2008-01-15 03:46:24 -04:00
|
|
|
# Originally contributed by Sjoerd Mullender.
|
|
|
|
# Significantly modified by Jeffrey Yasskin <jyasskin at gmail.com>.
|
|
|
|
|
|
|
|
"""Rational, infinite-precision, real numbers."""
|
|
|
|
|
|
|
|
from __future__ import division
|
|
|
|
import math
|
|
|
|
import numbers
|
|
|
|
import operator
|
2008-01-19 05:56:06 -04:00
|
|
|
import re
|
2008-01-15 03:46:24 -04:00
|
|
|
|
|
|
|
__all__ = ["Rational"]
|
|
|
|
|
|
|
|
RationalAbc = numbers.Rational
|
|
|
|
|
|
|
|
|
|
|
|
def _gcd(a, b):
|
|
|
|
"""Calculate the Greatest Common Divisor.
|
|
|
|
|
|
|
|
Unless b==0, the result will have the same sign as b (so that when
|
|
|
|
b is divided by it, the result comes out positive).
|
|
|
|
"""
|
|
|
|
while b:
|
|
|
|
a, b = b, a%b
|
|
|
|
return a
|
|
|
|
|
|
|
|
|
|
|
|
def _binary_float_to_ratio(x):
|
|
|
|
"""x -> (top, bot), a pair of ints s.t. x = top/bot.
|
|
|
|
|
|
|
|
The conversion is done exactly, without rounding.
|
|
|
|
bot > 0 guaranteed.
|
|
|
|
Some form of binary fp is assumed.
|
|
|
|
Pass NaNs or infinities at your own risk.
|
|
|
|
|
|
|
|
>>> _binary_float_to_ratio(10.0)
|
|
|
|
(10, 1)
|
|
|
|
>>> _binary_float_to_ratio(0.0)
|
|
|
|
(0, 1)
|
|
|
|
>>> _binary_float_to_ratio(-.25)
|
|
|
|
(-1, 4)
|
|
|
|
"""
|
|
|
|
|
|
|
|
if x == 0:
|
|
|
|
return 0, 1
|
|
|
|
f, e = math.frexp(x)
|
|
|
|
signbit = 1
|
|
|
|
if f < 0:
|
|
|
|
f = -f
|
|
|
|
signbit = -1
|
|
|
|
assert 0.5 <= f < 1.0
|
|
|
|
# x = signbit * f * 2**e exactly
|
|
|
|
|
|
|
|
# Suck up CHUNK bits at a time; 28 is enough so that we suck
|
|
|
|
# up all bits in 2 iterations for all known binary double-
|
|
|
|
# precision formats, and small enough to fit in an int.
|
|
|
|
CHUNK = 28
|
|
|
|
top = 0
|
|
|
|
# invariant: x = signbit * (top + f) * 2**e exactly
|
|
|
|
while f:
|
|
|
|
f = math.ldexp(f, CHUNK)
|
|
|
|
digit = trunc(f)
|
|
|
|
assert digit >> CHUNK == 0
|
|
|
|
top = (top << CHUNK) | digit
|
|
|
|
f = f - digit
|
|
|
|
assert 0.0 <= f < 1.0
|
|
|
|
e = e - CHUNK
|
|
|
|
assert top
|
|
|
|
|
|
|
|
# Add in the sign bit.
|
|
|
|
top = signbit * top
|
|
|
|
|
|
|
|
# now x = top * 2**e exactly; fold in 2**e
|
|
|
|
if e>0:
|
|
|
|
return (top * 2**e, 1)
|
|
|
|
else:
|
|
|
|
return (top, 2 ** -e)
|
|
|
|
|
|
|
|
|
2008-01-19 05:56:06 -04:00
|
|
|
_RATIONAL_FORMAT = re.compile(
|
|
|
|
r'^\s*(?P<sign>[-+]?)(?P<num>\d+)(?:/(?P<denom>\d+))?\s*$')
|
|
|
|
|
|
|
|
|
2008-01-15 03:46:24 -04:00
|
|
|
class Rational(RationalAbc):
|
|
|
|
"""This class implements rational numbers.
|
|
|
|
|
|
|
|
Rational(8, 6) will produce a rational number equivalent to
|
|
|
|
4/3. Both arguments must be Integral. The numerator defaults to 0
|
|
|
|
and the denominator defaults to 1 so that Rational(3) == 3 and
|
|
|
|
Rational() == 0.
|
|
|
|
|
2008-01-19 05:56:06 -04:00
|
|
|
Rationals can also be constructed from strings of the form
|
|
|
|
'[-+]?[0-9]+(/[0-9]+)?', optionally surrounded by spaces.
