cpython/Python/ast_opt.c

752 lines
23 KiB
C
Raw Normal View History

/* AST Optimizer */
#include "Python.h"
#include "Python-ast.h"
#include "ast.h"
static int
make_const(expr_ty node, PyObject *val, PyArena *arena)
{
if (val == NULL) {
if (PyErr_ExceptionMatches(PyExc_KeyboardInterrupt)) {
return 0;
}
PyErr_Clear();
return 1;
}
if (PyArena_AddPyObject(arena, val) < 0) {
Py_DECREF(val);
return 0;
}
node->kind = Constant_kind;
node->v.Constant.kind = NULL;
node->v.Constant.value = val;
return 1;
}
#define COPY_NODE(TO, FROM) (memcpy((TO), (FROM), sizeof(struct _expr)))
static PyObject*
unary_not(PyObject *v)
{
int r = PyObject_IsTrue(v);
if (r < 0)
return NULL;
return PyBool_FromLong(!r);
}
static int
fold_unaryop(expr_ty node, PyArena *arena, _PyASTOptimizeState *state)
{
expr_ty arg = node->v.UnaryOp.operand;
if (arg->kind != Constant_kind) {
/* Fold not into comparison */
if (node->v.UnaryOp.op == Not && arg->kind == Compare_kind &&
asdl_seq_LEN(arg->v.Compare.ops) == 1) {
/* Eq and NotEq are often implemented in terms of one another, so
folding not (self == other) into self != other breaks implementation
of !=. Detecting such cases doesn't seem worthwhile.
Python uses </> for 'is subset'/'is superset' operations on sets.
They don't satisfy not folding laws. */
int op = asdl_seq_GET(arg->v.Compare.ops, 0);
switch (op) {
case Is:
op = IsNot;
break;
case IsNot:
op = Is;
break;
case In:
op = NotIn;
break;
case NotIn:
op = In;
break;
default:
op = 0;
}
if (op) {
asdl_seq_SET(arg->v.Compare.ops, 0, op);
COPY_NODE(node, arg);
return 1;
}
}
return 1;
}
typedef PyObject *(*unary_op)(PyObject*);
static const unary_op ops[] = {
[Invert] = PyNumber_Invert,
[Not] = unary_not,
[UAdd] = PyNumber_Positive,
[USub] = PyNumber_Negative,
};
PyObject *newval = ops[node->v.UnaryOp.op](arg->v.Constant.value);
return make_const(node, newval, arena);
}
/* Check whether a collection doesn't containing too much items (including
subcollections). This protects from creating a constant that needs
too much time for calculating a hash.
"limit" is the maximal number of items.
Returns the negative number if the total number of items exceeds the
limit. Otherwise returns the limit minus the total number of items.
*/
static Py_ssize_t
check_complexity(PyObject *obj, Py_ssize_t limit)
{
if (PyTuple_Check(obj)) {
Py_ssize_t i;
limit -= PyTuple_GET_SIZE(obj);
for (i = 0; limit >= 0 && i < PyTuple_GET_SIZE(obj); i++) {
limit = check_complexity(PyTuple_GET_ITEM(obj, i), limit);
}
return limit;
}
else if (PyFrozenSet_Check(obj)) {
Py_ssize_t i = 0;
PyObject *item;
Py_hash_t hash;
limit -= PySet_GET_SIZE(obj);
while (limit >= 0 && _PySet_NextEntry(obj, &i, &item, &hash)) {
limit = check_complexity(item, limit);
}
}
return limit;
}
#define MAX_INT_SIZE 128 /* bits */
#define MAX_COLLECTION_SIZE 256 /* items */
#define MAX_STR_SIZE 4096 /* characters */
#define MAX_TOTAL_ITEMS 1024 /* including nested collections */
static PyObject *
safe_multiply(PyObject *v, PyObject *w)
{
