The other half of Issue #1580: use short float repr where possible.
Addresses the float -> string conversion, using David Gay's code which was added in Mark Dickinson's checkin r71663. Also addresses these, which are intertwined with the short repr changes: - Issue #5772: format(1e100, '<') produces '1e+100', not '1.0e+100' - Issue #5515: 'n' formatting with commas no longer works poorly with leading zeros. - PEP 378 Format Specifier for Thousands Separator: implemented for floats.
This commit is contained in:
parent
b08a53a99d
commit
0923d1d8d7
|
@ -91,24 +91,22 @@ PyAPI_FUNC(int) PyBytes_AsStringAndSize(
|
|||
into the string pointed to by buffer. For the argument descriptions,
|
||||
see Objects/stringlib/localeutil.h */
|
||||
|
||||
PyAPI_FUNC(int) _PyBytes_InsertThousandsGroupingLocale(char *buffer,
|
||||
Py_ssize_t n_buffer,
|
||||
Py_ssize_t n_digits,
|
||||
Py_ssize_t buf_size,
|
||||
Py_ssize_t *count,
|
||||
int append_zero_char);
|
||||
PyAPI_FUNC(Py_ssize_t) _PyBytes_InsertThousandsGroupingLocale(char *buffer,
|
||||
Py_ssize_t n_buffer,
|
||||
char *digits,
|
||||
Py_ssize_t n_digits,
|
||||
Py_ssize_t min_width);
|
||||
|
||||
/* Using explicit passed-in values, insert the thousands grouping
|
||||
into the string pointed to by buffer. For the argument descriptions,
|
||||
see Objects/stringlib/localeutil.h */
|
||||
PyAPI_FUNC(int) _PyBytes_InsertThousandsGrouping(char *buffer,
|
||||
Py_ssize_t n_buffer,
|
||||
Py_ssize_t n_digits,
|
||||
Py_ssize_t buf_size,
|
||||
Py_ssize_t *count,
|
||||
int append_zero_char,
|
||||
const char *grouping,
|
||||
const char *thousands_sep);
|
||||
PyAPI_FUNC(Py_ssize_t) _PyBytes_InsertThousandsGrouping(char *buffer,
|
||||
Py_ssize_t n_buffer,
|
||||
char *digits,
|
||||
Py_ssize_t n_digits,
|
||||
Py_ssize_t min_width,
|
||||
const char *grouping,
|
||||
const char *thousands_sep);
|
||||
|
||||
/* Flags used by string formatting */
|
||||
#define F_LJUST (1<<0)
|
||||
|
|
|
@ -10,6 +10,25 @@ PyAPI_FUNC(double) PyOS_ascii_strtod(const char *str, char **ptr);
|
|||
PyAPI_FUNC(double) PyOS_ascii_atof(const char *str);
|
||||
PyAPI_FUNC(char *) PyOS_ascii_formatd(char *buffer, size_t buf_len, const char *format, double d);
|
||||
|
||||
/* The caller is responsible for calling PyMem_Free to free the buffer
|
||||
that's is returned. */
|
||||
PyAPI_FUNC(char *) PyOS_double_to_string(double val,
|
||||
char format_code,
|
||||
int precision,
|
||||
int flags,
|
||||
int *type);
|
||||
|
||||
|
||||
/* PyOS_double_to_string's "flags" parameter can be set to 0 or more of: */
|
||||
#define Py_DTSF_SIGN 0x01 /* always add the sign */
|
||||
#define Py_DTSF_ADD_DOT_0 0x02 /* if the result is an integer add ".0" */
|
||||
#define Py_DTSF_ALT 0x04 /* "alternate" formatting. it's format_code
|
||||
specific */
|
||||
|
||||
/* PyOS_double_to_string's "type", if non-NULL, will be set to one of: */
|
||||
#define Py_DTST_FINITE 0
|
||||
#define Py_DTST_INFINITE 1
|
||||
#define Py_DTST_NAN 2
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
|
|
@ -1482,24 +1482,22 @@ PyAPI_FUNC(PyObject *) _PyUnicode_XStrip(
|
|||
into the string pointed to by buffer. For the argument descriptions,
|
||||
see Objects/stringlib/localeutil.h */
|
||||
|
||||
PyAPI_FUNC(int) _PyUnicode_InsertThousandsGroupingLocale(Py_UNICODE *buffer,
|
||||
Py_ssize_t n_buffer,
|
||||
Py_ssize_t n_digits,
|
||||
Py_ssize_t buf_size,
|
||||
Py_ssize_t *count,
|
||||
int append_zero_char);
|
||||
PyAPI_FUNC(Py_ssize_t) _PyUnicode_InsertThousandsGroupingLocale(Py_UNICODE *buffer,
|
||||
Py_ssize_t n_buffer,
|
||||
Py_UNICODE *digits,
|
||||
Py_ssize_t n_digits,
|
||||
Py_ssize_t min_width);
|
||||
|
||||
/* Using explicit passed-in values, insert the thousands grouping
|
||||
into the string pointed to by buffer. For the argument descriptions,
|
||||
see Objects/stringlib/localeutil.h */
|
||||
PyAPI_FUNC(int) _PyUnicode_InsertThousandsGrouping(Py_UNICODE *buffer,
|
||||
Py_ssize_t n_buffer,
|
||||
Py_ssize_t n_digits,
|
||||
Py_ssize_t buf_size,
|
||||
Py_ssize_t *count,
|
||||
int append_zero_char,
|
||||
const char *grouping,
|
||||
const char *thousands_sep);
|
||||
PyAPI_FUNC(Py_ssize_t) _PyUnicode_InsertThousandsGrouping(Py_UNICODE *buffer,
|
||||
Py_ssize_t n_buffer,
|
||||
Py_UNICODE *digits,
|
||||
Py_ssize_t n_digits,
|
||||
Py_ssize_t min_width,
|
||||
const char *grouping,
|
||||
const char *thousands_sep);
|
||||
/* === Characters Type APIs =============================================== */
|
||||
|
||||
/* Helper array used by Py_UNICODE_ISSPACE(). */
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
|
||||
import unittest, struct
|
||||
import os
|
||||
import sys
|
||||
from test import support
|
||||
import math
|
||||
from math import isinf, isnan, copysign, ldexp
|
||||
|
@ -10,6 +11,10 @@ import random, fractions
|
|||
INF = float("inf")
|
||||
NAN = float("nan")
|
||||
|
||||
#locate file with float format test values
|
||||
test_dir = os.path.dirname(__file__) or os.curdir
|
||||
format_testfile = os.path.join(test_dir, 'formatfloat_testcases.txt')
|
||||
|
||||
class GeneralFloatCases(unittest.TestCase):
|
||||
|
||||
def test_float(self):
|
||||
|
@ -24,6 +29,10 @@ class GeneralFloatCases(unittest.TestCase):
|
|||
self.assertRaises(ValueError, float, "+-3.14")
|
||||
self.assertRaises(ValueError, float, "-+3.14")
|
||||
self.assertRaises(ValueError, float, "--3.14")
|
||||
self.assertRaises(ValueError, float, ".nan")
|
||||
self.assertRaises(ValueError, float, "+.inf")
|
||||
self.assertRaises(ValueError, float, ".")
|
||||
self.assertRaises(ValueError, float, "-.")
|
||||
self.assertEqual(float(b" \u0663.\u0661\u0664 ".decode('raw-unicode-escape')), 3.14)
|
||||
|
||||
@support.run_with_locale('LC_NUMERIC', 'fr_FR', 'de_DE')
|
||||
|
@ -316,6 +325,73 @@ class ReprTestCase(unittest.TestCase):
|
|||
self.assertEqual(v, eval(repr(v)))
|
||||
floats_file.close()
|
||||
|
||||
class FormatTestCase(unittest.TestCase):
|
||||
@unittest.skipUnless(float.__getformat__("double").startswith("IEEE"),
|
||||
"test requires IEEE 754 doubles")
|
||||
def test_format_testfile(self):
|
||||
for line in open(format_testfile):
|
||||
if line.startswith('--'):
|
||||
continue
|
||||
line = line.strip()
|
||||
if not line:
|
||||
continue
|
||||
|
||||
lhs, rhs = map(str.strip, line.split('->'))
|
||||
fmt, arg = lhs.split()
|
||||
self.assertEqual(fmt % float(arg), rhs)
|
||||
self.assertEqual(fmt % -float(arg), '-' + rhs)
|
||||
|
||||
@unittest.skipUnless(getattr(sys, 'float_repr_style', '') == 'short',
|
||||
"applies only when using short float repr style")
|
||||
def test_short_repr(self):
|
||||
# test short float repr introduced in Python 3.1. One aspect
|
||||
# of this repr is that we get some degree of str -> float ->
|
||||
# str roundtripping. In particular, for any numeric string
|
||||
# containing 15 or fewer significant digits, those exact same
|
||||
# digits (modulo trailing zeros) should appear in the output.
|
||||
# No more repr(0.03) -> "0.029999999999999999"!
|
||||
|
||||
test_strings = [
|
||||
# output always includes *either* a decimal point and at
|
||||
# least one digit after that point, or an exponent.
|
||||
'0.0',
|
||||
'1.0',
|
||||
'0.01',
|
||||
'0.02',
|
||||
'0.03',
|
||||
'0.04',
|
||||
'0.05',
|
||||
'1.23456789',
|
||||
'10.0',
|
||||
'100.0',
|
||||
# values >= 1e16 get an exponent...
|
||||
'1000000000000000.0',
|
||||
'9999999999999990.0',
|
||||
'1e+16',
|
||||
'1e+17',
|
||||
# ... and so do values < 1e-4
|
||||
'0.001',
|
||||
'0.001001',
|
||||
'0.00010000000000001',
|
||||
'0.0001',
|
||||
'9.999999999999e-05',
|
||||
'1e-05',
|
||||
# values designed to provoke failure if the FPU rounding
|
||||
# precision isn't set correctly
|
||||
'8.72293771110361e+25',
|
||||
'7.47005307342313e+26',
|
||||
'2.86438000439698e+28',
|
||||
'8.89142905246179e+28',
|
||||
'3.08578087079232e+35',
|
||||
]
|
||||
|
||||
for s in test_strings:
|
||||
negs = '-'+s
|
||||
self.assertEqual(s, repr(float(s)))
|
||||
self.assertEqual(negs, repr(float(negs)))
|
||||
|
||||
|
||||
|
||||
# Beginning with Python 2.6 float has cross platform compatible
|
||||
# ways to create and represent inf and nan
|
||||
class InfNanTest(unittest.TestCase):
|
||||
|
|
|
@ -220,6 +220,11 @@ class FormatTest(unittest.TestCase):
|
|||
testformat("%a", "\u0378", "'\\u0378'") # non printable
|
||||
testformat("%r", "\u0374", "'\u0374'") # printable
|
||||
testformat("%a", "\u0374", "'\\u0374'") # printable
|
||||
|
||||
# alternate float formatting
|
||||
testformat('%g', 1.1, '1.1')
|
||||
testformat('%#g', 1.1, '1.10000')
|
||||
|
||||
# Test exception for unknown format characters
|
||||
if verbose:
|
||||
print('Testing exceptions')
|
||||
|
|
|
@ -113,6 +113,9 @@ class TypesTests(unittest.TestCase):
|
|||
self.assertEqual(1.5e-101.__format__('e'), '1.500000e-101')
|
||||
self.assertEqual('%e' % 1.5e-101, '1.500000e-101')
|
||||
|
||||
self.assertEqual('%g' % 1.0, '1')
|
||||
self.assertEqual('%#g' % 1.0, '1.00000')
|
||||
|
||||
def test_normal_integers(self):
|
||||
# Ensure the first 256 integers are shared
|
||||
a = 256
|
||||
|
@ -358,6 +361,8 @@ class TypesTests(unittest.TestCase):
|
|||
self.assertRaises(TypeError, 3 .__format__, 0)
|
||||
# can't have ',' with 'n'
|
||||
self.assertRaises(ValueError, 3 .__format__, ",n")
|
||||
# can't have ',' with 'c'
|
||||
self.assertRaises(ValueError, 3 .__format__, ",c")
|
||||
|
||||
# ensure that only int and float type specifiers work
|
||||
for format_spec in ([chr(x) for x in range(ord('a'), ord('z')+1)] +
|
||||
|
@ -547,10 +552,34 @@ class TypesTests(unittest.TestCase):
|
|||
# a totaly empty format specifier means something else.
|
||||
# So, just use a sign flag
|
||||
test(1e200, '+g', '+1e+200')
|
||||
test(1e200, '+', '+1.0e+200')
|
||||
test(1e200, '+', '+1e+200')
|
||||
|
||||
test(1.1e200, '+g', '+1.1e+200')
|
||||
test(1.1e200, '+', '+1.1e+200')
|
||||
|
||||
# 0 padding
|
||||
test(1234., '010f', '1234.000000')
|
||||
test(1234., '011f', '1234.000000')
|
||||
test(1234., '012f', '01234.000000')
|
||||
test(-1234., '011f', '-1234.000000')
|
||||
test(-1234., '012f', '-1234.000000')
|
||||
test(-1234., '013f', '-01234.000000')
|
||||
test(-1234.12341234, '013f', '-01234.123412')
|
||||
test(-123456.12341234, '011.2f', '-0123456.12')
|
||||
|
||||
# 0 padding with commas
|
||||
test(1234., '011,f', '1,234.000000')
|
||||
test(1234., '012,f', '1,234.000000')
|
||||
test(1234., '013,f', '01,234.000000')
|
||||
test(-1234., '012,f', '-1,234.000000')
|
||||
test(-1234., '013,f', '-1,234.000000')
|
||||
test(-1234., '014,f', '-01,234.000000')
|
||||
test(-12345., '015,f', '-012,345.000000')
|
||||
test(-123456., '016,f', '-0,123,456.000000')
|
||||
test(-123456., '017,f', '-0,123,456.000000')
|
||||
test(-123456.12341234, '017,f', '-0,123,456.123412')
|
||||
test(-123456.12341234, '013,.2f', '-0,123,456.12')
|
||||
|
||||
# % formatting
|
||||
test(-1.0, '%', '-100.000000%')
|
||||
|
||||
|
@ -575,6 +604,24 @@ class TypesTests(unittest.TestCase):
|
|||
self.assertRaises(ValueError, format, 0.0, '#')
|
||||
self.assertRaises(ValueError, format, 0.0, '#20f')
|
||||
|
||||
def test_format_spec_errors(self):
|
||||
# int, float, and string all share the same format spec
|
||||
# mini-language parser.
|
||||
|
||||
# Check that we can't ask for too many digits. This is
|
||||
# probably a CPython specific test. It tries to put the width
|
||||
# into a C long.
|
||||
self.assertRaises(ValueError, format, 0, '1'*10000 + 'd')
|
||||
|
||||
# Similar with the precision.
|
||||
self.assertRaises(ValueError, format, 0, '.' + '1'*10000 + 'd')
|
||||
|
||||
# And may as well test both.
|
||||
self.assertRaises(ValueError, format, 0, '1'*1000 + '.' + '1'*10000 + 'd')
|
||||
|
||||
# Make sure commas aren't allowed with various type codes
|
||||
for code in 'xXobns':
|
||||
self.assertRaises(ValueError, format, 0, ',' + code)
|
||||
|
||||
def test_main():
|
||||
run_unittest(TypesTests)
|
||||
|
|
|
@ -12,6 +12,15 @@ What's New in Python 3.1 beta 1?
|
|||
Core and Builtins
|
||||
-----------------
|
||||
|
||||
- Issue #5772: format(1e100, '<') produces '1e+100', not '1.0e+100'.
|
||||
|
||||
- Issue #5515: str.format() presentation type 'n' with commas no
|
||||
longer works poorly with leading zeros when formatting ints and
|
||||
floats.
|
||||
|
||||
- Implement PEP 378, Format Specifier for Thousands Separator, for
|
||||
floats.