|
|
|
|
|
2008-01-15 03:46:24 -04:00
|
|
|
"""
|
|
|
|
|
|
|
|
__slots__ = ('_numerator', '_denominator')
|
|
|
|
|
2008-01-19 05:56:06 -04:00
|
|
|
# We're immutable, so use __new__ not __init__
|
|
|
|
def __new__(cls, numerator=0, denominator=1):
|
|
|
|
"""Constructs a Rational.
|
|
|
|
|
|
|
|
Takes a string, another Rational, or a numerator/denominator pair.
|
|
|
|
|
|
|
|
"""
|
|
|
|
self = super(Rational, cls).__new__(cls)
|
|
|
|
|
|
|
|
if denominator == 1:
|
|
|
|
if isinstance(numerator, basestring):
|
|
|
|
# Handle construction from strings.
|
|
|
|
input = numerator
|
|
|
|
m = _RATIONAL_FORMAT.match(input)
|
|
|
|
if m is None:
|
|
|
|
raise ValueError('Invalid literal for Rational: ' + input)
|
|
|
|
numerator = int(m.group('num'))
|
|
|
|
# Default denominator to 1. That's the only optional group.
|
|
|
|
denominator = int(m.group('denom') or 1)
|
|
|
|
if m.group('sign') == '-':
|
|
|
|
numerator = -numerator
|
|
|
|
|
|
|
|
elif (not isinstance(numerator, numbers.Integral) and
|
|
|
|
isinstance(numerator, RationalAbc)):
|
|
|
|
# Handle copies from other rationals.
|
|
|
|
other_rational = numerator
|
|
|
|
numerator = other_rational.numerator
|
|
|
|
denominator = other_rational.denominator
|
2008-01-15 03:46:24 -04:00
|
|
|
|
|
|
|
if (not isinstance(numerator, numbers.Integral) or
|
|
|
|
not isinstance(denominator, numbers.Integral)):
|
|
|
|
raise TypeError("Rational(%(numerator)s, %(denominator)s):"
|
|
|
|
" Both arguments must be integral." % locals())
|
|
|
|
|
|
|
|
if denominator == 0:
|
|
|
|
raise ZeroDivisionError('Rational(%s, 0)' % numerator)
|
|
|
|
|
|
|
|
g = _gcd(numerator, denominator)
|
|
|
|
self._numerator = int(numerator // g)
|
|
|
|
self._denominator = int(denominator // g)
|
2008-01-19 05:56:06 -04:00
|
|
|
return self
|
2008-01-15 03:46:24 -04:00
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def from_float(cls, f):
|
2008-01-19 05:56:06 -04:00
|
|
|
"""Converts a finite float to a rational number, exactly.
|
|
|
|
|
|
|
|
Beware that Rational.from_float(0.3) != Rational(3, 10).
|
|
|
|
|
|
|
|
"""
|
2008-01-15 03:46:24 -04:00
|
|
|
if not isinstance(f, float):
|
|
|
|
raise TypeError("%s.from_float() only takes floats, not %r (%s)" %
|
|
|
|
(cls.__name__, f, type(f).__name__))
|
|
|
|
if math.isnan(f) or math.isinf(f):
|
|
|
|
raise TypeError("Cannot convert %r to %s." % (f, cls.__name__))
|
|
|
|
return cls(*_binary_float_to_ratio(f))
|
|
|
|
|
2008-01-19 05:56:06 -04:00
|
|
|
@classmethod
|
|
|
|
def from_decimal(cls, dec):
|
|
|
|
"""Converts a finite Decimal instance to a rational number, exactly."""
|
|
|
|
from decimal import Decimal
|
|
|
|
if not isinstance(dec, Decimal):
|
|
|
|
raise TypeError(
|
|
|
|
"%s.from_decimal() only takes Decimals, not %r (%s)" %
|
|
|
|
(cls.__name__, dec, type(dec).__name__))
|
|
|
|
if not dec.is_finite():
