152 lines
5.5 KiB
Python
152 lines
5.5 KiB
Python
|
# test interactions betwen int, float, Decimal and Fraction
|
||
|
|
||
|
import unittest
|
||
|
import random
|
||
|
import math
|
||
|
import sys
|
||
|
import operator
|
||
|
from test.support import run_unittest
|
||
|
|
||
|
from decimal import Decimal as D
|
||
|
from fractions import Fraction as F
|
||
|
|
||
|
# Constants related to the hash implementation; hash(x) is based
|
||
|
# on the reduction of x modulo the prime _PyHASH_MODULUS.
|
||
|
_PyHASH_MODULUS = sys.hash_info.modulus
|
||
|
_PyHASH_INF = sys.hash_info.inf
|
||
|
|
||
|
class HashTest(unittest.TestCase):
|
||
|
def check_equal_hash(self, x, y):
|
||
|
# check both that x and y are equal and that their hashes are equal
|
||
|
self.assertEqual(hash(x), hash(y),
|
||
|
"got different hashes for {!r} and {!r}".format(x, y))
|
||
|
self.assertEqual(x, y)
|
||
|
|
||
|
def test_bools(self):
|
||
|
self.check_equal_hash(False, 0)
|
||
|
self.check_equal_hash(True, 1)
|
||
|
|
||
|
def test_integers(self):
|
||
|
# check that equal values hash equal
|
||
|
|
||
|
# exact integers
|
||
|
for i in range(-1000, 1000):
|
||
|
self.check_equal_hash(i, float(i))
|
||
|
self.check_equal_hash(i, D(i))
|
||
|
self.check_equal_hash(i, F(i))
|
||
|
|
||
|
# the current hash is based on reduction modulo 2**n-1 for some
|
||
|
# n, so pay special attention to numbers of the form 2**n and 2**n-1.
|
||
|
for i in range(100):
|
||
|
n = 2**i - 1
|
||
|
if n == int(float(n)):
|
||
|
self.check_equal_hash(n, float(n))
|
||
|
self.check_equal_hash(-n, -float(n))
|
||
|
self.check_equal_hash(n, D(n))
|
||
|
self.check_equal_hash(n, F(n))
|
||
|
self.check_equal_hash(-n, D(-n))
|
||
|
self.check_equal_hash(-n, F(-n))
|
||
|
|
||
|
n = 2**i
|
||
|
self.check_equal_hash(n, float(n))
|
||
|
self.check_equal_hash(-n, -float(n))
|
||
|
self.check_equal_hash(n, D(n))
|
||
|
self.check_equal_hash(n, F(n))
|
||
|
self.check_equal_hash(-n, D(-n))
|
||
|
self.check_equal_hash(-n, F(-n))
|
||
|
|
||
|
# random values of various sizes
|
||
|
for _ in range(1000):
|
||
|
e = random.randrange(300)
|
||
|
n = random.randrange(-10**e, 10**e)
|
||
|
self.check_equal_hash(n, D(n))
|
||
|
self.check_equal_hash(n, F(n))
|
||
|
if n == int(float(n)):
|
||
|
self.check_equal_hash(n, float(n))
|
||
|
|
||
|
def test_binary_floats(self):
|
||
|
# check that floats hash equal to corresponding Fractions and Decimals
|
||
|
|
||
|
# floats that are distinct but numerically equal should hash the same
|
||
|
self.check_equal_hash(0.0, -0.0)
|
||
|
|
||
|
# zeros
|
||
|
self.check_equal_hash(0.0, D(0))
|
||
|
self.check_equal_hash(-0.0, D(0))
|
||
|
self.check_equal_hash(-0.0, D('-0.0'))
|
||
|
self.check_equal_hash(0.0, F(0))
|
||
|
|
||
|
# infinities and nans
|
||
|
self.check_equal_hash(float('inf'), D('inf'))
|
||
|
self.check_equal_hash(float('-inf'), D('-inf'))
|
||
|
|
||
|
for _ in range(1000):
|
||
|
x = random.random() * math.exp(random.random()*200.0 - 100.0)
|
||
|
self.check_equal_hash(x, D.from_float(x))
|
||
|
self.check_equal_hash(x, F.from_float(x))
|
||
|
|
||
|
def test_complex(self):
|
||
|
# complex numbers with zero imaginary part should hash equal to
|
||
|
# the corresponding float
|
||
|
|
||
|
test_values = [0.0, -0.0, 1.0, -1.0, 0.40625, -5136.5,
|
||
|
float('inf'), float('-inf')]
|
||
|
|
||
|
for zero in -0.0, 0.0:
|
||
|
for value in test_values:
|
||
|
self.check_equal_hash(value, complex(value, zero))
|
||
|
|
||
|
def test_decimals(self):
|
||
|
# check that Decimal instances that have different representations
|
||
|
# but equal values give the same hash
|
||
|
zeros = ['0', '-0', '0.0', '-0.0e10', '000e-10']
|
||
|
for zero in zeros:
|
||
|
self.check_equal_hash(D(zero), D(0))
|
||
|
|
||
|
self.check_equal_hash(D('1.00'), D(1))
|
||
|
self.check_equal_hash(D('1.00000'), D(1))
|
||
|
self.check_equal_hash(D('-1.00'), D(-1))
|
||
|
self.check_equal_hash(D('-1.00000'), D(-1))
|
||
|
self.check_equal_hash(D('123e2'), D(12300))
|
||
|
self.check_equal_hash(D('1230e1'), D(12300))
|
||
|
self.check_equal_hash(D('12300'), D(12300))
|
||
|
self.check_equal_hash(D('12300.0'), D(12300))
|
||
|
self.check_equal_hash(D('12300.00'), D(12300))
|
||
|
self.check_equal_hash(D('12300.000'), D(12300))
|
||
|
|
||
|
def test_fractions(self):
|
||
|
# check special case for fractions where either the numerator
|
||
|
# or the denominator is a multiple of _PyHASH_MODULUS
|
||
|
self.assertEqual(hash(F(1, _PyHASH_MODULUS)), _PyHASH_INF)
|
||
|
self.assertEqual(hash(F(-1, 3*_PyHASH_MODULUS)), -_PyHASH_INF)
|
||
|
self.assertEqual(hash(F(7*_PyHASH_MODULUS, 1)), 0)
|
||
|
self.assertEqual(hash(F(-_PyHASH_MODULUS, 1)), 0)
|
||
|
|
||
|
def test_hash_normalization(self):
|
||
|
# Test for a bug encountered while changing long_hash.
|
||
|
#
|
||
|
# Given objects x and y, it should be possible for y's
|
||
|
# __hash__ method to return hash(x) in order to ensure that
|
||
|
# hash(x) == hash(y). But hash(x) is not exactly equal to the
|
||
|
# result of x.__hash__(): there's some internal normalization
|
||
|
# to make sure that the result fits in a C long, and is not
|
||
|
# equal to the invalid hash value -1. This internal
|
||
|
# normalization must therefore not change the result of
|
||
|
# hash(x) for any x.
|
||
|
|
||
|
class HalibutProxy:
|
||
|
def __hash__(self):
|
||
|
return hash('halibut')
|
||
|
def __eq__(self, other):
|
||
|
return other == 'halibut'
|
||
|
|
||
|
x = {'halibut', HalibutProxy()}
|
||
|
self.assertEqual(len(x), 1)
|
||
|
|
||
|
|
||
|
def test_main():
|
||
|
run_unittest(HashTest)
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
test_main()
|