|
||||
|
||||
- The repr function switches to exponential notation at 1e16, not 1e17
|
||||
as it did before. This change applies to both 'short' and legacy
|
||||
float repr styles. For the new repr style, it avoids misleading
|
||||
|
|
|
@ -1016,16 +1016,31 @@ save_float(PicklerObject *self, PyObject *obj)
|
|||
return -1;
|
||||
if (pickler_write(self, pdata, 9) < 0)
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
else {
|
||||
char pdata[250];
|
||||
pdata[0] = FLOAT;
|
||||
PyOS_ascii_formatd(pdata + 1, sizeof(pdata) - 2, "%.17g", x);
|
||||
/* Extend the formatted string with a newline character */
|
||||
strcat(pdata, "\n");
|
||||
int result = -1;
|
||||
char *buf = NULL;
|
||||
char op = FLOAT;
|
||||
|
||||
if (pickler_write(self, pdata, strlen(pdata)) < 0)
|
||||
return -1;
|
||||
if (pickler_write(self, &op, 1) < 0)
|
||||
goto done;
|
||||
|
||||
buf = PyOS_double_to_string(x, 'r', 0, 0, NULL);
|
||||
if (!buf) {
|
||||
PyErr_NoMemory();
|
||||
goto done;
|
||||
}
|
||||
|
||||
if (pickler_write(self, buf, strlen(buf)) < 0)
|
||||
goto done;
|
||||
|
||||
if (pickler_write(self, "\n", 1) < 0)
|
||||
goto done;
|
||||
|
||||
result = 0;
|
||||
done:
|
||||
PyMem_Free(buf);
|
||||
return result;
|
||||
}
|
||||
|
||||
return 0;
|
||||
|
|
|
@ -562,6 +562,7 @@ PyBytes_AsStringAndSize(register PyObject *obj,
|
|||
/* -------------------------------------------------------------------- */
|
||||
/* Methods */
|
||||
|
||||
#include "stringlib/stringdefs.h"
|
||||
#define STRINGLIB_CHAR char
|
||||
|
||||
#define STRINGLIB_CMP memcmp
|
||||
|
|
|
@ -14,22 +14,6 @@
|
|||
|
||||
#ifndef WITHOUT_COMPLEX
|
||||
|
||||
/* Precisions used by repr() and str(), respectively.
|
||||
|
||||
The repr() precision (17 significant decimal digits) is the minimal number
|
||||
that is guaranteed to have enough precision so that if the number is read
|
||||
back in the exact same binary value is recreated. This is true for IEEE
|
||||
floating point by design, and also happens to work for all other modern
|
||||
hardware.
|
||||
|
||||
The str() precision is chosen so that in most cases, the rounding noise
|
||||
created by various operations is suppressed, while giving plenty of
|
||||
precision for practical use.
|
||||
*/
|
||||
|
||||
#define PREC_REPR 17
|
||||
#define PREC_STR 12
|
||||
|
||||
/* elementary operations on complex numbers */
|
||||
|
||||
static Py_complex c_1 = {1., 0.};
|
||||
|
@ -345,71 +329,114 @@ complex_dealloc(PyObject *op)
|
|||
}
|
||||
|
||||
|
||||
static void
|
||||
complex_to_buf(char *buf, int bufsz, PyComplexObject *v, int precision)
|
||||
static PyObject *
|
||||
complex_format(PyComplexObject *v, char format_code)
|
||||
{
|
||||
char format[32];
|
||||
if (v->cval.real == 0.) {
|
||||
if (!Py_IS_FINITE(v->cval.imag)) {
|
||||
if (Py_IS_NAN(v->cval.imag))
|
||||
strncpy(buf, "nan*j", 6);
|
||||
else if (copysign(1, v->cval.imag) == 1)
|
||||
strncpy(buf, "inf*j", 6);
|
||||
else
|
||||
strncpy(buf, "-inf*j", 7);
|
||||
}
|
||||
else {
|
||||
PyOS_snprintf(format, sizeof(format), "%%.%ig", precision);
|
||||
PyOS_ascii_formatd(buf, bufsz - 1, format, v->cval.imag);
|
||||
strncat(buf, "j", 1);
|
||||
}
|
||||
} else {
|
||||
char re[64], im[64];
|
||||
/* Format imaginary part with sign, real part without */
|
||||
if (!Py_IS_FINITE(v->cval.real)) {
|
||||
if (Py_IS_NAN(v->cval.real))
|
||||
strncpy(re, "nan", 4);
|
||||
/* else if (copysign(1, v->cval.real) == 1) */
|
||||
else if (v->cval.real > 0)
|
||||
strncpy(re, "inf", 4);
|
||||
else
|
||||
strncpy(re, "-inf", 5);
|
||||
}
|
||||
else {
|
||||
PyOS_snprintf(format, sizeof(format), "%%.%ig", precision);
|
||||
PyOS_ascii_formatd(re, sizeof(re), format, v->cval.real);
|
||||
}
|
||||
if (!Py_IS_FINITE(v->cval.imag)) {
|
||||
if (Py_IS_NAN(v->cval.imag))
|
||||
strncpy(im, "+nan*", 6);
|
||||
/* else if (copysign(1, v->cval.imag) == 1) */
|
||||
else if (v->cval.imag > 0)
|
||||
strncpy(im, "+inf*", 6);
|
||||
else
|
||||
strncpy(im, "-inf*", 6);
|
||||
}
|
||||
else {
|
||||
PyOS_snprintf(format, sizeof(format), "%%+.%ig", precision);
|
||||
PyOS_ascii_formatd(im, sizeof(im), format, v->cval.imag);
|
||||
}
|
||||
PyOS_snprintf(buf, bufsz, "(%s%sj)", re, im);
|
||||
}
|
||||
PyObject *result = NULL;
|
||||
Py_ssize_t len;
|
||||
|
||||
/* If these are non-NULL, they'll need to be freed. */
|
||||
char *pre = NULL;
|
||||
char *pim = NULL;
|
||||
char *buf = NULL;
|
||||
|
||||
/* These do not need to be freed. They're either aliases for pim
|
||||
and pre, or pointers to constants. */
|
||||
char *re = NULL;
|
||||
char *im = NULL;
|
||||
char *lead = "";
|
||||
char *tail = "";
|
||||
|
||||
|
||||
if (v->cval.real == 0.) {
|
||||
re = "";
|
||||
if (!Py_IS_FINITE(v->cval.imag)) {
|
||||
if (Py_IS_NAN(v->cval.imag))
|
||||
im = "nan*";
|
||||
else if (copysign(1, v->cval.imag) == 1)
|
||||
im = "inf*";
|
||||
else
|
||||
im = "-inf*";
|
||||
}
|
||||
else {
|
||||
pim = PyOS_double_to_string(v->cval.imag, format_code,
|
||||
0, 0, NULL);
|
||||
if (!pim) {
|
||||
PyErr_NoMemory();
|
||||
goto done;
|
||||
}
|
||||
im = pim;
|
||||
}
|
||||
} else {
|
||||
/* Format imaginary part with sign, real part without */
|
||||
if (!Py_IS_FINITE(v->cval.real)) {
|
||||
if (Py_IS_NAN(v->cval.real))
|
||||
re = "nan";
|
||||
/* else if (copysign(1, v->cval.real) == 1) */
|
||||
else if (v->cval.real > 0)
|
||||
re = "inf";
|
||||
else
|
||||
re = "-inf";
|
||||
}
|
||||
else {
|
||||
pre = PyOS_double_to_string(v->cval.real, format_code,
|
||||
0, 0, NULL);
|
||||
if (!pre) {
|
||||
PyErr_NoMemory();
|
||||
goto done;
|
||||
}
|
||||
re = pre;
|
||||
}
|
||||
|
||||
if (!Py_IS_FINITE(v->cval.imag)) {
|
||||
if (Py_IS_NAN(v->cval.imag))
|
||||
im = "+nan*";
|
||||
/* else if (copysign(1, v->cval.imag) == 1) */
|
||||
else if (v->cval.imag > 0)
|
||||
im = "+inf*";
|
||||
else
|
||||
im = "-inf*";
|
||||
}
|
||||
else {
|
||||
pim = PyOS_double_to_string(v->cval.imag, format_code,
|
||||
0, Py_DTSF_SIGN, NULL);
|
||||
if (!pim) {
|
||||
PyErr_NoMemory();
|
||||
goto done;
|
||||
}
|
||||
im = pim;
|
||||
}
|
||||
lead = "(";
|
||||
tail = ")";
|
||||
}
|
||||
/* Alloc the final buffer. Add one for the "j" in the format string, and
|
||||
one for the trailing zero. */
|
||||
len = strlen(lead) + strlen(re) + strlen(im) + strlen(tail) + 2;
|
||||
buf = PyMem_Malloc(len);
|
||||
if (!buf) {
|
||||
PyErr_NoMemory();
|
||||
goto done;
|
||||
}
|
||||
PyOS_snprintf(buf, len, "%s%s%sj%s", lead, re, im, tail);
|
||||
result = PyUnicode_FromString(buf);
|
||||
done:
|
||||
PyMem_Free(pim);
|
||||
PyMem_Free(pre);
|
||||
PyMem_Free(buf);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
static PyObject *
|
||||
complex_repr(PyComplexObject *v)
|
||||
{
|
||||
char buf[100];
|
||||
complex_to_buf(buf, sizeof(buf), v, PREC_REPR);
|
||||
return PyUnicode_FromString(buf);
|
||||
return complex_format(v, 'r');
|
||||
}
|
||||
|
||||
static PyObject *
|
||||
complex_str(PyComplexObject *v)
|
||||
{
|
||||
char buf[100];
|
||||
complex_to_buf(buf, sizeof(buf), v, PREC_STR);
|
||||
return PyUnicode_FromString(buf);
|
||||
return complex_format(v, 's');
|
||||
}
|
||||
|
||||
static long
|
||||
|
|
|
@ -197,8 +197,7 @@ PyFloat_FromString(PyObject *v)
|
|||
sp = s;
|
||||
/* We don't care about overflow or underflow. If the platform supports
|
||||
* them, infinities and signed zeroes (on underflow) are fine.
|
||||
* However, strtod can return 0 for denormalized numbers, where atof
|
||||
* does not. So (alas!) we special-case a zero result. Note that
|
||||
* However, strtod can return 0 for denormalized numbers. Note that
|
||||
* whether strtod sets errno on underflow is not defined, so we can't
|
||||
* key off errno.
|
||||
*/
|
||||
|
@ -259,14 +258,6 @@ PyFloat_FromString(PyObject *v)
|
|||
"null byte in argument for float()");
|
||||
goto error;
|
||||
}
|
||||
if (x == 0.0) {
|
||||
/* See above -- may have been strtod being anal
|
||||
about denorms. */
|
||||
PyFPE_START_PROTECT("atof", goto error)
|
||||
x = PyOS_ascii_atof(s);
|
||||
PyFPE_END_PROTECT(x)
|
||||
errno = 0; /* whether atof ever set errno is undefined */
|
||||
}
|
||||
result = PyFloat_FromDouble(x);
|
||||
error:
|
||||
if (s_buffer)
|
||||
|
@ -320,72 +311,6 @@ PyFloat_AsDouble(PyObject *op)
|
|||
return val;
|
||||
}
|
||||
|
||||
/* Methods */
|
||||
|
||||
static void
|
||||
format_double(char *buf, size_t buflen, double ob_fval, int precision)
|
||||
{
|
||||
register char *cp;
|
||||
char format[32];
|
||||
int i;
|
||||
|
||||
/* Subroutine for float_repr, float_str and float_print.
|
||||
We want float numbers to be recognizable as such,
|
||||
i.e., they should contain a decimal point or an exponent.
|
||||
However, %g may print the number as an integer;
|
||||
in such cases, we append ".0" to the string. */
|
||||
|
||||
PyOS_snprintf(format, 32, "%%.%ig", precision);
|
||||
PyOS_ascii_formatd(buf, buflen, format, ob_fval);
|
||||
cp = buf;
|
||||
if (*cp == '-')
|
||||
cp++;
|
||||
for (; *cp != '\0'; cp++) {
|
||||
/* Any non-digit means it's not an integer;
|
||||
this takes care of NAN and INF as well. */
|
||||
if (!isdigit(Py_CHARMASK(*cp)))
|
||||
break;
|
||||
}
|
||||
if (*cp == '\0') {
|
||||
*cp++ = '.';
|
||||
*cp++ = '0';
|
||||
*cp++ = '\0';
|
||||
return;
|
||||
}
|
||||
/* Checking the next three chars should be more than enough to
|
||||
* detect inf or nan, even on Windows. We check for inf or nan
|
||||
* at last because they are rare cases.
|
||||
*/
|
||||
for (i=0; *cp != '\0' && i<3; cp++, i++) {
|
||||
if (isdigit(Py_CHARMASK(*cp)) || *cp == '.')
|
||||
continue;
|
||||
/* found something that is neither a digit nor point
|
||||
* it might be a NaN or INF
|
||||
*/
|
||||
#ifdef Py_NAN
|
||||
if (Py_IS_NAN(ob_fval)) {
|
||||
strcpy(buf, "nan");
|
||||
}
|
||||
else
|
||||
#endif
|
||||
if (Py_IS_INFINITY(ob_fval)) {
|
||||
cp = buf;
|
||||
if (*cp == '-')
|
||||
cp++;
|
||||
strcpy(cp, "inf");
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
static void
|
||||
format_float(char *buf, size_t buflen, PyFloatObject *v, int precision)
|
||||
{
|
||||
assert(PyFloat_Check(v));
|
||||
format_double(buf, buflen, PyFloat_AS_DOUBLE(v), precision);
|
||||
}
|
||||
|
||||
/* Macro and helper that convert PyObject obj to a C double and store
|
||||
the value in dbl. If conversion to double raises an exception, obj is
|
||||
set to NULL, and the function invoking this macro returns NULL. If
|
||||
|
@ -398,6 +323,8 @@ format_float(char *buf, size_t buflen, PyFloatObject *v, int precision)
|
|||
else if (convert_to_double(&(obj), &(dbl)) < 0) \
|
||||
return obj;
|
||||
|
||||
/* Methods */
|
||||
|
||||
static int
|
||||
convert_to_double(PyObject **v, double *dbl)
|
||||
{
|
||||
|
@ -418,38 +345,30 @@ convert_to_double(PyObject **v, double *dbl)
|
|||
return 0;
|
||||
}
|
||||
|
||||
/* Precisions used by repr() and str(), respectively.
|
||||
|
||||
The repr() precision (17 significant decimal digits) is the minimal number
|
||||
that is guaranteed to have enough precision so that if the number is read
|
||||
back in the exact same binary value is recreated. This is true for IEEE
|
||||
floating point by design, and also happens to work for all other modern
|
||||
hardware.
|
||||
|
||||
The str() precision is chosen so that in most cases, the rounding noise
|
||||
created by various operations is suppressed, while giving plenty of
|
||||
precision for practical use.
|
||||
|
||||
*/
|
||||
|
||||
#define PREC_REPR 17
|
||||
#define PREC_STR 12
|
||||
static PyObject *
|
||||
float_str_or_repr(PyFloatObject *v, char format_code)
|
||||
{
|
||||
PyObject *result;
|
||||
char *buf = PyOS_double_to_string(PyFloat_AS_DOUBLE(v),
|
||||
format_code, 0, Py_DTSF_ADD_DOT_0,
|
||||
NULL);
|
||||
if (!buf)
|
||||
return PyErr_NoMemory();
|
||||
result = PyUnicode_FromString(buf);
|
||||
PyMem_Free(buf);
|
||||
return result;
|
||||
}
|
||||
|
||||
static PyObject *
|
||||
float_repr(PyFloatObject *v)
|
||||
{
|
||||
char buf[100];
|
||||
format_float(buf, sizeof(buf), v, PREC_REPR);
|
||||
|
||||
return PyUnicode_FromString(buf);
|
||||
return float_str_or_repr(v, 'r');
|
||||
}
|
||||
|
||||
static PyObject *
|
||||
float_str(PyFloatObject *v)
|
||||
{
|
||||
char buf[100];
|
||||
format_float(buf, sizeof(buf), v, PREC_STR);
|
||||
return PyUnicode_FromString(buf);
|
||||
return float_str_or_repr(v, 's');
|
||||
}
|
||||
|
||||
/* Comparison is pretty much a nightmare. When comparing float to float,
|
||||
|
@ -1980,15 +1899,21 @@ PyFloat_Fini(void)
|
|||
i++, p++) {
|
||||
if (PyFloat_CheckExact(p) &&
|
||||
Py_REFCNT(p) != 0) {
|
||||
char buf[100];
|
||||
format_float(buf, sizeof(buf), p, PREC_STR);
|
||||
/* XXX(twouters) cast refcount to
|
||||
long until %zd is universally
|
||||
available
|
||||
*/
|
||||
fprintf(stderr,
|
||||
char *buf = PyOS_double_to_string(
|
||||
PyFloat_AS_DOUBLE(p), 'r',
|
||||
0, 0, NULL);
|
||||
if (buf) {
|
||||
/* XXX(twouters) cast
|
||||
refcount to long
|
||||
until %zd is
|
||||
universally
|
||||
available
|
||||
*/
|
||||
fprintf(stderr,
|
||||
"# <float at %p, refcnt=%ld, val=%s>\n",
|
||||
p, (long)Py_REFCNT(p), buf);
|
||||
PyMem_Free(buf);
|
||||
}
|
||||
}
|
||||
}
|
||||
list = list->next;
|
||||
|
@ -2233,14 +2158,6 @@ _PyFloat_Pack8(double x, unsigned char *p, int le)
|
|||
}
|
||||
}
|
||||
|
||||
/* Should only be used by marshal. */
|
||||
int
|
||||
_PyFloat_Repr(double x, char *p, size_t len)
|
||||
{
|
||||
format_double(p, len, x, PREC_REPR);
|
||||
return (int)strlen(p);
|
||||
}
|
||||
|
||||
double
|
||||
_PyFloat_Unpack4(const unsigned char *p, int le)
|
||||
{
|
||||
|
|
|
@ -1,6 +1,8 @@
|
|||
/* implements the string, long, and float formatters. that is,
|
||||
string.__format__, etc. */
|
||||
|
||||
#include <locale.h>
|
||||
|
||||
/* Before including this, you must include either:
|
||||
stringlib/unicodedefs.h
|
||||
stringlib/stringdefs.h
|
||||
|
@ -13,8 +15,6 @@
|
|||
be. These are the only non-static functions defined here.