|
|
|
|
# Catches infinities and nans.
|
|
|
|
raise TypeError("Cannot convert %s to %s." % (dec, cls.__name__))
|
|
|
|
sign, digits, exp = dec.as_tuple()
|
|
|
|
digits = int(''.join(map(str, digits)))
|
|
|
|
if sign:
|
|
|
|
digits = -digits
|
|
|
|
if exp >= 0:
|
|
|
|
return cls(digits * 10 ** exp)
|
|
|
|
else:
|
|
|
|
return cls(digits, 10 ** -exp)
|
|
|
|
|
2008-01-15 03:46:24 -04:00
|
|
|
@property
|
|
|
|
def numerator(a):
|
|
|
|
return a._numerator
|
|
|
|
|
|
|
|
@property
|
|
|
|
def denominator(a):
|
|
|
|
return a._denominator
|
|
|
|
|
|
|
|
def __repr__(self):
|
|
|
|
"""repr(self)"""
|
2008-01-19 05:56:06 -04:00
|
|
|
return ('Rational(%r,%r)' % (self.numerator, self.denominator))
|
2008-01-15 03:46:24 -04:00
|
|
|
|
|
|
|
def __str__(self):
|
|
|
|
"""str(self)"""
|
|
|
|
if self.denominator == 1:
|
|
|
|
return str(self.numerator)
|
|
|
|
else:
|
2008-01-19 05:56:06 -04:00
|
|
|
return '%s/%s' % (self.numerator, self.denominator)
|
2008-01-15 03:46:24 -04:00
|
|
|
|
|
|
|
def _operator_fallbacks(monomorphic_operator, fallback_operator):
|
|
|
|
"""Generates forward and reverse operators given a purely-rational
|
|
|
|
operator and a function from the operator module.
|
|
|
|
|
|
|
|
Use this like:
|
|
|
|
__op__, __rop__ = _operator_fallbacks(just_rational_op, operator.op)
|
|
|
|
|
|
|
|
"""
|
|
|
|
def forward(a, b):
|
|
|
|
if isinstance(b, RationalAbc):
|
|
|
|
# Includes ints.
|
|
|
|
return monomorphic_operator(a, b)
|
|
|
|
elif isinstance(b, float):
|
|
|
|
return fallback_operator(float(a), b)
|
|
|
|
elif isinstance(b, complex):
|
|
|
|
return fallback_operator(complex(a), b)
|
|
|
|
else:
|
|
|
|
return NotImplemented
|
|
|
|
forward.__name__ = '__' + fallback_operator.__name__ + '__'
|
|
|
|
forward.__doc__ = monomorphic_operator.__doc__
|
|
|
|
|
|
|
|
def reverse(b, a):
|
|
|
|
if isinstance(a, RationalAbc):
|
|
|
|
# Includes ints.
|
|
|
|
return monomorphic_operator(a, b)
|
|
|
|
elif isinstance(a, numbers.Real):
|
|
|
|
return fallback_operator(float(a), float(b))
|
|
|
|
elif isinstance(a, numbers.Complex):
|
|
|
|
return fallback_operator(complex(a), complex(b))
|
|
|
|
else:
|
|
|
|
return NotImplemented
|
|
|
|
reverse.__name__ = '__r' + fallback_operator.__name__ + '__'
|
|
|
|
reverse.__doc__ = monomorphic_operator.__doc__
|
|
|
|
|
|
|
|
return forward, reverse
|
|
|
|
|
|
|
|
def _add(a, b):
|
|
|
|
"""a + b"""
|
|
|
|
return Rational(a.numerator * b.denominator +
|
|
|
|
b.numerator * a.denominator,
|
|
|
|
a.denominator * b.denominator)
|
|
|
|
|
|
|
|
__add__, __radd__ = _operator_fallbacks(_add, operator.add)
|
|
|
|
|
|
|
|
def _sub(a, b):
|
|
|
|
"""a - b"""
|
|
|
|
return Rational(a.numerator * b.denominator -
|
|
|
|
b.numerator * a.denominator,
|
|
|
|
a.denominator * b.denominator)
|
|
|
|
|
|
|
|
__sub__, __rsub__ = _operator_fallbacks(_sub, operator.sub)
|
|
|
|
|
|
|
|
def _mul(a, b):
|
|
|
|
"""a * b"""
|
|
|
|
return Rational(a.numerator * b.numerator, a.denominator * b.denominator)
|
|
|
|
|
|
|
|
__mul__, __rmul__ = _operator_fallbacks(_mul, operator.mul)
|
|
|
|
|
|
|
|
def _div(a, b):
|
|
|
|
"""a / b"""
|
|
|
|
return Rational(a.numerator * b.denominator,
|
|
|
|
a.denominator * b.numerator)
|
|
|
|
|
|
|
|
__truediv__, __rtruediv__ = _operator_fallbacks(_div, operator.truediv)
|
|
|
|
__div__, __rdiv__ = _operator_fallbacks(_div, operator.div)
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def _floordiv(cls, a, b):
|
|
|
|
div = a / b
|
|
|
|
if isinstance(div, RationalAbc):
