SF patch 936813: fast modular exponentiation
This checkin is adapted from part 1 (of 3) of Trevor Perrin's patch set. x_mul() - sped a little by optimizing the C - sped a lot (~2X) if it's doing a square; note that long_pow() squares often k_mul() - more cache-friendly now if it's doing a square KARATSUBA_CUTOFF - boosted; gradeschool mult is quicker now, and it may have been too low for many platforms anyway KARATSUBA_SQUARE_CUTOFF - new - since x_mul is a lot faster at squaring now, the point at which Karatsuba pays for squaring is much higher than for general mult
This commit is contained in:
parent
afb5f94217
commit
0973b99e1c
|
@ -12,7 +12,7 @@ extern "C" {
|
|||
contains at least 16 bits, but it's made changeable anyway.
|
||||
Note: 'digit' should be able to hold 2*MASK+1, and 'twodigits'
|
||||
should be able to hold the intermediate results in 'mul'
|
||||
(at most MASK << SHIFT).
|
||||
(at most (BASE-1)*(2*BASE+1) == MASK*(2*MASK+3)).
|
||||
Also, x_sub assumes that 'digit' is an unsigned type, and overflow
|
||||
is handled by taking the result mod 2**N for some N > SHIFT.
|
||||
And, at some places it is assumed that MASK fits in an int, as well. */
|
||||
|
|
|
@ -442,6 +442,7 @@ Steven Pemberton
|
|||
Eduardo Pérez
|
||||
Fernando Pérez
|
||||
Mark Perrego
|
||||
Trevor Perrin
|
||||
Tim Peters
|
||||
Chris Petrilli
|
||||
Bjorn Pettersen
|
||||
|
|
10
Misc/NEWS
10
Misc/NEWS
|
@ -12,6 +12,16 @@ What's New in Python 2.4 alpha 3?
|
|||
Core and builtins
|
||||
-----------------
|
||||
|
||||
- Some speedups for long arithmetic, thanks to Trevor Perrin. Gradeschool
|
||||
multiplication was sped a little by optimizing the C code. Gradeschool
|
||||
squaring was sped by about a factor of 2, by exploiting that about half
|
||||
the digit products are duplicates in a square. Because exponentiation
|
||||
uses squaring often, this also speeds long power. For example, the time
|
||||
to compute 17**1000000 dropped from about 14 seconds to 9 on my box due
|
||||
to this much. The cutoff for Karatsuba multiplication was raised,
|
||||
since gradeschool multiplication got quicker, and the cutoff was
|
||||
aggressively small regardless.
|
||||
|
||||
- OverflowWarning is no longer generated. PEP 237 scheduled this to
|
||||
occur in Python 2.3, but since OverflowWarning was disabled by default,
|
||||
nobody realized it was still being generated. On the chance that user
|
||||
|
|
|
@ -12,7 +12,8 @@
|
|||
* both operands contain more than KARATSUBA_CUTOFF digits (this
|
||||
* being an internal Python long digit, in base BASE).
|
||||
*/
|
||||
#define KARATSUBA_CUTOFF 35
|
||||
#define KARATSUBA_CUTOFF 70
|
||||
#define KARATSUBA_SQUARE_CUTOFF (2 * KARATSUBA_CUTOFF)
|
||||
|
||||
#define ABS(x) ((x) < 0 ? -(x) : (x))
|
||||
|
||||
|
@ -1717,26 +1718,72 @@ x_mul(PyLongObject *a, PyLongObject *b)
|
|||
return NULL;
|
||||
|
||||
memset(z->ob_digit, 0, z->ob_size * sizeof(digit));
|
||||
for (i = 0; i < size_a; ++i) {
|
||||
twodigits carry = 0;
|
||||
twodigits f = a->ob_digit[i];
|
||||
int j;
|
||||
digit *pz = z->ob_digit + i;
|
||||
if (a == b) {
|
||||
/* Efficient squaring per HAC, Algorithm 14.16:
|
||||
* http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf
|
||||
* Gives slightly less than a 2x speedup when a == b,
|
||||
* via exploiting that each entry in the multiplication
|
||||
* pyramid appears twice (except for the size_a squares).