if (PyLong_Check(v) && PyLong_Check(w) && Py_SIZE(v) && Py_SIZE(w)) {
size_t vbits = _PyLong_NumBits(v);
size_t wbits = _PyLong_NumBits(w);
if (vbits == (size_t)-1 || wbits == (size_t)-1) {
return NULL;
}
if (vbits + wbits > MAX_INT_SIZE) {
return NULL;
}
}
else if (PyLong_Check(v) && (PyTuple_Check(w) || PyFrozenSet_Check(w))) {
Py_ssize_t size = PyTuple_Check(w) ? PyTuple_GET_SIZE(w) :
PySet_GET_SIZE(w);
if (size) {
long n = PyLong_AsLong(v);
if (n < 0 || n > MAX_COLLECTION_SIZE / size) {
return NULL;
}
if (n && check_complexity(w, MAX_TOTAL_ITEMS / n) < 0) {
return NULL;
}
}
}
else if (PyLong_Check(v) && (PyUnicode_Check(w) || PyBytes_Check(w))) {
Py_ssize_t size = PyUnicode_Check(w) ? PyUnicode_GET_LENGTH(w) :
PyBytes_GET_SIZE(w);
if (size) {
long n = PyLong_AsLong(v);
if (n < 0 || n > MAX_STR_SIZE / size) {
return NULL;
}
}
}
else if (PyLong_Check(w) &&
(PyTuple_Check(v) || PyFrozenSet_Check(v) ||
PyUnicode_Check(v) || PyBytes_Check(v)))
{
return safe_multiply(w, v);
}
return PyNumber_Multiply(v, w);
}
static PyObject *
safe_power(PyObject *v, PyObject *w)
{
if (PyLong_Check(v) && PyLong_Check(w) && Py_SIZE(v) && Py_SIZE(w) > 0) {
size_t vbits = _PyLong_NumBits(v);
size_t wbits = PyLong_AsSize_t(w);
if (vbits == (size_t)-1 || wbits == (size_t)-1) {
return NULL;
}
if (vbits > MAX_INT_SIZE / wbits) {
return NULL;
}
}
return PyNumber_Power(v, w, Py_None);
}
static PyObject *
safe_lshift(PyObject *v, PyObject *w)
{
if (PyLong_Check(v) && PyLong_Check(w) && Py_SIZE(v) && Py_SIZE(w)) {
size_t vbits = _PyLong_NumBits(v);
size_t wbits = PyLong_AsSize_t(w);
if (vbits == (size_t)-1 || wbits == (size_t)-1) {
return NULL;
}
if (wbits > MAX_INT_SIZE || vbits > MAX_INT_SIZE - wbits) {
return NULL;
}
}
return PyNumber_Lshift(v, w);
}
static PyObject *
safe_mod(PyObject *v, PyObject *w)
{
if (PyUnicode_Check(v) || PyBytes_Check(v)) {
return NULL;
}
return PyNumber_Remainder(v, w);
}
static int
fold_binop(expr_ty node, PyArena *arena, _PyASTOptimizeState *state)
{
expr_ty lhs, rhs;
lhs = node->v.BinOp.left;
rhs = node->v.BinOp.right;
if (lhs->kind != Constant_kind || rhs->kind != Constant_kind) {
return 1;
}
PyObject *lv = lhs->v.Constant.value;
PyObject *rv = rhs->v.Constant.value;
PyObject *newval;
switch (node->v.BinOp.op) {
case Add:
newval = PyNumber_Add(lv, rv);
break;
case Sub:
newval = PyNumber_Subtract(lv, rv);
break;
case Mult:
newval = safe_multiply(lv, rv);
break;
case Div:
newval = PyNumber_TrueDivide(lv, rv);
break;
case FloorDiv:
newval = PyNumber_FloorDivide(lv, rv);
break;
case Mod:
newval = safe_mod(lv, rv);
break;
case Pow:
newval = safe_power(lv, rv);
break;
case LShift:
newval = safe_lshift(lv, rv);
break;
case RShift:
newval = PyNumber_Rshift(lv, rv);
break;
case BitOr:
newval = PyNumber_Or(lv, rv);
break;
case BitXor:
newval = PyNumber_Xor(lv, rv);
break;
case BitAnd:
newval = PyNumber_And(lv, rv);
break;
default: // Unknown operator
return 1;
}
return make_const(node, newval, arena);
}
static PyObject*
make_const_tuple(asdl_seq *elts)