|
||||
*/
|
||||
|
||||
#define ALLOW_PARENS_FOR_SIGN 0
|
||||
|
||||
/* Raises an exception about an unknown presentation type for this
|
||||
* type. */
|
||||
|
||||
|
@ -104,9 +104,6 @@ is_sign_element(STRINGLIB_CHAR c)
|
|||
{
|
||||
switch (c) {
|
||||
case ' ': case '+': case '-':
|
||||
#if ALLOW_PARENS_FOR_SIGN
|
||||
case '(':
|
||||
#endif
|
||||
return 1;
|
||||
default:
|
||||
return 0;
|
||||
|
@ -143,7 +140,7 @@ parse_internal_render_format_spec(STRINGLIB_CHAR *format_spec,
|
|||
/* end-ptr is used throughout this code to specify the length of
|
||||
the input string */
|
||||
|
||||
Py_ssize_t specified_width;
|
||||
Py_ssize_t consumed;
|
||||
|
||||
format->fill_char = '\0';
|
||||
format->align = '\0';
|
||||
|
@ -170,11 +167,6 @@ parse_internal_render_format_spec(STRINGLIB_CHAR *format_spec,
|
|||
if (end-ptr >= 1 && is_sign_element(ptr[0])) {
|
||||
format->sign = ptr[0];
|
||||
++ptr;
|
||||
#if ALLOW_PARENS_FOR_SIGN
|
||||
if (end-ptr >= 1 && ptr[0] == ')') {
|
||||
++ptr;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
/* If the next character is #, we're in alternate mode. This only
|
||||
|
@ -193,15 +185,17 @@ parse_internal_render_format_spec(STRINGLIB_CHAR *format_spec,
|
|||
++ptr;
|
||||
}
|
||||
|
||||
/* XXX add error checking */
|
||||
specified_width = get_integer(&ptr, end, &format->width);
|
||||
consumed = get_integer(&ptr, end, &format->width);
|
||||
if (consumed == -1)
|
||||
/* Overflow error. Exception already set. */
|
||||
return 0;
|
||||
|
||||
/* if specified_width is 0, we didn't consume any characters for
|
||||
the width. in that case, reset the width to -1, because
|
||||
get_integer() will have set it to zero */
|
||||
if (specified_width == 0) {
|
||||
/* If consumed is 0, we didn't consume any characters for the
|
||||
width. In that case, reset the width to -1, because
|
||||
get_integer() will have set it to zero. -1 is how we record
|
||||
that the width wasn't specified. */
|
||||
if (consumed == 0)
|
||||
format->width = -1;
|
||||
}
|
||||
|
||||
/* Comma signifies add thousands separators */
|
||||
if (end-ptr && ptr[0] == ',') {
|
||||
|
@ -213,11 +207,13 @@ parse_internal_render_format_spec(STRINGLIB_CHAR *format_spec,
|
|||
if (end-ptr && ptr[0] == '.') {
|
||||
++ptr;
|
||||
|
||||
/* XXX add error checking */
|
||||
specified_width = get_integer(&ptr, end, &format->precision);
|
||||
consumed = get_integer(&ptr, end, &format->precision);
|
||||
if (consumed == -1)
|
||||
/* Overflow error. Exception already set. */
|
||||
return 0;
|
||||
|
||||
/* not having a precision after a dot is an error */
|
||||
if (specified_width == 0) {
|
||||
/* Not having a precision after a dot is an error. */
|
||||
if (consumed == 0) {
|
||||
PyErr_Format(PyExc_ValueError,
|
||||
"Format specifier missing precision");
|
||||
return 0;
|
||||
|
@ -225,10 +221,10 @@ parse_internal_render_format_spec(STRINGLIB_CHAR *format_spec,
|
|||
|
||||
}
|
||||
|
||||
/* Finally, parse the type field */
|
||||
/* Finally, parse the type field. */
|
||||
|
||||
if (end-ptr > 1) {
|
||||
/* invalid conversion spec */
|
||||
/* More than one char remain, invalid conversion spec. */
|
||||
PyErr_Format(PyExc_ValueError, "Invalid conversion specification");
|
||||
return 0;
|
||||
}
|
||||
|
@ -238,9 +234,27 @@ parse_internal_render_format_spec(STRINGLIB_CHAR *format_spec,
|
|||
++ptr;
|
||||
}
|
||||
|
||||
if (format->type == 'n' && format->thousands_separators) {
|
||||
PyErr_Format(PyExc_ValueError, "Cannot specify ',' with 'n'.");
|
||||
return 0;
|
||||
/* Do as much validating as we can, just by looking at the format
|
||||
specifier. Do not take into account what type of formatting
|
||||
we're doing (int, float, string). */
|
||||
|
||||
if (format->thousands_separators) {
|
||||
switch (format->type) {
|
||||
case 'd':
|
||||
case 'e':
|
||||
case 'f':
|
||||
case 'g':
|
||||
case 'E':
|
||||
case 'G':
|
||||
case '%':
|
||||
case 'F':
|
||||
/* These are allowed. See PEP 378.*/
|
||||
break;
|
||||
default:
|
||||
PyErr_Format(PyExc_ValueError,
|
||||
"Cannot specify ',' with '%c'.", format->type);
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
return 1;
|
||||
|
@ -251,6 +265,20 @@ parse_internal_render_format_spec(STRINGLIB_CHAR *format_spec,
|
|||
/*********** common routines for numeric formatting *********************/
|
||||
/************************************************************************/
|
||||
|
||||
/* Locale type codes. */
|
||||
#define LT_CURRENT_LOCALE 0
|
||||
#define LT_DEFAULT_LOCALE 1
|
||||
#define LT_NO_LOCALE 2
|
||||
|
||||
/* Locale info needed for formatting integers and the part of floats
|
||||
before and including the decimal. Note that locales only support
|
||||
8-bit chars, not unicode. */
|
||||
typedef struct {
|
||||
char *decimal_point;
|
||||
char *thousands_sep;
|
||||
char *grouping;
|
||||
} LocaleInfo;
|
||||
|
||||
/* describes the layout for an integer, see the comment in
|
||||
calc_number_widths() for details */
|
||||
typedef struct {
|
||||
|
@ -258,38 +286,84 @@ typedef struct {
|
|||
Py_ssize_t n_prefix;
|
||||
Py_ssize_t n_spadding;
|
||||
Py_ssize_t n_rpadding;
|
||||
char lsign;
|
||||
Py_ssize_t n_lsign;
|
||||
char rsign;
|
||||
Py_ssize_t n_rsign;
|
||||
Py_ssize_t n_total; /* just a convenience, it's derivable from the
|
||||
other fields */
|
||||
char sign;
|
||||
Py_ssize_t n_sign; /* number of digits needed for sign (0/1) */
|
||||
Py_ssize_t n_grouped_digits; /* Space taken up by the digits, including
|
||||
any grouping chars. */
|
||||
Py_ssize_t n_decimal; /* 0 if only an integer */
|
||||
Py_ssize_t n_remainder; /* Digits in decimal and/or exponent part,
|
||||
excluding the decimal itself, if
|
||||
present. */
|
||||
|
||||
/* These 2 are not the widths of fields, but are needed by
|
||||
STRINGLIB_GROUPING. */
|
||||
Py_ssize_t n_digits; /* The number of digits before a decimal
|
||||
or exponent. */
|
||||
Py_ssize_t n_min_width; /* The min_width we used when we computed
|
||||
the n_grouped_digits width. */
|
||||
} NumberFieldWidths;
|
||||
|
||||
/* Given a number of the form:
|
||||
digits[remainder]
|
||||
where ptr points to the start and end points to the end, find where
|
||||
the integer part ends. This could be a decimal, an exponent, both,
|
||||
or neither.
|
||||
If a decimal point is present, set *has_decimal and increment
|
||||
remainder beyond it.
|
||||
Results are undefined (but shouldn't crash) for improperly
|
||||
formatted strings.
|
||||
*/
|
||||
static void
|
||||
parse_number(STRINGLIB_CHAR *ptr, Py_ssize_t len,
|
||||
Py_ssize_t *n_remainder, int *has_decimal)
|
||||
{
|
||||
STRINGLIB_CHAR *end = ptr + len;
|
||||
STRINGLIB_CHAR *remainder;
|
||||
|
||||
while (ptr<end && isdigit(*ptr))
|
||||
++ptr;
|
||||
remainder = ptr;
|
||||
|
||||
/* Does remainder start with a decimal point? */
|
||||
*has_decimal = ptr<end && *remainder == '.';
|
||||
|
||||
/* Skip the decimal point. */
|
||||
if (*has_decimal)
|
||||
remainder++;
|
||||
|
||||
*n_remainder = end - remainder;
|
||||
}
|
||||
|
||||
/* not all fields of format are used. for example, precision is
|
||||
unused. should this take discrete params in order to be more clear
|
||||
about what it does? or is passing a single format parameter easier
|
||||
and more efficient enough to justify a little obfuscation? */
|
||||
static void
|
||||
calc_number_widths(NumberFieldWidths *spec, STRINGLIB_CHAR actual_sign,
|
||||
Py_ssize_t n_prefix, Py_ssize_t n_digits,
|
||||
static Py_ssize_t
|
||||
calc_number_widths(NumberFieldWidths *spec, Py_ssize_t n_prefix,
|
||||
STRINGLIB_CHAR sign_char, STRINGLIB_CHAR *number,
|
||||
Py_ssize_t n_number, Py_ssize_t n_remainder,
|
||||
int has_decimal, const LocaleInfo *locale,
|
||||
const InternalFormatSpec *format)
|
||||
{
|
||||
Py_ssize_t n_non_digit_non_padding;
|
||||
Py_ssize_t n_padding;
|
||||
|
||||
spec->n_digits = n_number - n_remainder - (has_decimal?1:0);
|
||||
spec->n_lpadding = 0;
|
||||
spec->n_prefix = 0;
|
||||
spec->n_prefix = n_prefix;
|
||||
spec->n_decimal = has_decimal ? strlen(locale->decimal_point) : 0;
|
||||
spec->n_remainder = n_remainder;
|
||||
spec->n_spadding = 0;
|
||||
spec->n_rpadding = 0;
|
||||
spec->lsign = '\0';
|
||||
spec->n_lsign = 0;
|
||||
spec->rsign = '\0';
|
||||
spec->n_rsign = 0;
|
||||
spec->sign = '\0';
|
||||
spec->n_sign = 0;
|
||||
|
||||
/* the output will look like:
|
||||
| |
|
||||
| <lpadding> <lsign> <prefix> <spadding> <digits> <rsign> <rpadding> |
|
||||
| |
|
||||
| |
|
||||
| <lpadding> <sign> <prefix> <spadding> <grouped_digits> <decimal> <remainder> <rpadding> |
|
||||
| |
|
||||
|
||||
lsign and rsign are computed from format->sign and the actual
|
||||
sign is computed from format->sign and the actual
|
||||
sign of the number
|
||||
|
||||
prefix is given (it's for the '0x' prefix)
|
||||
|
@ -304,108 +378,191 @@ calc_number_widths(NumberFieldWidths *spec, STRINGLIB_CHAR actual_sign,
|
|||
*/
|
||||
|
||||
/* compute the various parts we're going to write */
|
||||
if (format->sign == '+') {
|
||||
switch (format->sign) {
|
||||
case '+':
|
||||
/* always put a + or - */
|
||||
spec->n_lsign = 1;
|
||||
spec->lsign = (actual_sign == '-' ? '-' : '+');
|
||||
}
|
||||
#if ALLOW_PARENS_FOR_SIGN
|
||||
else if (format->sign == '(') {
|
||||
if (actual_sign == '-') {
|
||||
spec->n_lsign = 1;
|
||||
spec->lsign = '(';
|
||||
spec->n_rsign = 1;
|
||||
spec->rsign = ')';
|
||||
}
|
||||
}
|
||||
#endif
|
||||
else if (format->sign == ' ') {
|
||||
spec->n_lsign = 1;
|
||||
spec->lsign = (actual_sign == '-' ? '-' : ' ');
|
||||
}
|
||||
else {
|
||||
/* non specified, or the default (-) */
|
||||
if (actual_sign == '-') {
|
||||
spec->n_lsign = 1;
|
||||
spec->lsign = '-';
|
||||
spec->n_sign = 1;
|
||||
spec->sign = (sign_char == '-' ? '-' : '+');
|
||||
break;
|
||||
case ' ':
|
||||
spec->n_sign = 1;
|
||||
spec->sign = (sign_char == '-' ? '-' : ' ');
|
||||
break;
|
||||
default:
|
||||
/* Not specified, or the default (-) */
|
||||
if (sign_char == '-') {
|
||||
spec->n_sign = 1;
|
||||
spec->sign = '-';
|
||||
}
|
||||
}
|
||||
|
||||
spec->n_prefix = n_prefix;
|
||||
/* The number of chars used for non-digits and non-padding. */
|
||||
n_non_digit_non_padding = spec->n_sign + spec->n_prefix + spec->n_decimal +
|
||||
spec->n_remainder;
|
||||
|
||||
/* now the number of padding characters */
|
||||
if (format->width == -1) {
|
||||
/* no padding at all, nothing to do */
|
||||
}
|
||||
else {
|
||||
/* see if any padding is needed */
|
||||
if (spec->n_lsign + n_digits + spec->n_rsign +
|
||||
spec->n_prefix >= format->width) {
|
||||
/* no padding needed, we're already bigger than the
|
||||
requested width */
|
||||
}
|
||||
else {
|
||||
/* determine which of left, space, or right padding is
|
||||
needed */
|
||||
Py_ssize_t padding = format->width -
|
||||
(spec->n_lsign + spec->n_prefix +
|
||||
n_digits + spec->n_rsign);
|
||||
if (format->align == '<')
|
||||
spec->n_rpadding = padding;
|
||||
else if (format->align == '>')
|
||||
spec->n_lpadding = padding;
|
||||
else if (format->align == '^') {
|
||||
spec->n_lpadding = padding / 2;
|
||||
spec->n_rpadding = padding - spec->n_lpadding;
|
||||
}
|
||||
else if (format->align == '=')
|
||||
spec->n_spadding = padding;
|
||||
else
|
||||
spec->n_lpadding = padding;
|
||||
/* min_width can go negative, that's okay. format->width == -1 means
|
||||
we don't care. */
|
||||
if (format->fill_char == '0')
|
||||
spec->n_min_width = format->width - n_non_digit_non_padding;
|
||||
else
|
||||
spec->n_min_width = 0;
|
||||
|
||||
if (spec->n_digits == 0)
|
||||
/* This case only occurs when using 'c' formatting, we need
|
||||
to special case it because the grouping code always wants
|
||||
to have at least one character. */
|
||||
spec->n_grouped_digits = 0;
|
||||
else
|
||||
spec->n_grouped_digits = STRINGLIB_GROUPING(NULL, 0, NULL,
|
||||
spec->n_digits,
|
||||
spec->n_min_width,
|
||||
locale->grouping,
|
||||
locale->thousands_sep);
|
||||
|
||||
/* Given the desired width and the total of digit and non-digit
|
||||
space we consume, see if we need any padding. format->width can
|
||||
be negative (meaning no padding), but this code still works in
|
||||
that case. */
|
||||
n_padding = format->width -
|
||||
(n_non_digit_non_padding + spec->n_grouped_digits);
|
||||
if (n_padding > 0) {
|
||||
/* Some padding is needed. Determine if it's left, space, or right. */
|
||||
switch (format->align) {
|
||||
case '<':
|
||||
spec->n_rpadding = n_padding;
|
||||
break;
|
||||
case '^':
|
||||
spec->n_lpadding = n_padding / 2;
|
||||
spec->n_rpadding = n_padding - spec->n_lpadding;
|
||||
break;
|
||||
case '=':
|
||||
spec->n_spadding = n_padding;
|
||||
break;
|
||||
default:
|
||||
/* Handles '>', plus catch-all just in case. */
|
||||
spec->n_lpadding = n_padding;
|
||||
break;
|
||||
}
|
||||
}
|
||||
spec->n_total = spec->n_lpadding + spec->n_lsign + spec->n_prefix +
|
||||
spec->n_spadding + n_digits + spec->n_rsign + spec->n_rpadding;
|
||||
return spec->n_lpadding + spec->n_sign + spec->n_prefix +
|
||||
spec->n_spadding + spec->n_grouped_digits + spec->n_decimal +
|
||||
spec->n_remainder + spec->n_rpadding;
|
||||
}
|
||||
|
||||
/* fill in the non-digit parts of a numbers's string representation,
|
||||
as determined in calc_number_widths(). returns the pointer to
|
||||
where the digits go. */
|
||||
static STRINGLIB_CHAR *
|
||||
fill_non_digits(STRINGLIB_CHAR *p_buf, const NumberFieldWidths *spec,
|
||||
STRINGLIB_CHAR *prefix, Py_ssize_t n_digits,
|
||||
STRINGLIB_CHAR fill_char)
|
||||
/* Fill in the digit parts of a numbers's string representation,
|
||||
as determined in calc_number_widths().
|
||||
No error checking, since we know the buffer is the correct size. */
|
||||
static void
|
||||
fill_number(STRINGLIB_CHAR *buf, const NumberFieldWidths *spec,
|
||||
STRINGLIB_CHAR *digits, Py_ssize_t n_digits,
|
||||
STRINGLIB_CHAR *prefix, STRINGLIB_CHAR fill_char,
|
||||
LocaleInfo *locale, int toupper)
|
||||
{
|
||||
STRINGLIB_CHAR *p_digits;
|
||||
/* Used to keep track of digits, decimal, and remainder. */
|
||||
STRINGLIB_CHAR *p = digits;
|
||||
|
||||
#ifndef NDEBUG
|
||||
Py_ssize_t r;
|
||||
#endif
|
||||
|
||||
if (spec->n_lpadding) {
|
||||
STRINGLIB_FILL(p_buf, fill_char, spec->n_lpadding);
|
||||
p_buf += spec->n_lpadding;
|
||||
STRINGLIB_FILL(buf, fill_char, spec->n_lpadding);
|
||||
buf += spec->n_lpadding;
|
||||
}
|
||||
if (spec->n_lsign == 1) {
|
||||
*p_buf++ = spec->lsign;
|
||||
if (spec->n_sign == 1) {
|
||||
*buf++ = spec->sign;
|
||||
}
|
||||
if (spec->n_prefix) {
|
||||
memmove(p_buf,
|
||||
memmove(buf,
|
||||
prefix,
|
||||
spec->n_prefix * sizeof(STRINGLIB_CHAR));
|
||||
p_buf += spec->n_prefix;
|
||||
if (toupper) {
|
||||
Py_ssize_t t;
|
||||
for (t = 0; t < spec->n_prefix; ++t)
|
||||
buf[t] = STRINGLIB_TOUPPER(buf[t]);
|
||||
}
|
||||
buf += spec->n_prefix;
|
||||
}
|
||||
if (spec->n_spadding) {
|
||||
STRINGLIB_FILL(p_buf, fill_char, spec->n_spadding);
|
||||
p_buf += spec->n_spadding;
|
||||
STRINGLIB_FILL(buf, fill_char, spec->n_spadding);
|
||||
buf += spec->n_spadding;
|
||||
}
|
||||
p_digits = p_buf;
|
||||
p_buf += n_digits;
|
||||
if (spec->n_rsign == 1) {
|
||||
*p_buf++ = spec->rsign;
|
||||
|
||||
/* Only for type 'c' special case, it has no digits. */
|
||||
if (spec->n_digits != 0) {
|
||||
/* Fill the digits with InsertThousandsGrouping. */
|
||||
#ifndef NDEBUG
|
||||
r =
|
||||
#endif
|
||||
STRINGLIB_GROUPING(buf, spec->n_grouped_digits, digits,
|
||||
spec->n_digits, spec->n_min_width,
|
||||
locale->grouping, locale->thousands_sep);
|
||||
#ifndef NDEBUG
|
||||
assert(r == spec->n_grouped_digits);
|
||||
#endif
|
||||
p += spec->n_digits;
|
||||
}
|
||||
if (toupper) {
|
||||
Py_ssize_t t;
|
||||
for (t = 0; t < spec->n_grouped_digits; ++t)
|
||||
buf[t] = STRINGLIB_TOUPPER(buf[t]);
|
||||
}
|
||||
buf += spec->n_grouped_digits;
|
||||
|
||||
if (spec->n_decimal) {
|
||||
Py_ssize_t t;
|
||||
for (t = 0; t < spec->n_decimal; ++t)
|
||||
buf[t] = locale->decimal_point[t];
|
||||
buf += spec->n_decimal;
|
||||
p += 1;
|
||||
}
|
||||
|
||||
if (spec->n_remainder) {
|
||||
memcpy(buf, p, spec->n_remainder * sizeof(STRINGLIB_CHAR));
|
||||
buf += spec->n_remainder;
|
||||
p += spec->n_remainder;
|
||||
}
|
||||
|
||||
if (spec->n_rpadding) {
|
||||
STRINGLIB_FILL(p_buf, fill_char, spec->n_rpadding);
|
||||
p_buf += spec->n_rpadding;
|
||||
STRINGLIB_FILL(buf, fill_char, spec->n_rpadding);
|
||||
buf += spec->n_rpadding;
|
||||
}
|
||||
return p_digits;
|
||||
}
|
||||
|
||||
static char no_grouping[1] = {CHAR_MAX};
|
||||
|
||||
/* Find the decimal point character(s?), thousands_separator(s?), and
|
||||
grouping description, either for the current locale if type is
|
||||
LT_CURRENT_LOCALE, a hard-coded locale if LT_DEFAULT_LOCALE, or
|
||||
none if LT_NO_LOCALE. */
|
||||
static void
|
||||
get_locale_info(int type, LocaleInfo *locale_info)
|
||||
{
|
||||
switch (type) {
|
||||
case LT_CURRENT_LOCALE: {
|
||||
struct lconv *locale_data = localeconv();
|
||||
locale_info->decimal_point = locale_data->decimal_point;
|
||||
locale_info->thousands_sep = locale_data->thousands_sep;
|
||||
locale_info->grouping = locale_data->grouping;
|
||||
break;
|
||||
}
|
||||
case LT_DEFAULT_LOCALE:
|
||||
locale_info->decimal_point = ".";
|
||||
locale_info->thousands_sep = ",";
|
||||
locale_info->grouping = "\3"; /* Group every 3 characters,
|
||||
trailing 0 means repeat
|
||||
infinitely. */
|
||||
break;
|
||||
case LT_NO_LOCALE:
|
||||
locale_info->decimal_point = ".";
|
||||
locale_info->thousands_sep = "";
|
||||
locale_info->grouping = no_grouping;
|
||||
break;
|
||||
default:
|
||||
assert(0);
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* FORMAT_FLOAT || FORMAT_LONG */
|
||||
|
||||
/************************************************************************/
|
||||
|
@ -523,19 +680,21 @@ format_int_or_long_internal(PyObject *value, const InternalFormatSpec *format,
|
|||
PyObject *tmp = NULL;
|
||||
STRINGLIB_CHAR *pnumeric_chars;
|
||||
STRINGLIB_CHAR numeric_char;
|
||||
STRINGLIB_CHAR sign = '\0';
|
||||
STRINGLIB_CHAR *p;
|
||||
STRINGLIB_CHAR sign_char = '\0';
|
||||
Py_ssize_t n_digits; /* count of digits need from the computed
|
||||
string */
|
||||
Py_ssize_t n_leading_chars;
|
||||
Py_ssize_t n_grouping_chars = 0; /* Count of additional chars to
|
||||
allocate, used for 'n'
|
||||
formatting. */
|
||||
Py_ssize_t n_remainder = 0; /* Used only for 'c' formatting, which
|
||||
produces non-digits */
|
||||
Py_ssize_t n_prefix = 0; /* Count of prefix chars, (e.g., '0x') */
|
||||
Py_ssize_t n_total;
|
||||
STRINGLIB_CHAR *prefix = NULL;
|
||||
NumberFieldWidths spec;
|
||||
long x;
|
||||
|
||||
/* Locale settings, either from the actual locale or
|
||||
from a hard-code pseudo-locale */
|
||||
LocaleInfo locale;
|
||||
|
||||
/* no precision allowed on integers */
|
||||
if (format->precision != -1) {
|
||||
PyErr_SetString(PyExc_ValueError,
|
||||
|
@ -543,7 +702,6 @@ format_int_or_long_internal(PyObject *value, const InternalFormatSpec *format,
|
|||
goto done;
|
||||
}
|
||||
|
||||
|
||||
/* special case for character formatting */
|
||||
if (format->type == 'c') {
|
||||
/* error to specify a sign */
|
||||
|
@ -554,6 +712,14 @@ format_int_or_long_internal(PyObject *value, const InternalFormatSpec *format,
|
|||
goto done;
|
||||
}
|
||||
|
||||
/* Error to specify a comma. */
|
||||
if (format->thousands_separators) {
|
||||
PyErr_SetString(PyExc_ValueError,
|
||||
"Thousands separators not allowed with integer"
|
||||
" format specifier 'c'");
|
||||
goto done;
|
||||
}
|
||||
|
||||
/* taken from unicodeobject.c formatchar() */
|
||||
/* Integer input truncated to a character */
|
||||
/* XXX: won't work for int */
|
||||
|
@ -578,6 +744,13 @@ format_int_or_long_internal(PyObject *value, const InternalFormatSpec *format,
|
|||
numeric_char = (STRINGLIB_CHAR)x;
|
||||
pnumeric_chars = &numeric_char;
|
||||
n_digits = 1;
|
||||
|
||||
/* As a sort-of hack, we tell calc_number_widths that we only
|
||||
have "remainder" characters. calc_number_widths thinks
|
||||
these are characters that don't get formatted, only copied
|
||||
into the output string. We do this for 'c' formatting,
|
||||
because the characters are likely to be non-digits. */
|
||||
n_remainder = 1;
|
||||
}
|
||||
else {
|
||||
int base;
|
||||
|
@ -629,8 +802,8 @@ format_int_or_long_internal(PyObject *value, const InternalFormatSpec *format,
|
|||
|
||||
/* Is a sign character present in the output? If so, remember it
|
||||
and skip it */
|
||||
sign = pnumeric_chars[0];
|
||||
if (sign == '-') {
|
||||
if (pnumeric_chars[0] == '-') {
|
||||
sign_char = pnumeric_chars[0];
|
||||
++prefix;
|
||||
++leading_chars_to_skip;
|
||||
}
|
||||
|
@ -640,86 +813,26 @@ format_int_or_long_internal(PyObject *value, const InternalFormatSpec *format,
|
|||
pnumeric_chars += leading_chars_to_skip;
|
||||
}
|
||||
|
||||
if (format->type == 'n')
|
||||
/* Compute how many additional chars we need to allocate
|
||||
to hold the thousands grouping. */
|
||||
STRINGLIB_GROUPING_LOCALE(NULL, n_digits, n_digits,
|
||||
0, &n_grouping_chars, 0);
|
||||
if (format->thousands_separators)
|
||||
/* Compute how many additional chars we need to allocate
|
||||
to hold the thousands grouping. */
|
||||
STRINGLIB_GROUPING(NULL, n_digits, n_digits,
|
||||
0, &n_grouping_chars, 0, "\3", ",");
|
||||
/* Determine the grouping, separator, and decimal point, if any. */
|
||||
get_locale_info(format->type == 'n' ? LT_CURRENT_LOCALE :
|
||||
(format->thousands_separators ?
|
||||
LT_DEFAULT_LOCALE :
|
||||
LT_NO_LOCALE),
|
||||
&locale);
|
||||
|
||||
/* Calculate the widths of the various leading and trailing parts */
|
||||
calc_number_widths(&spec, sign, n_prefix, n_digits + n_grouping_chars,
|
||||
format);
|
||||
/* Calculate how much memory we'll need. */
|
||||
n_total = calc_number_widths(&spec, n_prefix, sign_char, pnumeric_chars,
|
||||
n_digits, n_remainder, 0, &locale, format);
|
||||
|
||||
/* Allocate a new string to hold the result */
|
||||
result = STRINGLIB_NEW(NULL, spec.n_total);
|
||||
/* Allocate the memory. */
|
||||
result = STRINGLIB_NEW(NULL, n_total);
|
||||
if (!result)
|
||||
goto done;
|
||||
p = STRINGLIB_STR(result);
|
||||
|
||||
/* XXX There is too much magic here regarding the internals of
|
||||
spec and the location of the prefix and digits. It would be
|
||||
better if calc_number_widths returned a number of logical
|
||||
offsets into the buffer, and those were used. Maybe in a
|
||||
future code cleanup. */
|
||||
|
||||
/* Fill in the digit parts */
|
||||
n_leading_chars = spec.n_lpadding + spec.n_lsign +
|
||||
spec.n_prefix + spec.n_spadding;
|
||||
memmove(p + n_leading_chars,
|
||||
pnumeric_chars,
|
||||
n_digits * sizeof(STRINGLIB_CHAR));
|
||||
|
||||
/* If type is 'X', convert the filled in digits to uppercase */
|
||||
if (format->type == 'X') {
|
||||
Py_ssize_t t;
|
||||
for (t = 0; t < n_digits; ++t)
|
||||
p[t + n_leading_chars] = STRINGLIB_TOUPPER(p[t + n_leading_chars]);
|
||||
}
|
||||
|
||||
/* Insert the grouping, if any, after the uppercasing of the digits, so
|
||||
we can ensure that grouping chars won't be affected. */
|
||||
if (n_grouping_chars) {
|
||||
/* We know this can't fail, since we've already
|
||||
reserved enough space. */
|
||||
STRINGLIB_CHAR *pstart = p + n_leading_chars;
|
||||
#ifndef NDEBUG
|
||||
int r;
|
||||
#endif
|
||||
if (format->type == 'n')
|
||||
#ifndef NDEBUG
|
||||
r =
|
||||
#endif
|
||||
STRINGLIB_GROUPING_LOCALE(pstart, n_digits, n_digits,
|
||||
spec.n_total+n_grouping_chars-n_leading_chars,
|
||||
NULL, 0);
|
||||
else
|
||||
#ifndef NDEBUG
|
||||
r =
|
||||
#endif
|
||||
STRINGLIB_GROUPING(pstart, n_digits, n_digits,
|
||||
spec.n_total+n_grouping_chars-n_leading_chars,
|
||||
NULL, 0, "\3", ",");
|
||||
assert(r);
|
||||
}
|
||||
|
||||
/* Fill in the non-digit parts (padding, sign, etc.) */
|
||||
fill_non_digits(p, &spec, prefix, n_digits + n_grouping_chars,
|
||||
format->fill_char == '\0' ? ' ' : format->fill_char);
|
||||
|
||||
/* If type is 'X', uppercase the prefix. This has to be done after the
|
||||
prefix is filled in by fill_non_digits */
|
||||
if (format->type == 'X') {
|
||||
Py_ssize_t t;
|
||||
for (t = 0; t < n_prefix; ++t)
|
||||
p[t + spec.n_lpadding + spec.n_lsign] =
|
||||
STRINGLIB_TOUPPER(p[t + spec.n_lpadding + spec.n_lsign]);
|
||||
}
|
||||
|
||||
/* Populate the memory. */
|
||||
fill_number(STRINGLIB_STR(result), &spec, pnumeric_chars, n_digits,
|
||||
prefix, format->fill_char == '\0' ? ' ' : format->fill_char,
|
||||
&locale, format->type == 'X');
|
||||
|
||||
done:
|
||||
Py_XDECREF(tmp);
|
||||
|
@ -733,64 +846,45 @@ done:
|
|||
|
||||
#ifdef FORMAT_FLOAT
|
||||
#if STRINGLIB_IS_UNICODE
|
||||
/* taken from unicodeobject.c */
|
||||
static Py_ssize_t
|
||||
strtounicode(Py_UNICODE *buffer, const char *charbuffer)
|
||||
static void
|
||||
strtounicode(Py_UNICODE *buffer, const char *charbuffer, Py_ssize_t len)
|
||||
{
|
||||
register Py_ssize_t i;
|
||||
Py_ssize_t len = strlen(charbuffer);
|
||||
for (i = len - 1; i >= 0; --i)
|
||||
buffer[i] = (Py_UNICODE) charbuffer[i];
|
||||
|
||||
return len;
|
||||
Py_ssize_t i;
|
||||
for (i = 0; i < len; ++i)
|
||||
buffer[i] = (Py_UNICODE)charbuffer[i];
|
||||
}
|
||||
#endif
|
||||
|
||||
/* see FORMATBUFLEN in unicodeobject.c */
|
||||
#define FLOAT_FORMATBUFLEN 120
|
||||
|
||||
/* much of this is taken from unicodeobject.c */
|
||||
static PyObject *
|
||||
format_float_internal(PyObject *value,
|
||||
const InternalFormatSpec *format)
|
||||
{
|
||||
/* fmt = '%.' + `prec` + `type` + '%%'
|
||||
worst case length = 2 + 10 (len of INT_MAX) + 1 + 2 = 15 (use 20)*/
|
||||
char fmt[20];
|
||||
|
||||
/* taken from unicodeobject.c */
|
||||
/* Worst case length calc to ensure no buffer overrun:
|
||||
|
||||
'g' formats:
|
||||
fmt = %#.<prec>g
|
||||
buf = '-' + [0-9]*prec + '.' + 'e+' + (longest exp
|
||||
for any double rep.)
|
||||
len = 1 + prec + 1 + 2 + 5 = 9 + prec
|
||||
|
||||
'f' formats:
|
||||
buf = '-' + [0-9]*x + '.' + [0-9]*prec (with x < 50)
|
||||
len = 1 + 50 + 1 + prec = 52 + prec
|
||||
|
||||
If prec=0 the effective precision is 1 (the leading digit is
|
||||
always given), therefore increase the length by one.
|
||||
|
||||
*/
|
||||
char charbuf[FLOAT_FORMATBUFLEN];
|
||||
char *buf = NULL; /* buffer returned from PyOS_double_to_string */
|
||||
Py_ssize_t n_digits;
|
||||
double x;
|
||||
Py_ssize_t n_remainder;
|
||||
Py_ssize_t n_total;
|
||||
int has_decimal;
|
||||
double val;
|
||||
Py_ssize_t precision = format->precision;
|
||||
PyObject *result = NULL;
|
||||
STRINGLIB_CHAR sign;
|
||||
char* trailing = "";
|
||||
STRINGLIB_CHAR type = format->type;
|
||||
int add_pct = 0;
|
||||
STRINGLIB_CHAR *p;
|
||||
NumberFieldWidths spec;
|
||||
STRINGLIB_CHAR type = format->type;
|
||||
int flags = 0;
|
||||
PyObject *result = NULL;
|
||||
STRINGLIB_CHAR sign_char = '\0';
|
||||
int float_type; /* Used to see if we have a nan, inf, or regular float. */
|
||||
|
||||
#if STRINGLIB_IS_UNICODE
|
||||
Py_UNICODE unicodebuf[FLOAT_FORMATBUFLEN];
|
||||
Py_UNICODE *unicode_tmp = NULL;
|
||||
#endif
|
||||
|
||||
/* alternate is not allowed on floats. */
|
||||
/* Locale settings, either from the actual locale or
|
||||
from a hard-code pseudo-locale */
|
||||
LocaleInfo locale;
|
||||
|
||||
/* Alternate is not allowed on floats. */
|
||||
if (format->alternate) {
|
||||
PyErr_SetString(PyExc_ValueError,
|
||||
"Alternate form (#) not allowed in float format "
|
||||
|
@ -798,84 +892,106 @@ format_float_internal(PyObject *value,
|
|||
goto done;
|
||||
}
|
||||
|
||||
/* first, do the conversion as 8-bit chars, using the platform's
|
||||
snprintf. then, if needed, convert to unicode. */
|
||||
if (type == '\0') {
|
||||
/* Omitted type specifier. This is like 'g' but with at least
|
||||
one digit after the decimal point. */
|
||||
type = 'g';
|
||||
flags |= Py_DTSF_ADD_DOT_0;
|
||||
}
|
||||
|
||||
if (type == 'n')
|
||||
/* 'n' is the same as 'g', except for the locale used to
|
||||
format the result. We take care of that later. */
|
||||
type = 'g';
|
||||
|
||||
/* 'F' is the same as 'f', per the PEP */
|
||||
if (type == 'F')
|
||||
type = 'f';
|
||||
|
||||
x = PyFloat_AsDouble(value);
|
||||
|
||||
if (x == -1.0 && PyErr_Occurred())
|
||||
val = PyFloat_AsDouble(value);
|
||||
if (val == -1.0 && PyErr_Occurred())
|
||||
goto done;
|
||||
|
||||
if (type == '%') {
|
||||
type = 'f';
|
||||
x *= 100;
|
||||
trailing = "%";
|
||||
val *= 100;
|
||||
add_pct = 1;
|
||||
}
|
||||
|
||||
if (precision < 0)
|
||||
precision = 6;
|
||||
if (type == 'f' && fabs(x) >= 1e50)
|
||||
if ((type == 'f' || type == 'F') && fabs(val) >= 1e50)
|
||||
type = 'g';
|
||||
|
||||
/* cast "type", because if we're in unicode we need to pass a
|
||||
8-bit char. this is safe, because we've restricted what "type"
|
||||
can be */
|
||||
PyOS_snprintf(fmt, sizeof(fmt), "%%.%" PY_FORMAT_SIZE_T "d%c", precision,
|
||||
(char)type);
|
||||
/* Cast "type", because if we're in unicode we need to pass a
|
||||
8-bit char. This is safe, because we've restricted what "type"
|
||||
can be. */
|
||||
buf = PyOS_double_to_string(val, (char)type, precision, flags,
|
||||
&float_type);
|
||||
if (buf == NULL)
|
||||
goto done;
|
||||
n_digits = strlen(buf);
|
||||
|
||||
/* do the actual formatting */
|
||||
PyOS_ascii_formatd(charbuf, sizeof(charbuf), fmt, x);
|
||||
if (add_pct) {
|
||||
/* We know that buf has a trailing zero (since we just called
|
||||
strlen() on it), and we don't use that fact any more. So we
|
||||
can just write over the trailing zero. */
|
||||
buf[n_digits] = '%';
|
||||
n_digits += 1;
|
||||
}
|
||||
|
||||
/* adding trailing to fmt with PyOS_snprintf doesn't work, not
|
||||
sure why. we'll just concatentate it here, no harm done. we
|
||||
know we can't have a buffer overflow from the fmt size
|
||||
analysis */
|
||||
strcat(charbuf, trailing);
|
||||
|
||||
/* rather than duplicate the code for snprintf for both unicode
|
||||
and 8 bit strings, we just use the 8 bit version and then
|
||||
convert to unicode in a separate code path. that's probably
|
||||
the lesser of 2 evils. */
|
||||
/* Since there is no unicode version of PyOS_double_to_string,
|
||||
just use the 8 bit version and then convert to unicode. */
|
||||
#if STRINGLIB_IS_UNICODE
|
||||
n_digits = strtounicode(unicodebuf, charbuf);
|
||||
p = unicodebuf;
|
||||
unicode_tmp = (Py_UNICODE*)PyMem_Malloc((n_digits)*sizeof(Py_UNICODE));
|
||||
if (unicode_tmp == NULL) {
|
||||
PyErr_NoMemory();
|
||||
goto done;
|
||||
}
|
||||
strtounicode(unicode_tmp, buf, n_digits);
|
||||
p = unicode_tmp;
|
||||
#else
|
||||
/* compute the length. I believe this is done because the return
|
||||
value from snprintf above is unreliable */
|
||||
n_digits = strlen(charbuf);
|
||||
p = charbuf;
|
||||
p = buf;
|
||||
#endif
|
||||
|
||||
/* is a sign character present in the output? if so, remember it
|
||||
/* Is a sign character present in the output? If so, remember it
|
||||
and skip it */
|
||||
sign = p[0];
|
||||
if (sign == '-') {
|
||||
if (*p == '-') {
|
||||
sign_char = *p;
|
||||
++p;
|
||||
--n_digits;
|
||||
}
|
||||
|
||||
calc_number_widths(&spec, sign, 0, n_digits, format);
|
||||
/* Determine if we have any "remainder" (after the digits, might include
|
||||
decimal or exponent or both (or neither)) */
|
||||
parse_number(p, n_digits, &n_remainder, &has_decimal);
|
||||
|
||||
/* allocate a string with enough space */
|
||||
result = STRINGLIB_NEW(NULL, spec.n_total);
|
||||
/* Determine the grouping, separator, and decimal point, if any. */
|
||||
get_locale_info(format->type == 'n' ? LT_CURRENT_LOCALE :
|
||||
(format->thousands_separators ?
|
||||
LT_DEFAULT_LOCALE :
|
||||
LT_NO_LOCALE),
|
||||
&locale);
|
||||
|
||||
/* Calculate how much memory we'll need. */
|
||||
n_total = calc_number_widths(&spec, 0, sign_char, p, n_digits,
|
||||
n_remainder, has_decimal, &locale, format);
|
||||
|
||||
/* Allocate the memory. */
|
||||
result = STRINGLIB_NEW(NULL, n_total);
|
||||
if (result == NULL)
|
||||
goto done;
|
||||
|
||||
/* Fill in the non-digit parts (padding, sign, etc.) */
|
||||
fill_non_digits(STRINGLIB_STR(result), &spec, NULL, n_digits,
|
||||
format->fill_char == '\0' ? ' ' : format->fill_char);
|
||||
|
||||
/* fill in the digit parts */
|
||||
memmove(STRINGLIB_STR(result) +
|
||||
(spec.n_lpadding + spec.n_lsign + spec.n_spadding),
|
||||
p,
|
||||
n_digits * sizeof(STRINGLIB_CHAR));
|
||||
/* Populate the memory. */
|
||||
fill_number(STRINGLIB_STR(result), &spec, p, n_digits, NULL,
|
||||
format->fill_char == '\0' ? ' ' : format->fill_char, &locale,
|
||||
0);
|
||||
|
||||
done:
|
||||
PyMem_Free(buf);
|
||||
#if STRINGLIB_IS_UNICODE
|
||||
PyMem_Free(unicode_tmp);
|
||||
#endif
|
||||
return result;
|
||||
}
|
||||
#endif /* FORMAT_FLOAT */
|
||||
|
@ -1056,11 +1172,7 @@ FORMAT_FLOAT(PyObject *obj,
|
|||
|
||||
/* type conversion? */
|
||||
switch (format.type) {
|
||||
case '\0':
|
||||
/* 'Z' means like 'g', but with at least one decimal. See
|
||||
PyOS_ascii_formatd */
|
||||
format.type = 'Z';
|
||||
/* Deliberate fall through to the next case statement */
|
||||
case '\0': /* No format code: like 'g', but with at least one decimal. */
|
||||
case 'e':
|
||||
case 'E':
|
||||
case 'f':
|
||||
|
|
|
@ -5,161 +5,208 @@
|
|||
|
||||
#include <locale.h>
|
||||
|
||||
#define MAX(x, y) ((x) < (y) ? (y) : (x))
|
||||
#define MIN(x, y) ((x) < (y) ? (x) : (y))
|
||||
|
||||
typedef struct {
|
||||
const char *grouping;
|
||||
char previous;
|
||||
Py_ssize_t i; /* Where we're currently pointing in grouping. */
|
||||
} GroupGenerator;
|
||||
|
||||
static void
|
||||
_GroupGenerator_init(GroupGenerator *self, const char *grouping)
|
||||
{
|
||||
self->grouping = grouping;
|
||||
self->i = 0;
|
||||
self->previous = 0;
|
||||
}
|
||||
|
||||
/* Returns the next grouping, or 0 to signify end. */
|
||||
static Py_ssize_t
|
||||
_GroupGenerator_next(GroupGenerator *self)
|
||||
{
|
||||
/* Note that we don't really do much error checking here. If a
|
||||
grouping string contains just CHAR_MAX, for example, then just
|
||||
terminate the generator. That shouldn't happen, but at least we
|
||||
fail gracefully. */
|
||||
switch (self->grouping[self->i]) {
|
||||
case 0:
|
||||
return self->previous;
|
||||
case CHAR_MAX:
|
||||
/* Stop the generator. */
|
||||
return 0;
|
||||
default: {
|
||||
char ch = self->grouping[self->i];
|
||||
self->previous = ch;
|
||||
self->i++;
|
||||
return (Py_ssize_t)ch;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Fill in some digits, leading zeros, and thousands separator. All
|
||||
are optional, depending on when we're called. */
|
||||
static void
|
||||
fill(STRINGLIB_CHAR **digits_end, STRINGLIB_CHAR **buffer_end,
|
||||
Py_ssize_t n_chars, Py_ssize_t n_zeros, const char* thousands_sep,
|
||||
Py_ssize_t thousands_sep_len)
|
||||
{
|
||||
#if STRINGLIB_IS_UNICODE
|
||||
Py_ssize_t i;
|
||||
#endif
|
||||
|
||||
if (thousands_sep) {
|
||||
*buffer_end -= thousands_sep_len;
|
||||
|
||||
/* Copy the thousands_sep chars into the buffer. */
|
||||
#if STRINGLIB_IS_UNICODE
|
||||
/* Convert from the char's of the thousands_sep from
|
||||
the locale into unicode. */
|
||||
for (i = 0; i < thousands_sep_len; ++i)
|
||||
(*buffer_end)[i] = thousands_sep[i];
|
||||
#else
|
||||
/* No conversion, just memcpy the thousands_sep. */
|
||||
memcpy(*buffer_end, thousands_sep, thousands_sep_len);
|
||||
#endif
|
||||
}
|
||||
|
||||
*buffer_end -= n_chars;
|
||||
*digits_end -= n_chars;
|
||||
memcpy(*buffer_end, *digits_end, n_chars * sizeof(STRINGLIB_CHAR));
|
||||
|
||||
*buffer_end -= n_zeros;
|
||||
STRINGLIB_FILL(*buffer_end, '0', n_zeros);
|
||||
}
|
||||
|
||||
/**
|
||||
* _Py_InsertThousandsGrouping:
|
||||
* @buffer: A pointer to the start of a string.
|
||||
* @n_buffer: The length of the string.
|
||||
* @n_buffer: Number of characters in @buffer.
|
||||
* @digits: A pointer to the digits we're reading from. If count
|
||||
* is non-NULL, this is unused.
|
||||
* @n_digits: The number of digits in the string, in which we want
|
||||
* to put the grouping chars.
|
||||
* @buf_size: The maximum size of the buffer pointed to by buffer.
|
||||
* @count: If non-NULL, points to a variable that will receive the
|
||||
* number of characters we need to insert (and no formatting
|
||||
* will actually occur).
|
||||
* @append_zero_char: If non-zero, put a trailing zero at the end of
|
||||
* of the resulting string, if and only if we modified the
|
||||
* string.
|
||||
* @min_width: The minimum width of the digits in the output string.
|
||||
* Output will be zero-padded on the left to fill.
|
||||
* @grouping: see definition in localeconv().
|
||||
* @thousands_sep: see definition in localeconv().
|
||||
*
|
||||
* There are 2 modes: counting and filling. If @buffer is NULL,
|
||||
* we are in counting mode, else filling mode.
|
||||
* If counting, the required buffer size is returned.
