061_48525e-2) * r +
1.36929_88092_27358_05310e-1) * r +
5.99832_20655_58879_37690e-1) * r +
1.0)
x = num / den
if q < 0.0:
x = -x
return self._mu + (x * self._sigma)
def overlap(self, other): def overlap(self, other):
"""Compute the overlapping coefficient (OVL) between two normal distributions. """Compute the overlapping coefficient (OVL) between two normal distributions.
@ -1078,6 +1081,12 @@ class NormalDist:
def __repr__(self): def __repr__(self):
return f'{type(self).__name__}(mu={self._mu!r}, sigma={self._sigma!r})' return f'{type(self).__name__}(mu={self._mu!r}, sigma={self._sigma!r})'
# If available, use C implementation
try:
from _statistics import _normal_dist_inv_cdf
except ImportError:
pass
if __name__ == '__main__': if __name__ == '__main__':

View File

@ -0,0 +1 @@
Add C fastpath for statistics.NormalDist.inv_cdf() Patch by Dong-hee Na

View File

@ -182,6 +182,7 @@ _symtable symtablemodule.c
#_heapq _heapqmodule.c # Heap queue algorithm #_heapq _heapqmodule.c # Heap queue algorithm
#_asyncio _asynciomodule.c # Fast asyncio Future #_asyncio _asynciomodule.c # Fast asyncio Future
#_json -I$(srcdir)/Include/internal -DPy_BUILD_CORE_BUILTIN _json.c # _json speedups #_json -I$(srcdir)/Include/internal -DPy_BUILD_CORE_BUILTIN _json.c # _json speedups
#_statistics _statisticsmodule.c # statistics accelerator
#unicodedata unicodedata.c # static Unicode character database #unicodedata unicodedata.c # static Unicode character database

122
Modules/_statisticsmodule.c Normal file
View File

@ -0,0 +1,122 @@
/* statistics accelerator C extensor: _statistics module. */
#include "Python.h"
#include "structmember.h"
#include "clinic/_statisticsmodule.c.h"
/*[clinic input]
module _statistics
[clinic start generated code]*/
/*[clinic end generated code: output=da39a3ee5e6b4b0d input=864a6f59b76123b2]*/
static PyMethodDef speedups_methods[] = {
_STATISTICS__NORMAL_DIST_INV_CDF_METHODDEF
{NULL, NULL, 0, NULL}
};
/*[clinic input]
_statistics._normal_dist_inv_cdf -> double
p: double
mu: double
sigma: double
/
[clinic start generated code]*/
static double
_statistics__normal_dist_inv_cdf_impl(PyObject *module, double p, double mu,
double sigma)
/*[clinic end generated code: output=02fd19ddaab36602 input=24715a74be15296a]*/
{
double q, num, den, r, x;
q = p - 0.5;
// Algorithm AS 241: The Percentage Points of the Normal Distribution
if(fabs(q) <= 0.425) {
r = 0.180625 - q * q;
// Hash sum AB: 55.88319 28806 14901 4439
num = (((((((2.5090809287301226727e+3 * r +
3.3430575583588128105e+4) * r +
6.7265770927008700853e+4) * r +
4.5921953931549871457e+4) * r +
1.3731693765509461125e+4) * r +
1.9715909503065514427e+3) * r +
1.3314166789178437745e+2) * r +
3.3871328727963666080e+0) * q;
den = (((((((5.2264952788528545610e+3 * r +
2.8729085735721942674e+4) * r +
3.9307895800092710610e+4) * r +
2.1213794301586595867e+4) * r +
5.3941960214247511077e+3) * r +
6.8718700749205790830e+2) * r +
4.2313330701600911252e+1) * r +
1.0);
x = num / den;
return mu + (x * sigma);
}
r = q <= 0.0? p : 1.0-p;
r = sqrt(-log(r));
if (r <= 5.0) {
r = r - 1.6;
// Hash sum CD: 49.33206 50330 16102 89036
num = (((((((7.74545014278341407640e-4 * r +
2.27238449892691845833e-2) * r +
2.41780725177450611770e-1) * r +
1.27045825245236838258e+0) * r +
3.64784832476320460504e+0) * r +
5.76949722146069140550e+0) * r +
4.63033784615654529590e+0) * r +
1.42343711074968357734e+0);
den = (((((((1.05075007164441684324e-9 * r +
5.47593808499534494600e-4) * r +
1.51986665636164571966e-2) * r +
1.48103976427480074590e-1) * r +
6.89767334985100004550e-1) * r +
1.67638483018380384940e+0) * r +
2.05319162663775882187e+0) * r +
1.0);
} else {
r -= 5.0;
// Hash sum EF: 47.52583 31754 92896 71629
num = (((((((2.01033439929228813265e-7 * r +
2.71155556874348757815e-5) * r +
1.24266094738807843860e-3) * r +
2.65321895265761230930e-2) * r +
2.96560571828504891230e-1) * r +
1.78482653991729133580e+0) * r +
5.46378491116411436990e+0) * r +
6.65790464350110377720e+0);
den = (((((((2.04426310338993978564e-15 * r +
1.42151175831644588870e-7) * r +
1.84631831751005468180e-5) * r +
7.86869131145613259100e-4) * r +
1.48753612908506148525e-2) * r +
1.36929880922735805310e-1) * r +
5.99832206555887937690e-1) * r +
1.0);
}
x = num / den;
if (q < 0.0) x = -x;
return mu + (x * sigma);
}
static struct PyModuleDef statisticsmodule = {
PyModuleDef_HEAD_INIT,
"_statistics",
_statistics__normal_dist_inv_cdf__doc__,
-1,
speedups_methods,
NULL,
NULL,
NULL,
NULL
};
PyMODINIT_FUNC
PyInit__statistics(void)
{
PyObject *m = PyModule_Create(&statisticsmodule);
if (!m) return NULL;
return m;
}