{
for (int i = 0; i < asdl_seq_LEN(elts); i++) {
expr_ty e = (expr_ty)asdl_seq_GET(elts, i);
if (e->kind != Constant_kind) {
return NULL;
}
}
PyObject *newval = PyTuple_New(asdl_seq_LEN(elts));
if (newval == NULL) {
return NULL;
}
for (int i = 0; i < asdl_seq_LEN(elts); i++) {
expr_ty e = (expr_ty)asdl_seq_GET(elts, i);
PyObject *v = e->v.Constant.value;
Py_INCREF(v);
PyTuple_SET_ITEM(newval, i, v);
}
return newval;
}
static int
fold_tuple(expr_ty node, PyArena *arena, _PyASTOptimizeState *state)
{
PyObject *newval;
if (node->v.Tuple.ctx != Load)
return 1;
newval = make_const_tuple(node->v.Tuple.elts);
return make_const(node, newval, arena);
}
static int
fold_subscr(expr_ty node, PyArena *arena, _PyASTOptimizeState *state)
{
PyObject *newval;
expr_ty arg, idx;
arg = node->v.Subscript.value;
idx = node->v.Subscript.slice;
if (node->v.Subscript.ctx != Load ||
arg->kind != Constant_kind ||
idx->kind != Constant_kind)
{
return 1;
}
newval = PyObject_GetItem(arg->v.Constant.value, idx->v.Constant.value);
return make_const(node, newval, arena);
}
/* Change literal list or set of constants into constant
tuple or frozenset respectively. Change literal list of
non-constants into tuple.
Used for right operand of "in" and "not in" tests and for iterable
in "for" loop and comprehensions.
*/
static int
fold_iter(expr_ty arg, PyArena *arena, _PyASTOptimizeState *state)
{
PyObject *newval;
if (arg->kind == List_kind) {
/* First change a list into tuple. */
asdl_seq *elts = arg->v.List.elts;
Py_ssize_t n = asdl_seq_LEN(elts);
for (Py_ssize_t i = 0; i < n; i++) {
expr_ty e = (expr_ty)asdl_seq_GET(elts, i);
if (e->kind == Starred_kind) {
return 1;
}
}
expr_context_ty ctx = arg->v.List.ctx;
arg->kind = Tuple_kind;
arg->v.Tuple.elts = elts;
arg->v.Tuple.ctx = ctx;
/* Try to create a constant tuple. */
newval = make_const_tuple(elts);
}
else if (arg->kind == Set_kind) {
newval = make_const_tuple(arg->v.Set.elts);
if (newval) {
Py_SETREF(newval, PyFrozenSet_New(newval));
}
}
else {
return 1;
}
return make_const(arg, newval, arena);
}
static int
fold_compare(expr_ty node, PyArena *arena, _PyASTOptimizeState *state)
{
asdl_int_seq *ops;
asdl_seq *args;
Py_ssize_t i;
ops = node->v.Compare.ops;
args = node->v.Compare.comparators;
/* TODO: optimize cases with literal arguments. */
/* Change literal list or set in 'in' or 'not in' into
tuple or frozenset respectively. */
i = asdl_seq_LEN(ops) - 1;
int op = asdl_seq_GET(ops, i);
if (op == In || op == NotIn) {
if (!fold_iter((expr_ty)asdl_seq_GET(args, i), arena, state)) {
return 0;
}
}
return 1;
}
static int astfold_mod(mod_ty node_, PyArena *ctx_, _PyASTOptimizeState *state);
static int astfold_stmt(stmt_ty node_, PyArena *ctx_, _PyASTOptimizeState *state);
static int astfold_expr(expr_ty node_, PyArena *ctx_, _PyASTOptimizeState *state);
static int astfold_arguments(arguments_ty node_, PyArena *ctx_, _PyASTOptimizeState *state);
static int astfold_comprehension(comprehension_ty node_, PyArena *ctx_, _PyASTOptimizeState *state);
