bpo-36324: Make internal attributes for statistics.NormalDist() private. (GH-14871)
* Make internals private * Finish making mu and sigma private * Add missing __hash__() method * Add blurb
This commit is contained in:
parent
5623ac87bb
commit
02c91f59b6
|
@ -812,15 +812,15 @@ class NormalDist:
|
|||
# https://en.wikipedia.org/wiki/Normal_distribution
|
||||
# https://en.wikipedia.org/wiki/Variance#Properties
|
||||
|
||||
__slots__ = {'mu': 'Arithmetic mean of a normal distribution',
|
||||
'sigma': 'Standard deviation of a normal distribution'}
|
||||
__slots__ = {'_mu': 'Arithmetic mean of a normal distribution',
|
||||
'_sigma': 'Standard deviation of a normal distribution'}
|
||||
|
||||
def __init__(self, mu=0.0, sigma=1.0):
|
||||
'NormalDist where mu is the mean and sigma is the standard deviation.'
|
||||
if sigma < 0.0:
|
||||
raise StatisticsError('sigma must be non-negative')
|
||||
self.mu = mu
|
||||
self.sigma = sigma
|
||||
self._mu = mu
|
||||
self._sigma = sigma
|
||||
|
||||
@classmethod
|
||||
def from_samples(cls, data):
|
||||
|
@ -833,21 +833,21 @@ class NormalDist:
|
|||
def samples(self, n, *, seed=None):
|
||||
'Generate *n* samples for a given mean and standard deviation.'
|
||||
gauss = random.gauss if seed is None else random.Random(seed).gauss
|
||||
mu, sigma = self.mu, self.sigma
|
||||
mu, sigma = self._mu, self._sigma
|
||||
return [gauss(mu, sigma) for i in range(n)]
|
||||
|
||||
def pdf(self, x):
|
||||
'Probability density function. P(x <= X < x+dx) / dx'
|
||||
variance = self.sigma ** 2.0
|
||||
variance = self._sigma ** 2.0
|
||||
if not variance:
|
||||
raise StatisticsError('pdf() not defined when sigma is zero')
|
||||
return exp((x - self.mu)**2.0 / (-2.0*variance)) / sqrt(tau * variance)
|
||||
return exp((x - self._mu)**2.0 / (-2.0*variance)) / sqrt(tau * variance)
|
||||
|
||||
def cdf(self, x):
|
||||
'Cumulative distribution function. P(X <= x)'
|
||||
if not self.sigma:
|
||||
if not self._sigma:
|
||||
raise StatisticsError('cdf() not defined when sigma is zero')
|
||||
return 0.5 * (1.0 + erf((x - self.mu) / (self.sigma * sqrt(2.0))))
|
||||
return 0.5 * (1.0 + erf((x - self._mu) / (self._sigma * sqrt(2.0))))
|
||||
|
||||
def inv_cdf(self, p):
|
||||
'''Inverse cumulative distribution function. x : P(X <= x) = p
|
||||
|
@ -859,7 +859,7 @@ class NormalDist:
|
|||
'''
|
||||
if (p <= 0.0 or p >= 1.0):
|
||||
raise StatisticsError('p must be in the range 0.0 < p < 1.0')
|
||||
if self.sigma <= 0.0:
|
||||
if self._sigma <= 0.0:
|
||||
raise StatisticsError('cdf() not defined when sigma at or below zero')
|
||||
|
||||
# There is no closed-form solution to the inverse CDF for the normal
|
||||
|
@ -888,7 +888,7 @@ class NormalDist:
|
|||
4.23133_30701_60091_1252e+1) * r +
|
||||
1.0)
|
||||
x = num / den
|
||||
return self.mu + (x * self.sigma)
|
||||
return self._mu + (x * self._sigma)
|
||||
r = p if q <= 0.0 else 1.0 - p
|
||||
r = sqrt(-log(r))
|
||||
if r <= 5.0:
|
||||
|
@ -930,7 +930,7 @@ class NormalDist:
|
|||
x = num / den
|
||||
if q < 0.0:
|
||||
x = -x
|
||||
return self.mu + (x * self.sigma)
|
||||
return self._mu + (x * self._sigma)
|
||||
|
||||
def overlap(self, other):
|
||||
'''Compute the overlapping coefficient (OVL) between two normal distributions.
|
||||
|
@ -951,17 +951,17 @@ class NormalDist:
|
|||
if not isinstance(other, NormalDist):
|
||||
raise TypeError('Expected another NormalDist instance')
|
||||
X, Y = self, other
|
||||
if (Y.sigma, Y.mu) < (X.sigma, X.mu): # sort to assure commutativity
|
||||
if (Y._sigma, Y._mu) < (X._sigma, X._mu): # sort to assure commutativity
|
||||
X, Y = Y, X
|
||||
X_var, Y_var = X.variance, Y.variance
|
||||
if not X_var or not Y_var:
|
||||
raise StatisticsError('overlap() not defined when sigma is zero')
|
||||
dv = Y_var - X_var
|
||||
dm = fabs(Y.mu - X.mu)
|
||||
dm = fabs(Y._mu - X._mu)
|
||||
if not dv:
|
||||
return 1.0 - erf(dm / (2.0 * X.sigma * sqrt(2.0)))
|
||||
a = X.mu * Y_var - Y.mu * X_var
|
||||
b = X.sigma * Y.sigma * sqrt(dm**2.0 + dv * log(Y_var / X_var))
|
||||
return 1.0 - erf(dm / (2.0 * X._sigma * sqrt(2.0)))
|
||||
a = X._mu * Y_var - Y._mu * X_var
|
||||
b = X._sigma * Y._sigma * sqrt(dm**2.0 + dv * log(Y_var / X_var))
|
||||
x1 = (a + b) / dv
|
||||
x2 = (a - b) / dv
|
||||
return 1.0 - (fabs(Y.cdf(x1) - X.cdf(x1)) + fabs(Y.cdf(x2) - X.cdf(x2)))
|
||||
|
@ -969,17 +969,17 @@ class NormalDist:
|
|||
@property
|
||||
def mean(self):
|
||||
'Arithmetic mean of the normal distribution.'
|
||||
return self.mu
|
||||
return self._mu
|
||||
|
||||
@property
|
||||
def stdev(self):
|
||||
'Standard deviation of the normal distribution.'
|
||||
return self.sigma
|
||||
return self._sigma
|
||||
|
||||
@property
|
||||
def variance(self):
|
||||
'Square of the standard deviation.'
|
||||
return self.sigma ** 2.0
|
||||
return self._sigma ** 2.0
|
||||
|
||||
def __add__(x1, x2):
|
||||
'''Add a constant or another NormalDist instance.
|
||||
|
@ -992,8 +992,8 @@ class NormalDist:
|
|||
independent or if they are jointly normally distributed.
|
||||
'''
|
||||
if isinstance(x2, NormalDist):
|
||||
return NormalDist(x1.mu + x2.mu, hypot(x1.sigma, x2.sigma))
|
||||
return NormalDist(x1.mu + x2, x1.sigma)
|
||||
return NormalDist(x1._mu + x2._mu, hypot(x1._sigma, x2._sigma))
|
||||
return NormalDist(x1._mu + x2, x1._sigma)
|
||||
|
||||
def __sub__(x1, x2):
|
||||
'''Subtract a constant or another NormalDist instance.
|
||||
|
@ -1006,8 +1006,8 @@ class NormalDist:
|
|||
independent or if they are jointly normally distributed.
|
||||
'''
|
||||
if isinstance(x2, NormalDist):
|
||||
return NormalDist(x1.mu - x2.mu, hypot(x1.sigma, x2.sigma))
|
||||
return NormalDist(x1.mu - x2, x1.sigma)
|
||||
return NormalDist(x1._mu - x2._mu, hypot(x1._sigma, x2._sigma))
|
||||
return NormalDist(x1._mu - x2, x1._sigma)
|
||||
|
||||
def __mul__(x1, x2):
|
||||
'''Multiply both mu and sigma by a constant.
|
||||
|
@ -1015,7 +1015,7 @@ class NormalDist:
|
|||
Used for rescaling, perhaps to change measurement units.
|
||||
Sigma is scaled with the absolute value of the constant.
|
||||
'''
|
||||
return NormalDist(x1.mu * x2, x1.sigma * fabs(x2))
|
||||
return NormalDist(x1._mu * x2, x1._sigma * fabs(x2))
|
||||
|
||||
def __truediv__(x1, x2):
|
||||
'''Divide both mu and sigma by a constant.
|
||||
|
@ -1023,15 +1023,15 @@ class NormalDist:
|
|||
Used for rescaling, perhaps to change measurement units.
|
||||
Sigma is scaled with the absolute value of the constant.
|
||||
'''
|
||||
return NormalDist(x1.mu / x2, x1.sigma / fabs(x2))
|
||||
return NormalDist(x1._mu / x2, x1._sigma / fabs(x2))
|
||||
|
||||
def __pos__(x1):
|
||||
'Return a copy of the instance.'
|
||||
return NormalDist(x1.mu, x1.sigma)
|
||||
return NormalDist(x1._mu, x1._sigma)
|
||||
|
||||
def __neg__(x1):
|
||||
'Negates mu while keeping sigma the same.'
|
||||
return NormalDist(-x1.mu, x1.sigma)
|
||||
return NormalDist(-x1._mu, x1._sigma)
|
||||
|
||||
__radd__ = __add__
|
||||
|
||||
|
@ -1045,10 +1045,14 @@ class NormalDist:
|
|||
'Two NormalDist objects are equal if their mu and sigma are both equal.'
|
||||
if not isinstance(x2, NormalDist):
|
||||
return NotImplemented
|
||||
return (x1.mu, x2.sigma) == (x2.mu, x2.sigma)
|
||||
return (x1._mu, x2._sigma) == (x2._mu, x2._sigma)
|
||||
|
||||
def __hash__(self):
|
||||
'NormalDist objects hash equal if their mu and sigma are both equal.'
|
||||
return hash((self._mu, self._sigma))
|
||||
|
||||
def __repr__(self):
|
||||
return f'{type(self).__name__}(mu={self.mu!r}, sigma={self.sigma!r})'
|
||||
return f'{type(self).__name__}(mu={self._mu!r}, sigma={self._sigma!r})'
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
@ -1065,8 +1069,8 @@ if __name__ == '__main__':
|
|||
g2 = NormalDist(-5, 25)
|
||||
|
||||
# Test scaling by a constant
|
||||
assert (g1 * 5 / 5).mu == g1.mu
|
||||
assert (g1 * 5 / 5).sigma == g1.sigma
|
||||
assert (g1 * 5 / 5).mean == g1.mean
|
||||
assert (g1 * 5 / 5).stdev == g1.stdev
|
||||
|
||||
n = 100_000
|
||||
G1 = g1.samples(n)
|
||||
|
@ -1090,8 +1094,8 @@ if __name__ == '__main__':
|
|||
print(NormalDist.from_samples(map(func, repeat(const), G1)))
|
||||
|
||||
def assert_close(G1, G2):
|
||||
assert isclose(G1.mu, G1.mu, rel_tol=0.01), (G1, G2)
|
||||
assert isclose(G1.sigma, G2.sigma, rel_tol=0.01), (G1, G2)
|
||||
assert isclose(G1.mean, G1.mean, rel_tol=0.01), (G1, G2)
|
||||
assert isclose(G1.stdev, G2.stdev, rel_tol=0.01), (G1, G2)
|
||||
|
||||
X = NormalDist(-105, 73)
|
||||
Y = NormalDist(31, 47)
|
||||
|
|
|
@ -2326,18 +2326,18 @@ class TestNormalDist(unittest.TestCase):
|
|||
nd = statistics.NormalDist(300, 23)
|
||||
with self.assertRaises(TypeError):
|
||||
vars(nd)
|
||||
self.assertEqual(tuple(nd.__slots__), ('mu', 'sigma'))
|
||||
self.assertEqual(tuple(nd.__slots__), ('_mu', '_sigma'))
|
||||
|
||||
def test_instantiation_and_attributes(self):
|
||||
nd = statistics.NormalDist(500, 17)
|
||||
self.assertEqual(nd.mu, 500)
|
||||
self.assertEqual(nd.sigma, 17)
|
||||
self.assertEqual(nd.mean, 500)
|
||||
self.assertEqual(nd.stdev, 17)
|
||||
self.assertEqual(nd.variance, 17**2)
|
||||
|
||||
# default arguments
|
||||
nd = statistics.NormalDist()
|
||||
self.assertEqual(nd.mu, 0)
|
||||
self.assertEqual(nd.sigma, 1)
|
||||
self.assertEqual(nd.mean, 0)
|
||||
self.assertEqual(nd.stdev, 1)
|
||||
self.assertEqual(nd.variance, 1**2)
|
||||
|
||||
# error case: negative sigma
|
||||
|
@ -2520,10 +2520,7 @@ class TestNormalDist(unittest.TestCase):
|
|||
with self.assertRaises(statistics.StatisticsError):
|
||||
iq.inv_cdf(1.1) # p over one
|
||||
with self.assertRaises(statistics.StatisticsError):
|
||||
iq.sigma = 0.0 # sigma is zero
|
||||
iq.inv_cdf(0.5)
|
||||
with self.assertRaises(statistics.StatisticsError):
|
||||
iq.sigma = -0.1 # sigma under zero
|
||||
iq = NormalDist(100, 0) # sigma is zero
|
||||
iq.inv_cdf(0.5)
|
||||
|
||||
# Special values
|
||||
|
@ -2544,8 +2541,8 @@ class TestNormalDist(unittest.TestCase):
|
|||
def overlap_numeric(X, Y, *, steps=8_192, z=5):
|
||||
'Numerical integration cross-check for overlap() '
|
||||
fsum = math.fsum
|
||||
center = (X.mu + Y.mu) / 2.0
|
||||
width = z * max(X.sigma, Y.sigma)
|
||||
center = (X.mean + Y.mean) / 2.0
|
||||
width = z * max(X.stdev, Y.stdev)
|
||||
start = center - width
|
||||
dx = 2.0 * width / steps
|
||||
x_arr = [start + i*dx for i in range(steps)]
|
||||
|
@ -2626,12 +2623,12 @@ class TestNormalDist(unittest.TestCase):
|
|||
X = NormalDist(100, 12)
|
||||
Y = +X
|
||||
self.assertIsNot(X, Y)
|
||||
self.assertEqual(X.mu, Y.mu)
|
||||
self.assertEqual(X.sigma, Y.sigma)
|
||||
self.assertEqual(X.mean, Y.mean)
|
||||
self.assertEqual(X.stdev, Y.stdev)
|
||||
Y = -X
|
||||
self.assertIsNot(X, Y)
|
||||
self.assertEqual(X.mu, -Y.mu)
|
||||
self.assertEqual(X.sigma, Y.sigma)
|
||||
self.assertEqual(X.mean, -Y.mean)
|
||||
self.assertEqual(X.stdev, Y.stdev)
|
||||
|
||||
def test_equality(self):
|
||||
NormalDist = statistics.NormalDist
|
||||
|
@ -2682,6 +2679,11 @@ class TestNormalDist(unittest.TestCase):
|
|||
nd3 = pickle.loads(pickle.dumps(nd))
|
||||
self.assertEqual(nd, nd3)
|
||||
|
||||
def test_hashability(self):
|
||||
ND = statistics.NormalDist
|
||||
s = {ND(100, 15), ND(100.0, 15.0), ND(100, 10), ND(95, 15), ND(100, 15)}
|
||||
self.assertEqual(len(s), 3)
|
||||
|
||||
def test_repr(self):
|
||||
nd = statistics.NormalDist(37.5, 5.625)
|
||||
self.assertEqual(repr(nd), 'NormalDist(mu=37.5, sigma=5.625)')
|
||||
|
|
|
@ -0,0 +1 @@
|
|||
Make internal attributes for statistics.NormalDist() private.
|
Loading…
Reference in New Issue