|
||||
* If filling, we know the buffer will be large enough, so we don't
|
||||
* need to pass in the buffer size.
|
||||
* Inserts thousand grouping characters (as defined by grouping and
|
||||
* thousands_sep) into the string between buffer and buffer+n_digits.
|
||||
* If count is non-NULL, don't do any formatting, just count the
|
||||
* number of characters to insert. This is used by the caller to
|
||||
* appropriately resize the buffer, if needed. If count is non-NULL,
|
||||
* buffer can be NULL (it is not dereferenced at all in that case).
|
||||
*
|
||||
* Return value: 0 on error, else 1. Note that no error can occur if
|
||||
* count is non-NULL.
|
||||
*
|
||||
* This name won't be used, the includer of this file should define
|
||||
* it to be the actual function name, based on unicode or string.
|
||||
*
|
||||
* As closely as possible, this code mimics the logic in decimal.py's
|
||||
_insert_thousands_sep().
|
||||
**/
|
||||
int
|
||||
Py_ssize_t
|
||||
_Py_InsertThousandsGrouping(STRINGLIB_CHAR *buffer,
|
||||
Py_ssize_t n_buffer,
|
||||
STRINGLIB_CHAR *digits,
|
||||
Py_ssize_t n_digits,
|
||||
Py_ssize_t buf_size,
|
||||
Py_ssize_t *count,
|
||||
int append_zero_char,
|
||||
Py_ssize_t min_width,
|
||||
const char *grouping,
|
||||
const char *thousands_sep)
|
||||
{
|
||||
Py_ssize_t thousands_sep_len = strlen(thousands_sep);
|
||||
STRINGLIB_CHAR *pend = NULL; /* current end of buffer */
|
||||
STRINGLIB_CHAR *pmax = NULL; /* max of buffer */
|
||||
char current_grouping;
|
||||
Py_ssize_t remaining = n_digits; /* Number of chars remaining to
|
||||
be looked at */
|
||||
Py_ssize_t count = 0;
|
||||
Py_ssize_t n_zeros;
|
||||
int loop_broken = 0;
|
||||
int use_separator = 0; /* First time through, don't append the
|
||||
separator. They only go between
|
||||
groups. */
|
||||
STRINGLIB_CHAR *buffer_end = NULL;
|
||||
STRINGLIB_CHAR *digits_end = NULL;
|
||||
Py_ssize_t l;
|
||||
Py_ssize_t n_chars;
|
||||
Py_ssize_t thousands_sep_len = strlen(thousands_sep);
|
||||
Py_ssize_t remaining = n_digits; /* Number of chars remaining to
|
||||
be looked at */
|
||||
/* A generator that returns all of the grouping widths, until it
|
||||
returns 0. */
|
||||
GroupGenerator groupgen;
|
||||
_GroupGenerator_init(&groupgen, grouping);
|
||||
|
||||
/* Initialize the character count, if we're just counting. */
|
||||
if (count)
|
||||
*count = 0;
|
||||
else {
|
||||
/* We're not just counting, we're modifying buffer */
|
||||
pend = buffer + n_buffer;
|
||||
pmax = buffer + buf_size;
|
||||
if (buffer) {
|
||||
buffer_end = buffer + n_buffer;
|
||||
digits_end = digits + n_digits;
|
||||
}
|
||||
|
||||
while ((l = _GroupGenerator_next(&groupgen)) > 0) {
|
||||
l = MIN(l, MAX(MAX(remaining, min_width), 1));
|
||||
n_zeros = MAX(0, l - remaining);
|
||||
n_chars = MAX(0, MIN(remaining, l));
|
||||
|
||||
/* Use n_zero zero's and n_chars chars */
|
||||
|
||||
/* Count only, don't do anything. */
|
||||
count += (use_separator ? thousands_sep_len : 0) + n_zeros + n_chars;
|
||||
|
||||
if (buffer) {
|
||||
/* Copy into the output buffer. */
|
||||
fill(&digits_end, &buffer_end, n_chars, n_zeros,
|
||||
use_separator ? thousands_sep : NULL, thousands_sep_len);
|
||||
}
|
||||
|
||||
/* Starting at the end and working right-to-left, keep track of
|
||||
what grouping needs to be added and insert that. */
|
||||
current_grouping = *grouping++;
|
||||
/* Use a separator next time. */
|
||||
use_separator = 1;
|
||||
|
||||
/* If the first character is 0, perform no grouping at all. */
|
||||
if (current_grouping == 0)
|
||||
return 1;
|
||||
remaining -= n_chars;
|
||||
min_width -= l;
|
||||
|
||||
while (remaining > current_grouping) {
|
||||
/* Always leave buffer and pend valid at the end of this
|
||||
loop, since we might leave with a return statement. */
|
||||
|
||||
remaining -= current_grouping;
|
||||
if (count) {
|
||||
/* We're only counting, not touching the memory. */
|
||||
*count += thousands_sep_len;
|
||||
}
|
||||
else {
|
||||
/* Do the formatting. */
|
||||
|
||||
STRINGLIB_CHAR *plast = buffer + remaining;
|
||||
|
||||
/* Is there room to insert thousands_sep_len chars? */
|
||||
if (pmax - pend < thousands_sep_len)
|
||||
/* No room. */
|
||||
return 0;
|
||||
|
||||
/* Move the rest of the string down. */
|
||||
memmove(plast + thousands_sep_len,
|
||||
plast,
|
||||
(pend - plast) * sizeof(STRINGLIB_CHAR));
|
||||
/* Copy the thousands_sep chars into the buffer. */
|
||||
#if STRINGLIB_IS_UNICODE
|
||||
/* Convert from the char's of the thousands_sep from
|
||||
the locale into unicode. */
|
||||
{
|
||||
Py_ssize_t i;
|
||||
for (i = 0; i < thousands_sep_len; ++i)
|
||||
plast[i] = thousands_sep[i];
|
||||
}
|
||||
#else
|
||||
/* No conversion, just memcpy the thousands_sep. */
|
||||
memcpy(plast, thousands_sep, thousands_sep_len);
|
||||
#endif
|
||||
}
|
||||
|
||||
/* Adjust end pointer. */
|
||||
pend += thousands_sep_len;
|
||||
|
||||
/* Move to the next grouping character, unless we're
|
||||
repeating (which is designated by a grouping of 0). */
|
||||
if (*grouping != 0) {
|
||||
current_grouping = *grouping++;
|
||||
if (current_grouping == CHAR_MAX)
|
||||
/* We're done. */
|
||||
break;
|
||||
}
|
||||
if (remaining <= 0 && min_width <= 0) {
|
||||
loop_broken = 1;
|
||||
break;
|
||||
}
|
||||
if (append_zero_char) {
|
||||
/* Append a zero character to mark the end of the string,
|
||||
if there's room. */
|
||||
if (pend - (buffer + remaining) < 1)
|
||||
/* No room, error. */
|
||||
return 0;
|
||||
*pend = 0;
|
||||
min_width -= thousands_sep_len;
|
||||
}
|
||||
if (!loop_broken) {
|
||||
/* We left the loop without using a break statement. */
|
||||
|
||||
l = MAX(MAX(remaining, min_width), 1);
|
||||
n_zeros = MAX(0, l - remaining);
|
||||
n_chars = MAX(0, MIN(remaining, l));
|
||||
|
||||
/* Use n_zero zero's and n_chars chars */
|
||||
count += (use_separator ? thousands_sep_len : 0) + n_zeros + n_chars;
|
||||
if (buffer) {
|
||||
/* Copy into the output buffer. */
|
||||
fill(&digits_end, &buffer_end, n_chars, n_zeros,
|
||||
use_separator ? thousands_sep : NULL, thousands_sep_len);
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
return count;
|
||||
}
|
||||
|
||||
/**
|
||||
* _Py_InsertThousandsGroupingLocale:
|
||||
* @buffer: A pointer to the start of a string.
|
||||
* @n_buffer: The length of the string.
|
||||
* @n_digits: The number of digits in the string, in which we want
|
||||
* to put the grouping chars.
|
||||
* @buf_size: The maximum size of the buffer pointed to by buffer.
|
||||
* @count: If non-NULL, points to a variable that will receive the
|
||||
* number of characters we need to insert (and no formatting
|
||||
* will actually occur).
|
||||
* @append_zero_char: If non-zero, put a trailing zero at the end of
|
||||
* of the resulting string, if and only if we modified the
|
||||
* string.
|
||||
*
|
||||
* Reads thee current locale and calls _Py_InsertThousandsGrouping().
|
||||
**/
|
||||
int
|
||||
Py_ssize_t
|
||||
_Py_InsertThousandsGroupingLocale(STRINGLIB_CHAR *buffer,
|
||||
Py_ssize_t n_buffer,
|
||||
STRINGLIB_CHAR *digits,
|
||||
Py_ssize_t n_digits,
|
||||
Py_ssize_t buf_size,
|
||||
Py_ssize_t *count,
|
||||
int append_zero_char)
|
||||
Py_ssize_t min_width)
|
||||
{
|
||||
struct lconv *locale_data = localeconv();
|
||||
const char *grouping = locale_data->grouping;
|
||||
const char *thousands_sep = locale_data->thousands_sep;
|
||||
|
||||
return _Py_InsertThousandsGrouping(buffer, n_buffer, n_digits,
|
||||
buf_size, count,
|
||||
append_zero_char, grouping,
|
||||
thousands_sep);
|
||||
return _Py_InsertThousandsGrouping(buffer, n_buffer, digits, n_digits,
|
||||
min_width, grouping, thousands_sep);
|
||||
}
|
||||
#endif /* STRINGLIB_LOCALEUTIL_H */
|
||||
|
|
|
@ -8792,43 +8792,14 @@ getnextarg(PyObject *args, Py_ssize_t arglen, Py_ssize_t *p_argidx)
|
|||
return NULL;
|
||||
}
|
||||
|
||||
static Py_ssize_t
|
||||
strtounicode(Py_UNICODE *buffer, const char *charbuffer)
|
||||
static void
|
||||
strtounicode(Py_UNICODE *buffer, const char *charbuffer, Py_ssize_t len)
|
||||
{
|
||||
register Py_ssize_t i;
|
||||
Py_ssize_t len = strlen(charbuffer);
|
||||
for (i = len - 1; i >= 0; i--)
|
||||
buffer[i] = (Py_UNICODE) charbuffer[i];
|
||||
|
||||
return len;
|
||||
}
|
||||
|
||||
static int
|
||||
doubletounicode(Py_UNICODE *buffer, size_t len, const char *format, double x)
|
||||
{
|
||||
Py_ssize_t result;
|
||||
|
||||
PyOS_ascii_formatd((char *)buffer, len, format, x);
|
||||
result = strtounicode(buffer, (char *)buffer);
|
||||
return Py_SAFE_DOWNCAST(result, Py_ssize_t, int);
|
||||
}
|
||||
|
||||
#if 0
|
||||
static int
|
||||
longtounicode(Py_UNICODE *buffer, size_t len, const char *format, long x)
|
||||
{
|
||||
Py_ssize_t result;
|
||||
|
||||
PyOS_snprintf((char *)buffer, len, format, x);
|
||||
result = strtounicode(buffer, (char *)buffer);
|
||||
return Py_SAFE_DOWNCAST(result, Py_ssize_t, int);
|
||||
}
|
||||
#endif
|
||||
|
||||
/* XXX To save some code duplication, formatfloat/long/int could have been
|
||||
shared with stringobject.c, converting from 8-bit to Unicode after the
|
||||
formatting is done. */
|
||||
|
||||
static int
|
||||
formatfloat(Py_UNICODE *buf,
|
||||
size_t buflen,
|
||||
|
@ -8837,54 +8808,59 @@ formatfloat(Py_UNICODE *buf,
|
|||
int type,
|
||||
PyObject *v)
|
||||
{
|
||||
/* fmt = '%#.' + `prec` + `type`
|
||||
worst case length = 3 + 10 (len of INT_MAX) + 1 = 14 (use 20)*/
|
||||
char fmt[20];
|
||||
/* eric.smith: To minimize disturbances in PyUnicode_Format (the
|
||||
only caller of this routine), I'm going to keep the existing
|
||||
API to this function. That means that we'll allocate memory and
|
||||
then copy back into the supplied buffer. But that's better than
|
||||
all of the changes that would be required in PyUnicode_Format
|
||||
because it does lots of memory management tricks. */
|
||||
|
||||
char* p = NULL;
|
||||
int result = -1;
|
||||
double x;
|
||||
Py_ssize_t len;
|
||||
|
||||
x = PyFloat_AsDouble(v);
|
||||
if (x == -1.0 && PyErr_Occurred())
|
||||
return -1;
|
||||
goto done;
|
||||
if (prec < 0)
|
||||
prec = 6;
|
||||
|
||||
/* make sure that the decimal representation of precision really does
|
||||
need at most 10 digits: platforms with sizeof(int) == 8 exist! */
|
||||
if (prec > 0x7fffffffL) {
|
||||
PyErr_SetString(PyExc_OverflowError,
|
||||
"outrageously large precision "
|
||||
"for formatted float");
|
||||
return -1;
|
||||
goto done;
|
||||
}
|
||||
|
||||
if (type == 'f' && fabs(x) >= 1e50)
|
||||
type = 'g';
|
||||
/* Worst case length calc to ensure no buffer overrun:
|
||||
|
||||
'g' formats:
|
||||
fmt = %#.<prec>g
|
||||
buf = '-' + [0-9]*prec + '.' + 'e+' + (longest exp
|
||||
for any double rep.)
|
||||
len = 1 + prec + 1 + 2 + 5 = 9 + prec
|
||||
|
||||
'f' formats:
|
||||
buf = '-' + [0-9]*x + '.' + [0-9]*prec (with x < 50)
|
||||
len = 1 + 50 + 1 + prec = 52 + prec
|
||||
|
||||
If prec=0 the effective precision is 1 (the leading digit is
|
||||
always given), therefore increase the length by one.
|
||||
|
||||
*/
|
||||
if (((type == 'g' || type == 'G') &&
|
||||
buflen <= (size_t)10 + (size_t)prec) ||
|
||||
(type == 'f' && buflen <= (size_t)53 + (size_t)prec)) {
|
||||
((type == 'f' || type == 'F') &&
|
||||
buflen <= (size_t)53 + (size_t)prec)) {
|
||||
PyErr_SetString(PyExc_OverflowError,
|
||||
"formatted float is too long (precision too large?)");
|
||||
return -1;
|
||||
goto done;
|
||||
}
|
||||
PyOS_snprintf(fmt, sizeof(fmt), "%%%s.%d%c",
|
||||
(flags&F_ALT) ? "#" : "",
|
||||
prec, type);
|
||||
return doubletounicode(buf, buflen, fmt, x);
|
||||
|
||||
p = PyOS_double_to_string(x, type, prec,
|
||||
(flags & F_ALT) ? Py_DTSF_ALT : 0, NULL);
|
||||
len = strlen(p);
|
||||
if (len+1 >= buflen) {
|
||||
/* Caller supplied buffer is not large enough. */
|
||||
PyErr_NoMemory();
|
||||
goto done;
|
||||
}
|
||||
strtounicode(buf, p, len);
|
||||
result = Py_SAFE_DOWNCAST(len, Py_ssize_t, int);
|
||||
|
||||
done:
|
||||
PyMem_Free(p);
|
||||
return result;
|
||||
}
|
||||
|
||||
static PyObject*
|
||||
|
@ -8903,84 +8879,6 @@ formatlong(PyObject *val, int flags, int prec, int type)
|
|||
return result;
|
||||
}
|
||||
|
||||
#if 0
|
||||
static int
|
||||
formatint(Py_UNICODE *buf,
|
||||
size_t buflen,
|
||||
int flags,
|
||||
int prec,
|
||||
int type,
|
||||
PyObject *v)
|
||||
{
|
||||
/* fmt = '%#.' + `prec` + 'l' + `type`
|
||||
* worst case length = 3 + 19 (worst len of INT_MAX on 64-bit machine)
|
||||
* + 1 + 1
|
||||
* = 24
|
||||
*/
|
||||
char fmt[64]; /* plenty big enough! */
|
||||
char *sign;
|
||||
long x;
|
||||
|
||||
x = PyLong_AsLong(v);
|
||||
if (x == -1 && PyErr_Occurred())
|
||||
return -1;
|
||||
if (x < 0 && type == 'u') {
|
||||
type = 'd';
|
||||
}
|
||||
if (x < 0 && (type == 'x' || type == 'X' || type == 'o'))
|
||||
sign = "-";
|
||||
else
|
||||
sign = "";
|
||||
if (prec < 0)
|
||||
prec = 1;
|
||||
|
||||
/* buf = '+'/'-'/'' + '0'/'0x'/'' + '[0-9]'*max(prec, len(x in octal))
|
||||
* worst case buf = '-0x' + [0-9]*prec, where prec >= 11
|
||||
*/
|
||||
if (buflen <= 14 || buflen <= (size_t)3 + (size_t)prec) {
|
||||
PyErr_SetString(PyExc_OverflowError,
|
||||
"formatted integer is too long (precision too large?)");
|
||||
return -1;
|
||||
}
|
||||
|
||||
if ((flags & F_ALT) &&
|
||||
(type == 'x' || type == 'X' || type == 'o')) {
|
||||
/* When converting under %#o, %#x or %#X, there are a number
|
||||
* of issues that cause pain:
|
||||
* - for %#o, we want a different base marker than C
|
||||
* - when 0 is being converted, the C standard leaves off
|
||||
* the '0x' or '0X', which is inconsistent with other
|
||||
* %#x/%#X conversions and inconsistent with Python's
|
||||
* hex() function
|
||||
* - there are platforms that violate the standard and
|
||||
* convert 0 with the '0x' or '0X'
|
||||
* (Metrowerks, Compaq Tru64)
|
||||
* - there are platforms that give '0x' when converting
|
||||
* under %#X, but convert 0 in accordance with the
|
||||
* standard (OS/2 EMX)
|
||||
*
|
||||
* We can achieve the desired consistency by inserting our
|
||||
* own '0x' or '0X' prefix, and substituting %x/%X in place
|
||||
* of %#x/%#X.
|
||||
*
|
||||
* Note that this is the same approach as used in
|
||||
* formatint() in stringobject.c
|
||||
*/
|
||||
PyOS_snprintf(fmt, sizeof(fmt), "%s0%c%%.%dl%c",
|
||||
sign, type, prec, type);
|
||||
}
|
||||
else {
|
||||
PyOS_snprintf(fmt, sizeof(fmt), "%s%%%s.%dl%c",
|
||||
sign, (flags&F_ALT) ? "#" : "",
|
||||
prec, type);
|
||||
}
|
||||
if (sign[0])
|
||||
return longtounicode(buf, buflen, fmt, -x);
|
||||
else
|
||||
return longtounicode(buf, buflen, fmt, x);
|
||||
}
|
||||
#endif
|
||||
|
||||
static int
|
||||
formatchar(Py_UNICODE *buf,
|
||||
size_t buflen,
|
||||
|
@ -9359,8 +9257,6 @@ PyObject *PyUnicode_Format(PyObject *format,
|
|||
case 'F':
|
||||
case 'g':
|
||||
case 'G':
|
||||
if (c == 'F')
|
||||
c = 'f';
|
||||
pbuf = formatbuf;
|
||||
len = formatfloat(pbuf, sizeof(formatbuf)/sizeof(Py_UNICODE),
|
||||
flags, prec, c, v);
|
||||
|
|
|
@ -236,12 +236,15 @@ w_object(PyObject *v, WFILE *p)
|
|||
w_string((char*)buf, 8, p);
|
||||
}
|
||||
else {
|
||||
char buf[256]; /* Plenty to format any double */
|
||||
n = _PyFloat_Repr(PyFloat_AS_DOUBLE(v),
|
||||
buf, sizeof(buf));
|
||||
char *buf = PyOS_double_to_string(PyFloat_AS_DOUBLE(v),
|
||||
'r', 0, 0, NULL);
|
||||
if (!buf)
|
||||
return;
|
||||
n = strlen(buf);
|
||||
w_byte(TYPE_FLOAT, p);
|
||||
w_byte((int)n, p);
|
||||
w_string(buf, (int)n, p);
|
||||
PyMem_Free(buf);
|
||||
}
|
||||
}
|
||||
#ifndef WITHOUT_COMPLEX
|
||||
|
@ -263,17 +266,24 @@ w_object(PyObject *v, WFILE *p)
|
|||
w_string((char*)buf, 8, p);
|
||||
}
|
||||
else {
|
||||
char buf[256]; /* Plenty to format any double */
|
||||
char *buf;
|
||||
w_byte(TYPE_COMPLEX, p);
|
||||
n = _PyFloat_Repr(PyComplex_RealAsDouble(v),
|
||||
buf, sizeof(buf));
|
||||
buf = PyOS_double_to_string(PyComplex_RealAsDouble(v),
|
||||
'r', 0, 0, NULL);
|
||||
if (!buf)
|
||||
return;
|
||||
n = strlen(buf);
|
||||
w_byte((int)n, p);
|
||||
w_string(buf, (int)n, p);
|
||||
n = _PyFloat_Repr(PyComplex_ImagAsDouble(v),
|
||||
buf, sizeof(buf));
|
||||
PyMem_Free(buf);
|
||||
buf = PyOS_double_to_string(PyComplex_ImagAsDouble(v),
|
||||
'r', 0, 0, NULL);
|
||||
if (!buf)
|
||||
return;
|
||||
n = strlen(buf);
|
||||
w_byte((int)n, p);
|
||||
w_string(buf, (int)n, p);
|
||||
PyMem_Free(buf);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
|
|
@ -37,6 +37,38 @@
|
|||
*
|
||||
* Return value: the #gdouble value.
|
||||
**/
|
||||
|
||||
#ifndef PY_NO_SHORT_FLOAT_REPR
|
||||
|
||||
double
|
||||
PyOS_ascii_strtod(const char *nptr, char **endptr)
|
||||
{
|
||||
double result;
|
||||
_Py_SET_53BIT_PRECISION_HEADER;
|
||||
|
||||
assert(nptr != NULL);
|
||||
/* Set errno to zero, so that we can distinguish zero results
|
||||
and underflows */
|
||||
errno = 0;
|
||||
|
||||
_Py_SET_53BIT_PRECISION_START;
|
||||
result = _Py_dg_strtod(nptr, endptr);
|
||||
_Py_SET_53BIT_PRECISION_END;
|
||||
|
||||
return result;
|
||||
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
/*
|
||||
Use system strtod; since strtod is locale aware, we may
|
||||
have to first fix the decimal separator.
|
||||
|
||||
Note that unlike _Py_dg_strtod, the system strtod may not always give
|
||||
correctly rounded results.
|
||||
*/
|
||||
|
||||
double
|
||||
PyOS_ascii_strtod(const char *nptr, char **endptr)
|
||||
{
|
||||
|
@ -187,6 +219,15 @@ PyOS_ascii_strtod(const char *nptr, char **endptr)
|
|||
return val;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
double
|
||||
PyOS_ascii_atof(const char *nptr)
|
||||
{
|
||||
return PyOS_ascii_strtod(nptr, NULL);
|
||||
}
|
||||
|
||||
|
||||
/* Given a string that may have a decimal point in the current
|
||||
locale, change it back to a dot. Since the string cannot get
|
||||
longer, no need for a maximum buffer size parameter. */
|
||||
|
@ -292,8 +333,9 @@ ensure_minumim_exponent_length(char* buffer, size_t buf_size)
|
|||
}
|
||||
}
|
||||
|
||||
/* Ensure that buffer has a decimal point in it. The decimal point
|
||||
will not be in the current locale, it will always be '.' */
|
||||
/* Ensure that buffer has a decimal point in it. The decimal point will not
|
||||
be in the current locale, it will always be '.'. Don't add a decimal if an
|
||||
exponent is present. */
|
||||
Py_LOCAL_INLINE(void)
|
||||
ensure_decimal_point(char* buffer, size_t buf_size)
|
||||
{
|
||||
|
@ -322,7 +364,8 @@ ensure_decimal_point(char* buffer, size_t buf_size)
|
|||
insert_count = 1;
|
||||
}
|
||||
}
|
||||
else {
|
||||
else if (!(*p == 'e' || *p == 'E')) {
|
||||
/* Don't add ".0" if we have an exponent. */
|
||||
chars_to_insert = ".0";
|
||||
insert_count = 2;
|
||||
}
|
||||
|
@ -341,37 +384,6 @@ ensure_decimal_point(char* buffer, size_t buf_size)
|
|||
}
|
||||
}
|
||||
|
||||
/* Add the locale specific grouping characters to buffer. Note
|
||||
that any decimal point (if it's present) in buffer is already
|
||||
locale-specific. Return 0 on error, else 1. */
|
||||
Py_LOCAL_INLINE(int)
|
||||
add_thousands_grouping(char* buffer, size_t buf_size)
|
||||
{
|
||||
Py_ssize_t len = strlen(buffer);
|
||||
struct lconv *locale_data = localeconv();
|
||||
const char *decimal_point = locale_data->decimal_point;
|
||||
|
||||
/* Find the decimal point, if any. We're only concerned
|
||||
about the characters to the left of the decimal when
|
||||
adding grouping. */
|
||||
char *p = strstr(buffer, decimal_point);
|
||||
if (!p) {
|
||||
/* No decimal, use the entire string. */
|
||||
|
||||
/* If any exponent, adjust p. */
|
||||
p = strpbrk(buffer, "eE");
|
||||
if (!p)
|
||||
/* No exponent and no decimal. Use the entire
|
||||
string. */
|
||||
p = buffer + len;
|
||||
}
|
||||
/* At this point, p points just past the right-most character we
|
||||
want to format. We need to add the grouping string for the
|
||||
characters between buffer and p. */
|
||||
return _PyBytes_InsertThousandsGroupingLocale(buffer, len, p-buffer,
|
||||
buf_size, NULL, 1);
|
||||
}
|
||||
|
||||
/* see FORMATBUFLEN in unicodeobject.c */
|
||||
#define FLOAT_FORMATBUFLEN 120
|
||||
|
||||
|
@ -386,9 +398,8 @@ add_thousands_grouping(char* buffer, size_t buf_size)
|
|||
* Converts a #gdouble to a string, using the '.' as
|
||||
* decimal point. To format the number you pass in
|
||||
* a printf()-style format string. Allowed conversion
|
||||
* specifiers are 'e', 'E', 'f', 'F', 'g', 'G', and 'n'.
|
||||
* specifiers are 'e', 'E', 'f', 'F', 'g', 'G', and 'Z'.
|
||||
*
|
||||
* 'n' is the same as 'g', except it uses the current locale.
|
||||
* 'Z' is the same as 'g', except it always has a decimal and
|
||||
* at least one digit after the decimal.
|
||||
*
|
||||
|
@ -403,11 +414,6 @@ PyOS_ascii_formatd(char *buffer,
|
|||
char format_char;
|
||||
size_t format_len = strlen(format);
|
||||
|
||||
/* For type 'n', we need to make a copy of the format string, because
|
||||
we're going to modify 'n' -> 'g', and format is const char*, so we
|
||||
can't modify it directly. FLOAT_FORMATBUFLEN should be longer than
|
||||
we ever need this to be. There's an upcoming check to ensure it's
|
||||
big enough. */
|
||||
/* Issue 2264: code 'Z' requires copying the format. 'Z' is 'g', but
|
||||
also with at least one character past the decimal. */
|
||||
char tmp_format[FLOAT_FORMATBUFLEN];
|
||||
|
@ -433,12 +439,12 @@ PyOS_ascii_formatd(char *buffer,
|
|||
if (!(format_char == 'e' || format_char == 'E' ||
|
||||
format_char == 'f' || format_char == 'F' ||
|
||||
format_char == 'g' || format_char == 'G' ||
|
||||
format_char == 'n' || format_char == 'Z'))
|
||||
format_char == 'Z'))
|
||||
return NULL;
|
||||
|
||||
/* Map 'n' or 'Z' format_char to 'g', by copying the format string and
|
||||
/* Map 'Z' format_char to 'g', by copying the format string and
|
||||
replacing the final char with a 'g' */
|
||||
if (format_char == 'n' || format_char == 'Z') {
|
||||
if (format_char == 'Z') {
|
||||
if (format_len + 1 >= sizeof(tmp_format)) {
|
||||
/* The format won't fit in our copy. Error out. In
|
||||
practice, this will never happen and will be
|
||||
|
@ -457,11 +463,8 @@ PyOS_ascii_formatd(char *buffer,
|
|||
/* Do various fixups on the return string */
|
||||
|
||||
/* Get the current locale, and find the decimal point string.
|
||||
Convert that string back to a dot. Do not do this if using the
|
||||
'n' (number) format code, since we want to keep the localized
|
||||
decimal point in that case. */
|
||||
if (format_char != 'n')
|
||||
change_decimal_from_locale_to_dot(buffer);
|
||||
Convert that string back to a dot. */
|
||||
change_decimal_from_locale_to_dot(buffer);
|
||||
|
||||
/* If an exponent exists, ensure that the exponent is at least
|
||||
MIN_EXPONENT_DIGITS digits, providing the buffer is large enough
|
||||
|
@ -475,16 +478,497 @@ PyOS_ascii_formatd(char *buffer,
|
|||
if (format_char == 'Z')
|
||||
ensure_decimal_point(buffer, buf_size);
|
||||
|
||||
/* If format_char is 'n', add the thousands grouping. */
|
||||
if (format_char == 'n')
|
||||
if (!add_thousands_grouping(buffer, buf_size))
|
||||
return NULL;
|
||||
|
||||
return buffer;
|
||||
}
|
||||
|
||||
double
|
||||
PyOS_ascii_atof(const char *nptr)
|
||||
#ifdef PY_NO_SHORT_FLOAT_REPR
|
||||
|
||||
/* The fallback code to use if _Py_dg_dtoa is not available. */
|
||||
|
||||
PyAPI_FUNC(char *) PyOS_double_to_string(double val,
|
||||
char format_code,
|
||||
int precision,
|
||||
int flags,
|
||||
int *type)
|
||||
{
|
||||
return PyOS_ascii_strtod(nptr, NULL);
|
||||
char buf[128];
|
||||
char format[32];
|
||||
Py_ssize_t len;
|
||||
char *result;
|
||||
char *p;
|
||||
int t;
|
||||
int upper = 0;
|
||||
|
||||
/* Validate format_code, and map upper and lower case */
|
||||
switch (format_code) {
|
||||
case 'e': /* exponent */
|
||||
case 'f': /* fixed */
|
||||
case 'g': /* general */
|
||||
break;
|
||||
case 'E':
|
||||
upper = 1;
|
||||
format_code = 'e';
|
||||
break;
|
||||
case 'F':
|
||||
upper = 1;
|
||||
format_code = 'f';
|
||||
break;
|
||||
case 'G':
|
||||
upper = 1;
|
||||
format_code = 'g';
|
||||
break;
|
||||
case 'r': /* repr format */
|
||||
/* Supplied precision is unused, must be 0. */
|
||||
if (precision != 0) {
|
||||
PyErr_BadInternalCall();
|
||||
return NULL;
|
||||
}
|
||||
precision = 17;
|
||||
format_code = 'g';
|
||||
break;
|
||||
case 's': /* str format */
|
||||
/* Supplied precision is unused, must be 0. */
|
||||
if (precision != 0) {
|
||||
PyErr_BadInternalCall();
|
||||
return NULL;
|
||||
}
|
||||
precision = 12;
|
||||
format_code = 'g';
|
||||
break;
|
||||
default:
|
||||
PyErr_BadInternalCall();
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/* Handle nan and inf. */
|
||||
if (Py_IS_NAN(val)) {
|
||||
strcpy(buf, "nan");
|
||||
t = Py_DTST_NAN;
|
||||
} else if (Py_IS_INFINITY(val)) {
|
||||
if (copysign(1., val) == 1.)
|
||||
strcpy(buf, "inf");
|
||||
else
|
||||
strcpy(buf, "-inf");
|
||||
t = Py_DTST_INFINITE;
|
||||
} else {
|
||||
t = Py_DTST_FINITE;
|
||||
|
||||
|
||||
if (flags & Py_DTSF_ADD_DOT_0)
|
||||
format_code = 'Z';
|
||||
|
||||
PyOS_snprintf(format, 32, "%%%s.%i%c", (flags & Py_DTSF_ALT ? "#" : ""), precision, format_code);
|
||||
PyOS_ascii_formatd(buf, sizeof(buf), format, val);
|
||||
}
|
||||
|
||||
len = strlen(buf);
|
||||
|
||||
/* Add 1 for the trailing 0 byte.