static int astfold_keyword(keyword_ty node_, PyArena *ctx_, _PyASTOptimizeState *state);
static int astfold_arg(arg_ty node_, PyArena *ctx_, _PyASTOptimizeState *state);
static int astfold_withitem(withitem_ty node_, PyArena *ctx_, _PyASTOptimizeState *state);
static int astfold_excepthandler(excepthandler_ty node_, PyArena *ctx_, _PyASTOptimizeState *state);
#define CALL(FUNC, TYPE, ARG) \
if (!FUNC((ARG), ctx_, state)) \
return 0;
#define CALL_OPT(FUNC, TYPE, ARG) \
if ((ARG) != NULL && !FUNC((ARG), ctx_, state)) \
return 0;
#define CALL_SEQ(FUNC, TYPE, ARG) { \
int i; \
asdl_seq *seq = (ARG); /* avoid variable capture */ \
for (i = 0; i < asdl_seq_LEN(seq); i++) { \
TYPE elt = (TYPE)asdl_seq_GET(seq, i); \
if (elt != NULL && !FUNC(elt, ctx_, state)) \
return 0; \
} \
}
#define CALL_INT_SEQ(FUNC, TYPE, ARG) { \
int i; \
asdl_int_seq *seq = (ARG); /* avoid variable capture */ \
for (i = 0; i < asdl_seq_LEN(seq); i++) { \
TYPE elt = (TYPE)asdl_seq_GET(seq, i); \
if (!FUNC(elt, ctx_, state)) \
return 0; \
} \
}
static int
astfold_body(asdl_seq *stmts, PyArena *ctx_, _PyASTOptimizeState *state)
{
int docstring = _PyAST_GetDocString(stmts) != NULL;
CALL_SEQ(astfold_stmt, stmt_ty, stmts);
if (!docstring && _PyAST_GetDocString(stmts) != NULL) {
stmt_ty st = (stmt_ty)asdl_seq_GET(stmts, 0);
asdl_seq *values = _Py_asdl_seq_new(1, ctx_);
if (!values) {
return 0;
}
asdl_seq_SET(values, 0, st->v.Expr.value);
bpo-33416: Add end positions to Python AST (GH-11605) The majority of this PR is tediously passing `end_lineno` and `end_col_offset` everywhere. Here are non-trivial points: * It is not possible to reconstruct end positions in AST "on the fly", some information is lost after an AST node is constructed, so we need two more attributes for every AST node `end_lineno` and `end_col_offset`. * I add end position information to both CST and AST. Although it may be technically possible to avoid adding end positions to CST, the code becomes more cumbersome and less efficient. * Since the end position is not known for non-leaf CST nodes while the next token is added, this requires a bit of extra care (see `_PyNode_FinalizeEndPos`). Unless I made some mistake, the algorithm should be linear. * For statements, I "trim" the end position of suites to not include the terminal newlines and dedent (this seems to be what people would expect), for example in ```python class C: pass pass ``` the end line and end column for the class definition is (2, 8). * For `end_col_offset` I use the common Python convention for indexing, for example for `pass` the `end_col_offset` is 4 (not 3), so that `[0:4]` gives one the source code that corresponds to the node. * I added a helper function `ast.get_source_segment()`, to get source text segment corresponding to a given AST node. It is also useful for testing. An (inevitable) downside of this PR is that AST now takes almost 25% more memory. I think however it is probably justified by the benefits.