|
||||
*/
|
||||
for (i = 0; i < size_a; ++i) {
|
||||
twodigits carry;
|
||||
twodigits f = a->ob_digit[i];
|
||||
digit *pz = z->ob_digit + (i << 1);
|
||||
digit *pa = a->ob_digit + i + 1;
|
||||
digit *paend = a->ob_digit + size_a;
|
||||
|
||||
SIGCHECK({
|
||||
Py_DECREF(z);
|
||||
return NULL;
|
||||
})
|
||||
for (j = 0; j < size_b; ++j) {
|
||||
carry += *pz + b->ob_digit[j] * f;
|
||||
*pz++ = (digit) (carry & MASK);
|
||||
SIGCHECK({
|
||||
Py_DECREF(z);
|
||||
return NULL;
|
||||
})
|
||||
|
||||
carry = *pz + f * f;
|
||||
*pz++ = (digit)(carry & MASK);
|
||||
carry >>= SHIFT;
|
||||
assert(carry <= MASK);
|
||||
|
||||
/* Now f is added in twice in each column of the
|
||||
* pyramid it appears. Same as adding f<<1 once.
|
||||
*/
|
||||
f <<= 1;
|
||||
while (pa < paend) {
|
||||
carry += *pz + *pa++ * f;
|
||||
*pz++ = (digit)(carry & MASK);
|
||||
carry >>= SHIFT;
|
||||
assert(carry <= (MASK << 1));
|
||||
}
|
||||
if (carry) {
|
||||
carry += *pz;
|
||||
*pz++ = (digit)(carry & MASK);
|
||||
carry >>= SHIFT;
|
||||
}
|
||||
if (carry)
|
||||
*pz += (digit)(carry & MASK);
|
||||
assert((carry >> SHIFT) == 0);
|
||||
}
|
||||
for (; carry != 0; ++j) {
|
||||
assert(i+j < z->ob_size);
|
||||
carry += *pz;
|
||||
*pz++ = (digit) (carry & MASK);
|
||||
carry >>= SHIFT;
|
||||
}
|
||||
else { /* a is not the same as b -- gradeschool long mult */
|
||||
for (i = 0; i < size_a; ++i) {
|
||||
twodigits carry = 0;
|
||||
twodigits f = a->ob_digit[i];
|
||||
digit *pz = z->ob_digit + i;
|
||||
digit *pb = b->ob_digit;
|
||||
digit *pbend = b->ob_digit + size_b;
|
||||
|
||||
SIGCHECK({
|
||||
Py_DECREF(z);
|
||||
return NULL;
|
||||
})
|
||||
|
||||
while (pb < pbend) {
|
||||
carry += *pz + *pb++ * f;
|
||||
*pz++ = (digit)(carry & MASK);
|
||||
carry >>= SHIFT;
|
||||
assert(carry <= MASK);
|
||||
}
|
||||
if (carry)
|
||||
*pz += (digit)(carry & MASK);
|
||||
assert((carry >> SHIFT) == 0);
|
||||
}
|
||||
}
|
||||
return long_normalize(z);
|
||||
|
@ -1816,7 +1863,8 @@ k_mul(PyLongObject *a, PyLongObject *b)
|
|||
}
|
||||
|
||||
/* Use gradeschool math when either number is too small. */
|
||||
if (asize <= KARATSUBA_CUTOFF) {
|
||||
i = a == b ? KARATSUBA_SQUARE_CUTOFF : KARATSUBA_CUTOFF;
|
||||
if (asize <= i) {
|
||||
if (asize == 0)
|
||||
return _PyLong_New(0);
|
||||
else
|
||||
|
@ -1837,7 +1885,13 @@ k_mul(PyLongObject *a, PyLongObject *b)
|
|||
if (kmul_split(a, shift, &ah, &al) < 0) goto fail;
|
||||
assert(ah->ob_size > 0); /* the split isn't degenerate */
|
||||
|
||||
if (kmul_split(b, shift, &bh, &bl) < 0) goto fail;
|
||||
if (a == b) {
|
||||
bh = ah;
|
||||
bl = al;
|
||||
Py_INCREF(bh);
|
||||
Py_INCREF(bl);
|
||||
}
|
||||
else if (kmul_split(b, shift, &bh, &bl) < 0) goto fail;
|
||||
|
||||
/* The plan:
|
||||
* 1. Allocate result space (asize + bsize digits: that's always
|
||||
|
@ -1906,7 +1960,11 @@ k_mul(PyLongObject *a, PyLongObject *b)
|
|||
Py_DECREF(al);
|
||||
ah = al = NULL;
|
||||
|
||||
if ((t2 = x_add(bh, bl)) == NULL) {
|
||||
if (a == b) {
|
||||
t2 = t1;
|
||||
Py_INCREF(t2);
|
||||
}
|
||||
else if ((t2 = x_add(bh, bl)) == NULL) {
|
||||
Py_DECREF(t1);
|
||||
goto fail;
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue