2019-08-26 15:25:58 -03:00
|
|
|
|
/* statistics accelerator C extension: _statistics module. */
|
2019-08-23 19:20:30 -03:00
|
|
|
|
|
|
|
|
|
#include "Python.h"
|
|
|
|
|
#include "structmember.h"
|
|
|
|
|
#include "clinic/_statisticsmodule.c.h"
|
|
|
|
|
|
|
|
|
|
/*[clinic input]
|
|
|
|
|
module _statistics
|
|
|
|
|
|
|
|
|
|
[clinic start generated code]*/
|
|
|
|
|
/*[clinic end generated code: output=da39a3ee5e6b4b0d input=864a6f59b76123b2]*/
|
|
|
|
|
|
2019-08-26 15:25:58 -03:00
|
|
|
|
/*
|
|
|
|
|
* There is no closed-form solution to the inverse CDF for the normal
|
|
|
|
|
* distribution, so we use a rational approximation instead:
|
|
|
|
|
* Wichura, M.J. (1988). "Algorithm AS241: The Percentage Points of the
|
|
|
|
|
* Normal Distribution". Applied Statistics. Blackwell Publishing. 37
|
|
|
|
|
* (3): 477–484. doi:10.2307/2347330. JSTOR 2347330.
|
|
|
|
|
*/
|
2019-08-23 19:20:30 -03:00
|
|
|
|
|
|
|
|
|
/*[clinic input]
|
|
|
|
|
_statistics._normal_dist_inv_cdf -> double
|
|
|
|
|
p: double
|
|
|
|
|
mu: double
|
|
|
|
|
sigma: double
|
|
|
|
|
/
|
|
|
|
|
[clinic start generated code]*/
|
|
|
|
|
|
|
|
|
|
static double
|
|
|
|
|
_statistics__normal_dist_inv_cdf_impl(PyObject *module, double p, double mu,
|
|
|
|
|
double sigma)
|
|
|
|
|
/*[clinic end generated code: output=02fd19ddaab36602 input=24715a74be15296a]*/
|
|
|
|
|
{
|
|
|
|
|
double q, num, den, r, x;
|
|
|
|
|
q = p - 0.5;
|
|
|
|
|
// Algorithm AS 241: The Percentage Points of the Normal Distribution
|
|
|
|
|
if(fabs(q) <= 0.425) {
|
|
|
|
|
r = 0.180625 - q * q;
|
2019-08-26 15:25:58 -03:00
|
|
|
|
// Hash sum-55.8831928806149014439
|
2019-08-23 19:20:30 -03:00
|
|
|
|
num = (((((((2.5090809287301226727e+3 * r +
|
|
|
|
|
3.3430575583588128105e+4) * r +
|
|
|
|
|
6.7265770927008700853e+4) * r +
|
|
|
|
|
4.5921953931549871457e+4) * r +
|
|
|
|
|
1.3731693765509461125e+4) * r +
|
|
|
|
|
1.9715909503065514427e+3) * r +
|
|
|
|
|
1.3314166789178437745e+2) * r +
|
|
|
|
|
3.3871328727963666080e+0) * q;
|
|
|
|
|
den = (((((((5.2264952788528545610e+3 * r +
|
|
|
|
|
2.8729085735721942674e+4) * r +
|
|
|
|
|
3.9307895800092710610e+4) * r +
|
|
|
|
|
2.1213794301586595867e+4) * r +
|
|
|
|
|
5.3941960214247511077e+3) * r +
|
|
|
|
|
6.8718700749205790830e+2) * r +
|
|
|
|
|
4.2313330701600911252e+1) * r +
|
|
|
|
|
1.0);
|
|
|
|
|
x = num / den;
|
|
|
|
|
return mu + (x * sigma);
|
|
|
|
|
}
|
2019-08-26 15:25:58 -03:00
|
|
|
|
r = (q <= 0.0) ? p : (1.0 - p);
|
2019-08-23 19:20:30 -03:00
|
|
|
|
r = sqrt(-log(r));
|
|
|
|
|
if (r <= 5.0) {
|
|
|
|
|
r = r - 1.6;
|
2019-08-26 15:25:58 -03:00
|
|
|
|
// Hash sum-49.33206503301610289036
|
2019-08-23 19:20:30 -03:00
|
|
|
|
num = (((((((7.74545014278341407640e-4 * r +
|
|
|
|
|
2.27238449892691845833e-2) * r +
|
|
|
|
|
2.41780725177450611770e-1) * r +
|
|
|
|
|
1.27045825245236838258e+0) * r +
|
|
|
|
|
3.64784832476320460504e+0) * r +
|
|
|
|
|
5.76949722146069140550e+0) * r +
|
|
|
|
|
4.63033784615654529590e+0) * r +
|
|
|
|
|
1.42343711074968357734e+0);
|
|
|
|
|
den = (((((((1.05075007164441684324e-9 * r +
|
|
|
|
|
5.47593808499534494600e-4) * r +
|
|
|
|
|
1.51986665636164571966e-2) * r +
|
|
|
|
|
1.48103976427480074590e-1) * r +
|
|
|
|
|
6.89767334985100004550e-1) * r +
|
|
|
|
|
1.67638483018380384940e+0) * r +
|
|
|
|
|
2.05319162663775882187e+0) * r +
|
|
|
|
|
1.0);
|
|
|
|
|
} else {
|
|
|
|
|
r -= 5.0;
|
2019-08-26 15:25:58 -03:00
|
|
|
|
// Hash sum-47.52583317549289671629
|
2019-08-23 19:20:30 -03:00
|
|
|
|
num = (((((((2.01033439929228813265e-7 * r +
|
|
|
|
|
2.71155556874348757815e-5) * r +
|
|
|
|
|
1.24266094738807843860e-3) * r +
|
|
|
|
|
2.65321895265761230930e-2) * r +
|
|
|
|
|
2.96560571828504891230e-1) * r +
|
|
|
|
|
1.78482653991729133580e+0) * r +
|
|
|
|
|
5.46378491116411436990e+0) * r +
|
|
|
|
|
6.65790464350110377720e+0);
|
|
|
|
|
den = (((((((2.04426310338993978564e-15 * r +
|
|
|
|
|
1.42151175831644588870e-7) * r +
|
|
|
|
|
1.84631831751005468180e-5) * r +
|
|
|
|
|
7.86869131145613259100e-4) * r +
|
|
|
|
|
1.48753612908506148525e-2) * r +
|
|
|
|
|
1.36929880922735805310e-1) * r +
|
|
|
|
|
5.99832206555887937690e-1) * r +
|
|
|
|
|
1.0);
|
|
|
|
|
}
|
|
|
|
|
x = num / den;
|
2019-08-26 15:25:58 -03:00
|
|
|
|
if (q < 0.0) {
|
|
|
|
|
x = -x;
|
|
|
|
|
}
|
2019-08-23 19:20:30 -03:00
|
|
|
|
return mu + (x * sigma);
|
|
|
|
|
}
|
|
|
|
|
|
2019-08-26 15:25:58 -03:00
|
|
|
|
|
|
|
|
|
static PyMethodDef statistics_methods[] = {
|
|
|
|
|
_STATISTICS__NORMAL_DIST_INV_CDF_METHODDEF
|
|
|
|
|
{NULL, NULL, 0, NULL}
|
|
|
|
|
};
|
|
|
|
|
|
2019-09-03 06:21:45 -03:00
|
|
|
|
PyDoc_STRVAR(statistics_doc,
|
|
|
|
|
"Accelerators for the statistics module.\n");
|
|
|
|
|
|
2019-08-23 19:20:30 -03:00
|
|
|
|
static struct PyModuleDef statisticsmodule = {
|
|
|
|
|
PyModuleDef_HEAD_INIT,
|
|
|
|
|
"_statistics",
|
2019-09-03 06:21:45 -03:00
|
|
|
|
statistics_doc,
|
2019-08-23 19:20:30 -03:00
|
|
|
|
-1,
|
2019-08-26 15:25:58 -03:00
|
|
|
|
statistics_methods,
|
2019-08-23 19:20:30 -03:00
|
|
|
|
NULL,
|
|
|
|
|
NULL,
|
|
|
|
|
NULL,
|
|
|
|
|
NULL
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
PyMODINIT_FUNC
|
|
|
|
|
PyInit__statistics(void)
|
|
|
|
|
{
|
|
|
|
|
PyObject *m = PyModule_Create(&statisticsmodule);
|
|
|
|
|
if (!m) return NULL;
|
|
|
|
|
return m;
|
|
|
|
|
}
|