|
||||
Add 1 because we might need to make room for the sign.
|
||||
*/
|
||||
result = PyMem_Malloc(len + 2);
|
||||
if (result == NULL) {
|
||||
PyErr_NoMemory();
|
||||
return NULL;
|
||||
}
|
||||
p = result;
|
||||
|
||||
/* Never add sign for nan/inf, even if asked. */
|
||||
if (flags & Py_DTSF_SIGN && buf[0] != '-' && t == Py_DTST_FINITE)
|
||||
*p++ = '+';
|
||||
|
||||
strcpy(p, buf);
|
||||
|
||||
if (upper) {
|
||||
/* Convert to upper case. */
|
||||
char *p1;
|
||||
for (p1 = p; *p1; p1++)
|
||||
*p1 = toupper(*p1);
|
||||
}
|
||||
|
||||
if (type)
|
||||
*type = t;
|
||||
return result;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
/* _Py_dg_dtoa is available. */
|
||||
|
||||
/* I'm using a lookup table here so that I don't have to invent a non-locale
|
||||
specific way to convert to uppercase */
|
||||
#define OFS_INF 0
|
||||
#define OFS_NAN 1
|
||||
#define OFS_E 2
|
||||
|
||||
/* The lengths of these are known to the code below, so don't change them */
|
||||
static char *lc_float_strings[] = {
|
||||
"inf",
|
||||
"nan",
|
||||
"e",
|
||||
};
|
||||
static char *uc_float_strings[] = {
|
||||
"INF",
|
||||
"NAN",
|
||||
"E",
|
||||
};
|
||||
|
||||
|
||||
/* Convert a double d to a string, and return a PyMem_Malloc'd block of
|
||||
memory contain the resulting string.
|
||||
|
||||
Arguments:
|
||||
d is the double to be converted
|
||||
format_code is one of 'e', 'f', 'g', 'r' or 's'. 'e', 'f' and 'g'
|
||||
correspond to '%e', '%f' and '%g'; 'r' and 's' correspond
|
||||
to repr and str.
|
||||
mode is one of '0', '2' or '3', and is completely determined by
|
||||
format_code: 'e', 'g' and 's' use mode 2; 'f' mode 3, 'r' mode 0.
|
||||
precision is the desired precision
|
||||
always_add_sign is nonzero if a '+' sign should be included for positive
|
||||
numbers
|
||||
add_dot_0_if_integer is nonzero if integers in non-exponential form
|
||||
should have ".0" added. Only applies to format codes 'r', 's', and 'g'.
|
||||
use_alt_formatting is nonzero if alternative formatting should be
|
||||
used. Only applies to format codes 'e', 'f' and 'g'.
|
||||
type, if non-NULL, will be set to one of these constants to identify
|
||||
the type of the 'd' argument:
|
||||
Py_DTST_FINITE
|
||||
Py_DTST_INFINITE
|
||||
Py_DTST_NAN
|
||||
|
||||
Returns a PyMem_Malloc'd block of memory containing the resulting string,
|
||||
or NULL on error. If NULL is returned, the Python error has been set.
|
||||
*/
|
||||
|
||||
static char *
|
||||
format_float_short(double d, char format_code,
|
||||
int mode, Py_ssize_t precision,
|
||||
int always_add_sign, int add_dot_0_if_integer,
|
||||
int use_alt_formatting, char **float_strings, int *type)
|
||||
{
|
||||
char *buf = NULL;
|
||||
char *p = NULL;
|
||||
Py_ssize_t bufsize = 0;
|
||||
char *digits, *digits_end;
|
||||
int decpt_as_int, sign, exp_len, exp = 0, use_exp = 0;
|
||||
Py_ssize_t decpt, digits_len, vdigits_start, vdigits_end;
|
||||
_Py_SET_53BIT_PRECISION_HEADER;
|
||||
|
||||
/* _Py_dg_dtoa returns a digit string (no decimal point or exponent).
|
||||
Must be matched by a call to _Py_dg_freedtoa. */
|
||||
_Py_SET_53BIT_PRECISION_START;
|
||||
digits = _Py_dg_dtoa(d, mode, precision, &decpt_as_int, &sign,
|
||||
&digits_end);
|
||||
_Py_SET_53BIT_PRECISION_END;
|
||||
|
||||
decpt = (Py_ssize_t)decpt_as_int;
|
||||
if (digits == NULL) {
|
||||
/* The only failure mode is no memory. */
|
||||
PyErr_NoMemory();
|
||||
goto exit;
|
||||
}
|
||||
assert(digits_end != NULL && digits_end >= digits);
|
||||
digits_len = digits_end - digits;
|
||||
|
||||
if (digits_len && !isdigit(digits[0])) {
|
||||
/* Infinities and nans here; adapt Gay's output,
|
||||
so convert Infinity to inf and NaN to nan, and
|
||||
ignore sign of nan. Then return. */
|
||||
|
||||
/* We only need 5 bytes to hold the result "+inf\0" . */
|
||||
bufsize = 5; /* Used later in an assert. */
|
||||
buf = (char *)PyMem_Malloc(bufsize);
|
||||
if (buf == NULL) {
|
||||
PyErr_NoMemory();
|
||||
goto exit;
|
||||
}
|
||||
p = buf;
|
||||
|
||||
if (digits[0] == 'i' || digits[0] == 'I') {
|
||||
if (sign == 1) {
|
||||
*p++ = '-';
|
||||
}
|
||||
else if (always_add_sign) {
|
||||
*p++ = '+';
|
||||
}
|
||||
strncpy(p, float_strings[OFS_INF], 3);
|
||||
p += 3;
|
||||
|
||||
if (type)
|
||||
*type = Py_DTST_INFINITE;
|
||||
}
|
||||
else if (digits[0] == 'n' || digits[0] == 'N') {
|
||||
/* note that we *never* add a sign for a nan,
|
||||
even if one has explicitly been requested */
|
||||
strncpy(p, float_strings[OFS_NAN], 3);
|
||||
p += 3;
|
||||
|
||||
if (type)
|
||||
*type = Py_DTST_NAN;
|
||||
}
|
||||
else {
|
||||
/* shouldn't get here: Gay's code should always return
|
||||
something starting with a digit, an 'I', or 'N' */
|
||||
strncpy(p, "ERR", 3);
|
||||
p += 3;
|
||||
assert(0);
|
||||
}
|
||||
goto exit;
|
||||
}
|
||||
|
||||
/* The result must be finite (not inf or nan). */
|
||||
if (type)
|
||||
*type = Py_DTST_FINITE;
|
||||
|
||||
|
||||
/* We got digits back, format them. We may need to pad 'digits'
|
||||
either on the left or right (or both) with extra zeros, so in
|
||||
general the resulting string has the form
|
||||
|
||||
[<sign>]<zeros><digits><zeros>[<exponent>]
|
||||
|
||||
where either of the <zeros> pieces could be empty, and there's a
|
||||
decimal point that could appear either in <digits> or in the
|
||||
leading or trailing <zeros>.
|
||||
|
||||
Imagine an infinite 'virtual' string vdigits, consisting of the
|
||||
string 'digits' (starting at index 0) padded on both the left and
|
||||
right with infinite strings of zeros. We want to output a slice
|
||||
|
||||
vdigits[vdigits_start : vdigits_end]
|
||||
|
||||
of this virtual string. Thus if vdigits_start < 0 then we'll end
|
||||
up producing some leading zeros; if vdigits_end > digits_len there
|
||||
will be trailing zeros in the output. The next section of code
|
||||
determines whether to use an exponent or not, figures out the
|
||||
position 'decpt' of the decimal point, and computes 'vdigits_start'
|
||||
and 'vdigits_end'. */
|
||||
vdigits_end = digits_len;
|
||||
switch (format_code) {
|
||||
case 'e':
|
||||
use_exp = 1;
|
||||
vdigits_end = precision;
|
||||
break;
|
||||
case 'f':
|
||||
vdigits_end = decpt + precision;
|
||||
break;
|
||||
case 'g':
|
||||
if (decpt <= -4 || decpt > precision)
|
||||
use_exp = 1;
|
||||
if (use_alt_formatting)
|
||||
vdigits_end = precision;
|
||||
break;
|
||||
case 'r':
|
||||
/* convert to exponential format at 1e16. We used to convert
|
||||
at 1e17, but that gives odd-looking results for some values
|
||||
when a 16-digit 'shortest' repr is padded with bogus zeros.
|
||||
For example, repr(2e16+8) would give 20000000000000010.0;
|
||||
the true value is 20000000000000008.0. */
|
||||
if (decpt <= -4 || decpt > 16)
|
||||
use_exp = 1;
|
||||
break;
|
||||
case 's':
|
||||
/* if we're forcing a digit after the point, convert to
|
||||
exponential format at 1e11. If not, convert at 1e12. */
|
||||
if (decpt <= -4 || decpt >
|
||||
(add_dot_0_if_integer ? precision-1 : precision))
|
||||
use_exp = 1;
|
||||
break;
|
||||
default:
|
||||
PyErr_BadInternalCall();
|
||||
goto exit;
|
||||
}
|
||||
|
||||
/* if using an exponent, reset decimal point position to 1 and adjust
|
||||
exponent accordingly.*/
|
||||
if (use_exp) {
|
||||
exp = decpt - 1;
|
||||
decpt = 1;
|
||||
}
|
||||
/* ensure vdigits_start < decpt <= vdigits_end, or vdigits_start <
|
||||
decpt < vdigits_end if add_dot_0_if_integer and no exponent */
|
||||
vdigits_start = decpt <= 0 ? decpt-1 : 0;
|
||||
if (!use_exp && add_dot_0_if_integer)
|
||||
vdigits_end = vdigits_end > decpt ? vdigits_end : decpt + 1;
|
||||
else
|
||||
vdigits_end = vdigits_end > decpt ? vdigits_end : decpt;
|
||||
|
||||
/* double check inequalities */
|
||||
assert(vdigits_start <= 0 &&
|
||||
0 <= digits_len &&
|
||||
digits_len <= vdigits_end);
|
||||
/* decimal point should be in (vdigits_start, vdigits_end] */
|
||||
assert(vdigits_start < decpt && decpt <= vdigits_end);
|
||||
|
||||
/* Compute an upper bound how much memory we need. This might be a few
|
||||
chars too long, but no big deal. */
|
||||
bufsize =
|
||||
/* sign, decimal point and trailing 0 byte */
|
||||
3 +
|
||||
|
||||
/* total digit count (including zero padding on both sides) */
|
||||
(vdigits_end - vdigits_start) +
|
||||
|
||||
/* exponent "e+100", max 3 numerical digits */
|
||||
(use_exp ? 5 : 0);
|
||||
|
||||
/* Now allocate the memory and initialize p to point to the start of
|
||||
it. */
|
||||
buf = (char *)PyMem_Malloc(bufsize);
|
||||
if (buf == NULL) {
|
||||
PyErr_NoMemory();
|
||||
goto exit;
|
||||
}
|
||||
p = buf;
|
||||
|
||||
/* Add a negative sign if negative, and a plus sign if non-negative
|
||||
and always_add_sign is true. */
|
||||
if (sign == 1)
|
||||
*p++ = '-';
|
||||
else if (always_add_sign)
|
||||
*p++ = '+';
|
||||
|
||||
/* note that exactly one of the three 'if' conditions is true,
|
||||
so we include exactly one decimal point */
|
||||
/* Zero padding on left of digit string */
|
||||
if (decpt <= 0) {
|
||||
memset(p, '0', decpt-vdigits_start);
|
||||
p += decpt - vdigits_start;
|
||||
*p++ = '.';
|
||||
memset(p, '0', 0-decpt);
|
||||
p += 0-decpt;
|
||||
}
|
||||
else {
|
||||
memset(p, '0', 0-vdigits_start);
|
||||
p += 0 - vdigits_start;
|
||||
}
|
||||
|
||||
/* Digits, with included decimal point */
|
||||
if (0 < decpt && decpt <= digits_len) {
|
||||
strncpy(p, digits, decpt-0);
|
||||
p += decpt-0;
|
||||
*p++ = '.';
|
||||
strncpy(p, digits+decpt, digits_len-decpt);
|
||||
p += digits_len-decpt;
|
||||
}
|
||||
else {
|
||||
strncpy(p, digits, digits_len);
|
||||
p += digits_len;
|
||||
}
|
||||
|
||||
/* And zeros on the right */
|
||||
if (digits_len < decpt) {
|
||||
memset(p, '0', decpt-digits_len);
|
||||
p += decpt-digits_len;
|
||||
*p++ = '.';
|
||||
memset(p, '0', vdigits_end-decpt);
|
||||
p += vdigits_end-decpt;
|
||||
}
|
||||
else {
|
||||
memset(p, '0', vdigits_end-digits_len);
|
||||
p += vdigits_end-digits_len;
|
||||
}
|
||||
|
||||
/* Delete a trailing decimal pt unless using alternative formatting. */
|
||||
if (p[-1] == '.' && !use_alt_formatting)
|
||||
p--;
|
||||
|
||||
/* Now that we've done zero padding, add an exponent if needed. */
|
||||
if (use_exp) {
|
||||
*p++ = float_strings[OFS_E][0];
|
||||
exp_len = sprintf(p, "%+.02d", exp);
|
||||
p += exp_len;
|
||||
}
|
||||
exit:
|
||||
if (buf) {
|
||||
*p = '\0';
|
||||
/* It's too late if this fails, as we've already stepped on
|
||||
memory that isn't ours. But it's an okay debugging test. */
|
||||
assert(p-buf < bufsize);
|
||||
}
|
||||
if (digits)
|
||||
_Py_dg_freedtoa(digits);
|
||||
|
||||
return buf;
|
||||
}
|
||||
|
||||
|
||||
PyAPI_FUNC(char *) PyOS_double_to_string(double val,
|
||||
char format_code,
|
||||
int precision,
|
||||
int flags,
|
||||
int *type)
|
||||
{
|
||||
char lc_format_code = format_code;
|
||||
char** float_strings = lc_float_strings;
|
||||
int mode = 0;
|
||||
|
||||
/* Validate format_code, and map upper and lower case */
|
||||
switch (format_code) {
|
||||
case 'e': /* exponent */
|
||||
case 'f': /* fixed */
|
||||
case 'g': /* general */
|
||||
case 'r': /* repr format */
|
||||
case 's': /* str format */
|
||||
break;
|
||||
case 'E':
|
||||
lc_format_code = 'e';
|
||||
break;
|
||||
case 'F':
|
||||
lc_format_code = 'f';
|
||||
break;
|
||||
case 'G':
|
||||
lc_format_code = 'g';
|
||||
break;
|
||||
default:
|
||||
PyErr_BadInternalCall();
|
||||
return NULL;
|
||||
}
|
||||
|
||||
if (format_code != lc_format_code)
|
||||
float_strings = uc_float_strings;
|
||||
|
||||
/* From the format code, compute the mode and make any adjustments as
|
||||
needed. */
|
||||
switch (lc_format_code) {
|
||||
case 'e':
|
||||
mode = 2;
|
||||
precision++;
|
||||
break;
|
||||
case 'f':
|
||||
mode = 3;
|
||||
break;
|
||||
case 'g':
|
||||
mode = 2;
|
||||
/* precision 0 makes no sense for 'g' format; interpret as 1 */
|
||||
if (precision == 0)
|
||||
precision = 1;
|
||||
break;
|
||||
case 'r':
|
||||
/* "repr" pseudo-mode */
|
||||
mode = 0;
|
||||
/* Supplied precision is unused, must be 0. */
|
||||
if (precision != 0) {
|
||||
PyErr_BadInternalCall();
|
||||
return NULL;
|
||||
}
|
||||
break;
|
||||
case 's':
|
||||
mode = 2;
|
||||
/* Supplied precision is unused, must be 0. */
|
||||
if (precision != 0) {
|
||||
PyErr_BadInternalCall();
|
||||
return NULL;
|
||||
}
|
||||
precision = 12;
|
||||
break;
|
||||
}
|
||||
|
||||
return format_float_short(val, lc_format_code, mode, precision,
|
||||
flags & Py_DTSF_SIGN,
|
||||
flags & Py_DTSF_ADD_DOT_0,
|
||||
flags & Py_DTSF_ALT,
|
||||
float_strings, type);
|
||||
}
|
||||
#endif /* ifdef PY_NO_SHORT_FLOAT_REPR */
|
||||
|
|
Loading…
Reference in New Issue