2019-01-22 07:18:22 -04:00
expr_ty expr = JoinedStr(values, st->lineno, st->col_offset,
st->end_lineno, st->end_col_offset, ctx_);
if (!expr) {
return 0;
}
st->v.Expr.value = expr;
}
return 1;
}
static int
astfold_mod(mod_ty node_, PyArena *ctx_, _PyASTOptimizeState *state)
{
switch (node_->kind) {
case Module_kind:
CALL(astfold_body, asdl_seq, node_->v.Module.body);
break;
case Interactive_kind:
CALL_SEQ(astfold_stmt, stmt_ty, node_->v.Interactive.body);
break;
case Expression_kind:
CALL(astfold_expr, expr_ty, node_->v.Expression.body);
break;
default:
break;
}
return 1;
}
static int
astfold_expr(expr_ty node_, PyArena *ctx_, _PyASTOptimizeState *state)
{
switch (node_->kind) {
case BoolOp_kind:
CALL_SEQ(astfold_expr, expr_ty, node_->v.BoolOp.values);
break;
case BinOp_kind:
CALL(astfold_expr, expr_ty, node_->v.BinOp.left);
CALL(astfold_expr, expr_ty, node_->v.BinOp.right);
CALL(fold_binop, expr_ty, node_);
break;
case UnaryOp_kind:
CALL(astfold_expr, expr_ty, node_->v.UnaryOp.operand);
CALL(fold_unaryop, expr_ty, node_);
break;
case Lambda_kind:
CALL(astfold_arguments, arguments_ty, node_->v.Lambda.args);
CALL(astfold_expr, expr_ty, node_->v.Lambda.body);
break;
case IfExp_kind:
CALL(astfold_expr, expr_ty, node_->v.IfExp.test);
CALL(astfold_expr, expr_ty, node_->v.IfExp.body);
CALL(astfold_expr, expr_ty, node_->v.IfExp.orelse);
break;
case Dict_kind:
CALL_SEQ(astfold_expr, expr_ty, node_->v.Dict.keys);
CALL_SEQ(astfold_expr, expr_ty, node_->v.Dict.values);
break;
case Set_kind:
CALL_SEQ(astfold_expr, expr_ty, node_->v.Set.elts);
break;
case ListComp_kind:
CALL(astfold_expr, expr_ty, node_->v.ListComp.elt);
CALL_SEQ(astfold_comprehension, comprehension_ty, node_->v.ListComp.generators);
break;
case SetComp_kind:
CALL(astfold_expr, expr_ty, node_->v.SetComp.elt);
CALL_SEQ(astfold_comprehension, comprehension_ty, node_->v.SetComp.generators);
break;
case DictComp_kind:
CALL(astfold_expr, expr_ty, node_->v.DictComp.key);
CALL(astfold_expr, expr_ty, node_->v.DictComp.value);
CALL_SEQ(astfold_comprehension, comprehension_ty, node_->v.DictComp.generators);
break;
case GeneratorExp_kind:
CALL(astfold_expr, expr_ty, node_->v.GeneratorExp.elt);
CALL_SEQ(astfold_comprehension, comprehension_ty, node_->v.GeneratorExp.generators);
break;
case Await_kind:
CALL(astfold_expr, expr_ty, node_->v.Await.value);
break;
case Yield_kind:
CALL_OPT(astfold_expr, expr_ty, node_->v.Yield.value);
break;
case YieldFrom_kind:
CALL(astfold_expr, expr_ty, node_->v.YieldFrom.value);
break;
case Compare_kind:
CALL(astfold_expr, expr_ty, node_->v.Compare.left);
CALL_SEQ(astfold_expr, expr_ty, node_->v.Compare.comparators);
CALL(fold_compare, expr_ty, node_);
break;
case Call_kind:
CALL(astfold_expr, expr_ty, node_->v.Call.func);
CALL_SEQ(astfold_expr, expr_ty, node_->v.Call.args);
CALL_SEQ(astfold_keyword, keyword_ty, node_->v.Call.keywords);
break;
case FormattedValue_kind:
CALL(astfold_expr, expr_ty, node_->v.FormattedValue.value);
CALL_OPT(astfold_expr, expr_ty, node_->v.FormattedValue.format_spec);
break;
case JoinedStr_kind:
CALL_SEQ(astfold_expr, expr_ty, node_->v.JoinedStr.values);
break;
case Attribute_kind:
CALL(astfold_expr, expr_ty, node_->v.Attribute.value);
break;
case Subscript_kind:
CALL(astfold_expr, expr_ty, node_->v.Subscript.value);
CALL(astfold_expr, expr_ty, node_->v.Subscript.slice);
CALL(fold_subscr, expr_ty, node_);
break;
case Starred_kind:
CALL(astfold_expr, expr_ty, node_->v.Starred.value);
break;
case Slice_kind:
CALL_OPT(astfold_expr, expr_ty, node_->v.Slice.lower);
CALL_OPT(astfold_expr, expr_ty, node_->v.Slice.upper);
CALL_OPT(astfold_expr, expr_ty, node_->v.Slice.step);
break;
case List_kind:
CALL_SEQ(astfold_expr, expr_ty, node_->v.List.elts);
break;
case Tuple_kind:
CALL_SEQ(astfold_expr, expr_ty, node_->v.Tuple.elts);
CALL(fold_tuple, expr_ty, node_);
break;
case Name_kind:
if (_PyUnicode_EqualToASCIIString(node_->v.Name.id, "__debug__")) {
return make_const(node_, PyBool_FromLong(!state->optimize), ctx_);
}
break;
default:
break;
}
return 1;
}
static int
astfold_keyword(keyword_ty node_, PyArena *ctx_, _PyASTOptimizeState *state)
{
CALL(astfold_expr, expr_ty, node_->value);
return 1;
}
static int
astfold_comprehension(comprehension_ty node_, PyArena *ctx_, _PyASTOptimizeState *state)
{
CALL(astfold_expr, expr_ty, node_->target);
CALL(astfold_expr, expr_ty, node_->iter);
CALL_SEQ(astfold_expr, expr_ty, node_->ifs);
CALL(fold_iter, expr_ty, node_->iter);
return 1;
}
static int
astfold_arguments(arguments_ty node_, PyArena *ctx_, _PyASTOptimizeState *state)
{
CALL_SEQ(astfold_arg, arg_ty, node_->posonlyargs);
CALL_SEQ(astfold_arg, arg_ty, node_->args);
CALL_OPT(astfold_arg, arg_ty, node_->vararg);
CALL_SEQ(astfold_arg, arg_ty, node_->kwonlyargs);
CALL_SEQ(astfold_expr, expr_ty, node_->kw_defaults);
CALL_OPT(astfold_arg, arg_ty, node_->kwarg);
CALL_SEQ(astfold_expr, expr_ty, node_->defaults);
return 1;
}
static int
astfold_arg(arg_ty node_, PyArena *ctx_, _PyASTOptimizeState *state)
{
if (!(state->ff_features & CO_FUTURE_ANNOTATIONS)) {
CALL_OPT(astfold_expr, expr_ty, node_->annotation);
}
return 1;
}
static int
astfold_stmt(stmt_ty node_, PyArena *ctx_, _PyASTOptimizeState *state)
{
switch (node_->kind) {
case FunctionDef_kind:
CALL(astfold_arguments, arguments_ty, node_->v.FunctionDef.args);
CALL(astfold_body, asdl_seq, node_->v.FunctionDef.body);
CALL_SEQ(astfold_expr, expr_ty, node_->v.FunctionDef.decorator_list);
if (!(state->ff_features & CO_FUTURE_ANNOTATIONS)) {
CALL_OPT(astfold_expr, expr_ty, node_->v.FunctionDef.returns);
}
break;
case AsyncFunctionDef_kind:
CALL(astfold_arguments, arguments_ty, node_->v.AsyncFunctionDef.args);
CALL(astfold_body, asdl_seq, node_->v.AsyncFunctionDef.body);
CALL_SEQ(astfold_expr, expr_ty, node_->v.AsyncFunctionDef.decorator_list);
if (!(state->ff_features & CO_FUTURE_ANNOTATIONS)) {
CALL_OPT(astfold_expr, expr_ty, node_->v.AsyncFunctionDef.returns);
}
break;
case ClassDef_kind:
CALL_SEQ(astfold_expr, expr_ty, node_->v.ClassDef.bases);
CALL_SEQ(astfold_keyword, keyword_ty, node_->v.ClassDef.keywords);
CALL(astfold_body, asdl_seq, node_->v.ClassDef.body);
CALL_SEQ(astfold_expr, expr_ty, node_->v.ClassDef.decorator_list);
break;
case Return_kind:
CALL_OPT(astfold_expr, expr_ty, node_->v.Return.value);
break;
case Delete_kind:
CALL_SEQ(astfold_expr, expr_ty, node_->v.Delete.targets);
break;
case Assign_kind:
CALL_SEQ(astfold_expr, expr_ty, node_->v.Assign.targets);
CALL(astfold_expr, expr_ty, node_->v.Assign.value);
break;
case AugAssign_kind:
CALL(astfold_expr, expr_ty, node_->v.AugAssign.target);
CALL(astfold_expr, expr_ty, node_->v.AugAssign.value);
break;
case AnnAssign_kind:
CALL(astfold_expr, expr_ty, node_->v.AnnAssign.target);
if (!(state->ff_features & CO_FUTURE_ANNOTATIONS)) {
CALL(astfold_expr, expr_ty, node_->v.AnnAssign.annotation);
}
CALL_OPT(astfold_expr, expr_ty, node_->v.AnnAssign.value);
break;
case For_kind:
CALL(astfold_expr, expr_ty, node_->v.For.target);
CALL(astfold_expr, expr_ty, node_->v.For.iter);
CALL_SEQ(astfold_stmt, stmt_ty, node_->v.For.body);
CALL_SEQ(astfold_stmt, stmt_ty, node_->v.For.orelse);
CALL(fold_iter, expr_ty, node_->v.For.iter);
break;
case AsyncFor_kind:
CALL(astfold_expr, expr_ty, node_->v.AsyncFor.target);
CALL(astfold_expr, expr_ty, node_->v.AsyncFor.iter);
CALL_SEQ(astfold_stmt, stmt_ty, node_->v.AsyncFor.body);
CALL_SEQ(astfold_stmt, stmt_ty, node_->v.AsyncFor.orelse);
break;
case While_kind:
CALL(astfold_expr, expr_ty, node_->v.While.test);
CALL_SEQ(astfold_stmt, stmt_ty, node_->v.While.body);
CALL_SEQ(astfold_stmt, stmt_ty, node_->v.While.orelse);
break;
case If_kind:
CALL(astfold_expr, expr_ty, node_->v.If.test);
CALL_SEQ(astfold_stmt, stmt_ty, node_->v.If.body);
CALL_SEQ(astfold_stmt, stmt_ty, node_->v.If.orelse);
break;
case With_kind:
CALL_SEQ(astfold_withitem, withitem_ty, node_->v.With.items);
CALL_SEQ(astfold_stmt, stmt_ty, node_->v.With.body);
break;
case AsyncWith_kind:
CALL_SEQ(astfold_withitem, withitem_ty, node_->v.AsyncWith.items);
CALL_SEQ(astfold_stmt, stmt_ty, node_->v.AsyncWith.body);
break;
case Raise_kind:
CALL_OPT(astfold_expr, expr_ty, node_->v.Raise.exc);
CALL_OPT(astfold_expr, expr_ty, node_->v.Raise.cause);
break;
case Try_kind:
CALL_SEQ(astfold_stmt, stmt_ty, node_->v.Try.body);
CALL_SEQ(astfold_excepthandler, excepthandler_ty, node_->v.Try.handlers);
CALL_SEQ(astfold_stmt, stmt_ty, node_->v.Try.orelse);
CALL_SEQ(astfold_stmt, stmt_ty, node_->v.Try.finalbody);
break;
case Assert_kind:
CALL(astfold_expr, expr_ty, node_->v.Assert.test);
CALL_OPT(astfold_expr, expr_ty, node_->v.Assert.msg);
break;
case Expr_kind:
CALL(astfold_expr, expr_ty, node_->v.Expr.value);
break;
default:
break;
}
return 1;
}
static int
astfold_excepthandler(excepthandler_ty node_, PyArena *ctx_, _PyASTOptimizeState *state)
{
switch (node_->kind) {
case ExceptHandler_kind:
CALL_OPT(astfold_expr, expr_ty, node_->v.ExceptHandler.type);
CALL_SEQ(astfold_stmt, stmt_ty, node_->v.ExceptHandler.body);
break;
default:
break;
}
return 1;
}
static int
astfold_withitem(withitem_ty node_, PyArena *ctx_, _PyASTOptimizeState *state)
{
CALL(astfold_expr, expr_ty, node_->context_expr);
CALL_OPT(astfold_expr, expr_ty, node_->optional_vars);
return 1;
}
#undef CALL
#undef CALL_OPT
#undef CALL_SEQ
#undef CALL_INT_SEQ
int
_PyAST_Optimize(mod_ty mod, PyArena *arena, _PyASTOptimizeState *state)
{
int ret = astfold_mod(mod, arena, state);
assert(ret || PyErr_Occurred());
return ret;
}