|
|
|
|
# trunc(math.floor(div)) doesn't work if the rational is
|
|
|
|
# more precise than a float because the intermediate
|
|
|
|
# rounding may cross an integer boundary.
|
|
|
|
return div.numerator // div.denominator
|
|
|
|
else:
|
|
|
|
return math.floor(div)
|
|
|
|
|
|
|
|
def __floordiv__(a, b):
|
|
|
|
"""a // b"""
|
|
|
|
# Will be math.floor(a / b) in 3.0.
|
|
|
|
return a._floordiv(a, b)
|
|
|
|
|
|
|
|
def __rfloordiv__(b, a):
|
|
|
|
"""a // b"""
|
|
|
|
# Will be math.floor(a / b) in 3.0.
|
|
|
|
return b._floordiv(a, b)
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def _mod(cls, a, b):
|
|
|
|
div = a // b
|
|
|
|
return a - b * div
|
|
|
|
|
|
|
|
def __mod__(a, b):
|
|
|
|
"""a % b"""
|
|
|
|
return a._mod(a, b)
|
|
|
|
|
|
|
|
def __rmod__(b, a):
|
|
|
|
"""a % b"""
|
|
|
|
return b._mod(a, b)
|
|
|
|
|
|
|
|
def __pow__(a, b):
|
|
|
|
"""a ** b
|
|
|
|
|
|
|
|
If b is not an integer, the result will be a float or complex
|
|
|
|
since roots are generally irrational. If b is an integer, the
|
|
|
|
result will be rational.
|
|
|
|
|
|
|
|
"""
|
|
|
|
if isinstance(b, RationalAbc):
|
|
|
|
if b.denominator == 1:
|
|
|
|
power = b.numerator
|
|
|
|
if power >= 0:
|
|
|
|
return Rational(a.numerator ** power,
|
|
|
|
a.denominator ** power)
|
|
|
|
else:
|
|
|
|
return Rational(a.denominator ** -power,
|
|
|
|
a.numerator ** -power)
|
|
|
|
else:
|
|
|
|
# A fractional power will generally produce an
|
|
|
|
# irrational number.
|
|
|
|
return float(a) ** float(b)
|
|
|
|
else:
|
|
|
|
return float(a) ** b
|
|
|
|
|
|
|
|
def __rpow__(b, a):
|
|
|
|
"""a ** b"""
|
|
|
|
if b.denominator == 1 and b.numerator >= 0:
|
|
|
|
# If a is an int, keep it that way if possible.
|
|
|
|
return a ** b.numerator
|
|
|
|
|
|
|
|
if isinstance(a, RationalAbc):
|
|
|
|
return Rational(a.numerator, a.denominator) ** b
|
|
|
|
|
|
|
|
if b.denominator == 1:
|
|
|
|
return a ** b.numerator
|
|
|
|
|
|
|
|
return a ** float(b)
|
|
|
|
|
|
|
|
def __pos__(a):
|
|
|
|
"""+a: Coerces a subclass instance to Rational"""
|
|
|
|
return Rational(a.numerator, a.denominator)
|
|
|
|
|
|
|
|
def __neg__(a):
|
|
|
|
"""-a"""
|
|
|
|
return Rational(-a.numerator, a.denominator)
|
|
|
|
|
|
|
|
def __abs__(a):
|
|
|
|
"""abs(a)"""
|
|
|
|
return Rational(abs(a.numerator), a.denominator)
|
|
|
|
|
|
|
|
def __trunc__(a):
|
|
|
|
"""trunc(a)"""
|
|
|
|
if a.numerator < 0:
|
|
|
|
return -(-a.numerator // a.denominator)
|
|
|
|
else:
|
|
|
|
return a.numerator // a.denominator
|
|
|
|
|
|
|
|
def __floor__(a):
|
|
|
|
"""Will be math.floor(a) in 3.0."""
|
|
|
|
return a.numerator // a.denominator
|
|
|
|
|
|
|
|
def __ceil__(a):
|
|
|
|
"""Will be math.ceil(a) in 3.0."""
|
|
|
|
# The negations cleverly convince floordiv to return the ceiling.
|
|
|
|
return -(-a.numerator // a.denominator)
|
|
|
|
|
|
|
|
def __round__(self, ndigits=None):
|
|
|
|
"""Will be round(self, ndigits) in 3.0.
|
|
|
|
|
|
|
|
Rounds half toward even.