50
Modules/clinic/_statisticsmodule.c.h generated Normal file
View File

@ -0,0 +1,50 @@
/*[clinic input]
preserve
[clinic start generated code]*/
PyDoc_STRVAR(_statistics__normal_dist_inv_cdf__doc__,
"_normal_dist_inv_cdf($module, p, mu, sigma, /)\n"
"--\n"
"\n");
#define _STATISTICS__NORMAL_DIST_INV_CDF_METHODDEF \
{"_normal_dist_inv_cdf", (PyCFunction)(void(*)(void))_statistics__normal_dist_inv_cdf, METH_FASTCALL, _statistics__normal_dist_inv_cdf__doc__},
static double
_statistics__normal_dist_inv_cdf_impl(PyObject *module, double p, double mu,
double sigma);
static PyObject *
_statistics__normal_dist_inv_cdf(PyObject *module, PyObject *const *args, Py_ssize_t nargs)
{
PyObject *return_value = NULL;
double p;
double mu;
double sigma;
double _return_value;
if (!_PyArg_CheckPositional("_normal_dist_inv_cdf", nargs, 3, 3)) {
goto exit;
}
p = PyFloat_AsDouble(args[0]);
if (PyErr_Occurred()) {
goto exit;
}
mu = PyFloat_AsDouble(args[1]);
if (PyErr_Occurred()) {
goto exit;
}
sigma = PyFloat_AsDouble(args[2]);
if (PyErr_Occurred()) {
goto exit;
}
_return_value = _statistics__normal_dist_inv_cdf_impl(module, p, mu, sigma);
if ((_return_value == -1.0) && PyErr_Occurred()) {
goto exit;
}
return_value = PyFloat_FromDouble(_return_value);
exit:
return return_value;
}
/*[clinic end generated code: output=ba6af124acd34732 input=a9049054013a1b77]*/

View File

@ -23,6 +23,7 @@ extern PyObject* PyInit__sha1(void);
extern PyObject* PyInit__sha256(void); extern PyObject* PyInit__sha256(void);
extern PyObject* PyInit__sha512(void); extern PyObject* PyInit__sha512(void);
extern PyObject* PyInit__sha3(void); extern PyObject* PyInit__sha3(void);
extern PyObject* PyInit__statistics(void);
extern PyObject* PyInit__blake2(void); extern PyObject* PyInit__blake2(void);
extern PyObject* PyInit_time(void); extern PyObject* PyInit_time(void);
extern PyObject* PyInit__thread(void); extern PyObject* PyInit__thread(void);
@ -103,6 +104,7 @@ struct _inittab _PyImport_Inittab[] = {
{"_blake2", PyInit__blake2}, {"_blake2", PyInit__blake2},
{"time", PyInit_time}, {"time", PyInit_time},
{"_thread", PyInit__thread}, {"_thread", PyInit__thread},
{"_statistics", PyInit__statistics},
#ifdef WIN32 #ifdef WIN32
{"msvcrt", PyInit_msvcrt}, {"msvcrt", PyInit_msvcrt},
{"_locale", PyInit__locale}, {"_locale", PyInit__locale},

View File

@ -333,6 +333,7 @@
<ClCompile Include="..\Modules\sha256module.c" /> <ClCompile Include="..\Modules\sha256module.c" />
<ClCompile Include="..\Modules\sha512module.c" /> <ClCompile Include="..\Modules\sha512module.c" />
<ClCompile Include="..\Modules\signalmodule.c" /> <ClCompile Include="..\Modules\signalmodule.c" />
<ClCompile Include="..\Modules\_statisticsmodule.c" />
<ClCompile Include="..\Modules\symtablemodule.c" /> <ClCompile Include="..\Modules\symtablemodule.c" />
<ClCompile Include="..\Modules\_threadmodule.c" /> <ClCompile Include="..\Modules\_threadmodule.c" />
<ClCompile Include="..\Modules\_tracemalloc.c" /> <ClCompile Include="..\Modules\_tracemalloc.c" />

View File

@ -611,6 +611,9 @@
<ClCompile Include="..\Modules\_sre.c"> <ClCompile Include="..\Modules\_sre.c">
<Filter>Modules</Filter> <Filter>Modules</Filter>
</ClCompile> </ClCompile>
<ClCompile Include="..\Modules\_statisticsmodule.c">
<Filter>Modules</Filter>
</ClCompile>
<ClCompile Include="..\Modules\_struct.c"> <ClCompile Include="..\Modules\_struct.c">
<Filter>Modules</Filter> <Filter>Modules</Filter>
</ClCompile> </ClCompile>

View File

@ -785,6 +785,8 @@ class PyBuildExt(build_ext):
self.add(Extension("_abc", ["_abc.c"])) self.add(Extension("_abc", ["_abc.c"]))
# _queue module # _queue module
self.add(Extension("_queue", ["_queuemodule.c"])) self.add(Extension("_queue", ["_queuemodule.c"]))
# _statistics module
self.add(Extension("_statistics", ["_statisticsmodule.c"]))
# Modules with some UNIX dependencies -- on by default: # Modules with some UNIX dependencies -- on by default:
# (If you have a really backward UNIX, select and socket may not be # (If you have a really backward UNIX, select and socket may not be