|
|
|
|
"""
|
|
|
|
if ndigits is None:
|
|
|
|
floor, remainder = divmod(self.numerator, self.denominator)
|
|
|
|
if remainder * 2 < self.denominator:
|
|
|
|
return floor
|
|
|
|
elif remainder * 2 > self.denominator:
|
|
|
|
return floor + 1
|
|
|
|
# Deal with the half case:
|
|
|
|
elif floor % 2 == 0:
|
|
|
|
return floor
|
|
|
|
else:
|
|
|
|
return floor + 1
|
|
|
|
shift = 10**abs(ndigits)
|
|
|
|
# See _operator_fallbacks.forward to check that the results of
|
|
|
|
# these operations will always be Rational and therefore have
|
|
|
|
# __round__().
|
|
|
|
if ndigits > 0:
|
|
|
|
return Rational((self * shift).__round__(), shift)
|
|
|
|
else:
|
|
|
|
return Rational((self / shift).__round__() * shift)
|
|
|
|
|
|
|
|
def __hash__(self):
|
|
|
|
"""hash(self)
|
|
|
|
|
|
|
|
Tricky because values that are exactly representable as a
|
|
|
|
float must have the same hash as that float.
|
|
|
|
|
|
|
|
"""
|
|
|
|
if self.denominator == 1:
|
|
|
|
# Get integers right.
|
|
|
|
return hash(self.numerator)
|
|
|
|
# Expensive check, but definitely correct.
|
|
|
|
if self == float(self):
|
|
|
|
return hash(float(self))
|
|
|
|
else:
|
|
|
|
# Use tuple's hash to avoid a high collision rate on
|
|
|
|
# simple fractions.
|
|
|
|
return hash((self.numerator, self.denominator))
|
|
|
|
|
|
|
|
def __eq__(a, b):
|
|
|
|
"""a == b"""
|
|
|
|
if isinstance(b, RationalAbc):
|
|
|
|
return (a.numerator == b.numerator and
|
|
|
|
a.denominator == b.denominator)
|
|
|
|
if isinstance(b, numbers.Complex) and b.imag == 0:
|
|
|
|
b = b.real
|
|
|
|
if isinstance(b, float):
|
|
|
|
return a == a.from_float(b)
|
|
|
|
else:
|
|
|
|
# XXX: If b.__eq__ is implemented like this method, it may
|
|
|
|
# give the wrong answer after float(a) changes a's
|
|
|
|
# value. Better ways of doing this are welcome.
|
|
|
|
return float(a) == b
|
|
|
|
|
|
|
|
def _subtractAndCompareToZero(a, b, op):
|
|
|
|
"""Helper function for comparison operators.
|
|
|
|
|
|
|
|
Subtracts b from a, exactly if possible, and compares the
|
|
|
|
result with 0 using op, in such a way that the comparison
|
|
|
|
won't recurse. If the difference raises a TypeError, returns
|
|
|
|
NotImplemented instead.
|
|
|
|
|
|
|
|
"""
|
|
|
|
if isinstance(b, numbers.Complex) and b.imag == 0:
|
|
|
|
b = b.real
|
|
|
|
if isinstance(b, float):
|
|
|
|
b = a.from_float(b)
|
|
|
|
try:
|
|
|
|
# XXX: If b <: Real but not <: RationalAbc, this is likely
|
|
|
|
# to fall back to a float. If the actual values differ by
|
|
|
|
# less than MIN_FLOAT, this could falsely call them equal,
|
|
|
|
# which would make <= inconsistent with ==. Better ways of
|
|
|
|
# doing this are welcome.
|
|
|
|
diff = a - b
|
|
|
|
except TypeError:
|
|
|
|
return NotImplemented
|
|
|
|
if isinstance(diff, RationalAbc):
|
|
|
|
return op(diff.numerator, 0)
|
|
|
|
return op(diff, 0)
|
|
|
|
|
|
|
|
def __lt__(a, b):
|
|
|
|
"""a < b"""
|
|
|
|
return a._subtractAndCompareToZero(b, operator.lt)
|
|
|
|
|
|
|
|
def __gt__(a, b):
|
|
|
|
"""a > b"""
|
|
|
|
return a._subtractAndCompareToZero(b, operator.gt)
|
|
|
|
|
|
|
|
def __le__(a, b):
|
|
|
|
"""a <= b"""
|
|
|
|
return a._subtractAndCompareToZero(b, operator.le)
|
|
|
|
|
|
|
|
def __ge__(a, b):
|
|
|
|
"""a >= b"""
|
|
|
|
return a._subtractAndCompareToZero(b, operator.ge)
|
|
|
|
|
|
|
|
def __nonzero__(a):
|
|
|
|
"""a != 0"""
|
|
|
|
return a.numerator != 0
|