cpython/Lib/test/test_ftplib.py

511 lines
15 KiB
Python
Raw Normal View History

"""Test script for ftplib module."""
# Modified by Giampaolo Rodola' to test FTP class and IPv6 environment
import ftplib
import threading
import asyncore
import asynchat
import socket
import StringIO
from unittest import TestCase
from test import test_support
from test.test_support import HOST
# the dummy data returned by server over the data channel when
# RETR, LIST and NLST commands are issued
RETR_DATA = 'abcde12345\r\n' * 1000
LIST_DATA = 'foo\r\nbar\r\n'
NLST_DATA = 'foo\r\nbar\r\n'
class DummyDTPHandler(asynchat.async_chat):
def __init__(self, conn, baseclass):
asynchat.async_chat.__init__(self, conn)
self.baseclass = baseclass
self.baseclass.last_received_data = ''
def handle_read(self):
self.baseclass.last_received_data += self.recv(1024)
def handle_close(self):
self.baseclass.push('226 transfer complete')
self.close()
class DummyFTPHandler(asynchat.async_chat):
def __init__(self, conn):
asynchat.async_chat.__init__(self, conn)
self.set_terminator("\r\n")
self.in_buffer = []
self.dtp = None
self.last_received_cmd = None
self.last_received_data = ''
self.next_response = ''
self.push('220 welcome')
def collect_incoming_data(self, data):
self.in_buffer.append(data)
def found_terminator(self):
line = ''.join(self.in_buffer)
self.in_buffer = []
if self.next_response:
self.push(self.next_response)
self.next_response = ''
cmd = line.split(' ')[0].lower()
self.last_received_cmd = cmd
space = line.find(' ')
if space != -1:
arg = line[space + 1:]
else:
arg = ""
if hasattr(self, 'cmd_' + cmd):
method = getattr(self, 'cmd_' + cmd)
method(arg)
else:
self.push('550 command "%s" not understood.' %cmd)
def handle_error(self):
raise
def push(self, data):
asynchat.async_chat.push(self, data + '\r\n')
def cmd_port(self, arg):
addr = map(int, arg.split(','))
ip = '%d.%d.%d.%d' %tuple(addr[:4])
port = (addr[4] * 256) + addr[5]
s = socket.create_connection((ip, port), timeout=2)
self.dtp = DummyDTPHandler(s, baseclass=self)
self.push('200 active data connection established')
def cmd_pasv(self, arg):
sock = socket.socket()
sock.bind((self.socket.getsockname()[0], 0))
sock.listen(5)
sock.settimeout(2)
ip, port = sock.getsockname()[:2]
ip = ip.replace('.', ','); p1 = port / 256; p2 = port % 256
self.push('227 entering passive mode (%s,%d,%d)' %(ip, p1, p2))
conn, addr = sock.accept()
self.dtp = DummyDTPHandler(conn, baseclass=self)
def cmd_eprt(self, arg):
af, ip, port = arg.split(arg[0])[1:-1]
port = int(port)
s = socket.create_connection((ip, port), timeout=2)
self.dtp = DummyDTPHandler(s, baseclass=self)
self.push('200 active data connection established')
def cmd_epsv(self, arg):
sock = socket.socket(socket.AF_INET6)
sock.bind((self.socket.getsockname()[0], 0))
sock.listen(5)
sock.settimeout(2)
port = sock.getsockname()[1]
self.push('229 entering extended passive mode (|||%d|)' %port)
conn, addr = sock.accept()
self.dtp = DummyDTPHandler(conn, baseclass=self)
def cmd_echo(self, arg):
# sends back the received string (used by the test suite)
self.push(arg)
def cmd_user(self, arg):
self.push('331 username ok')
def cmd_pass(self, arg):
self.push('230 password ok')
def cmd_acct(self, arg):
self.push('230 acct ok')
def cmd_rnfr(self, arg):
self.push('350 rnfr ok')
def cmd_rnto(self, arg):
self.push('250 rnto ok')
def cmd_dele(self, arg):
self.push('250 dele ok')
def cmd_cwd(self, arg):
self.push('250 cwd ok')
def cmd_size(self, arg):
self.push('250 1000')
def cmd_mkd(self, arg):
self.push('257 "%s"' %arg)
def cmd_rmd(self, arg):
self.push('250 rmd ok')
def cmd_pwd(self, arg):
self.push('257 "pwd ok"')
def cmd_type(self, arg):
self.push('200 type ok')
def cmd_quit(self, arg):
self.push('221 quit ok')
self.close()
def cmd_stor(self, arg):
self.push('125 stor ok')
def cmd_retr(self, arg):
self.push('125 retr ok')
self.dtp.push(RETR_DATA)
self.dtp.close_when_done()
def cmd_list(self, arg):
self.push('125 list ok')
self.dtp.push(LIST_DATA)
self.dtp.close_when_done()
def cmd_nlst(self, arg):
self.push('125 nlst ok')
self.dtp.push(NLST_DATA)
self.dtp.close_when_done()
class DummyFTPServer(asyncore.dispatcher, threading.Thread):
handler = DummyFTPHandler
def __init__(self, address, af=socket.AF_INET):
threading.Thread.__init__(self)
asyncore.dispatcher.__init__(self)
self.create_socket(af, socket.SOCK_STREAM)
self.bind(address)
self.listen(5)
self.active = False
self.active_lock = threading.Lock()
self.host, self.port = self.socket.getsockname()[:2]
def start(self):
assert not self.active
self.__flag = threading.Event()
threading.Thread.start(self)
self.__flag.wait()
def run(self):
self.active = True
self.__flag.set()
while self.active and asyncore.socket_map:
self.active_lock.acquire()
asyncore.loop(timeout=0.1, count=1)
self.active_lock.release()
asyncore.close_all(ignore_all=True)
def stop(self):
assert self.active
self.active = False
self.join()
def handle_accept(self):
conn, addr = self.accept()
self.handler = self.handler(conn)
self.close()
def handle_connect(self):
self.close()
handle_read = handle_connect
def writable(self):
return 0
def handle_error(self):
raise
class TestFTPClass(TestCase):
def setUp(self):
self.server = DummyFTPServer((HOST, 0))
self.server.start()
self.client = ftplib.FTP(timeout=2)
self.client.connect(self.server.host, self.server.port)
def tearDown(self):
self.client.close()
self.server.stop()
def test_getwelcome(self):
self.assertEqual(self.client.getwelcome(), '220 welcome')
def test_sanitize(self):
self.assertEqual(self.client.sanitize('foo'), repr('foo'))
self.assertEqual(self.client.sanitize('pass 12345'), repr('pass *****'))
self.assertEqual(self.client.sanitize('PASS 12345'), repr('PASS *****'))
def test_exceptions(self):
self.assertRaises(ftplib.error_temp, self.client.sendcmd, 'echo 400')
self.assertRaises(ftplib.error_temp, self.client.sendcmd, 'echo 499')
self.assertRaises(ftplib.error_perm, self.client.sendcmd, 'echo 500')
self.assertRaises(ftplib.error_perm, self.client.sendcmd, 'echo 599')
self.assertRaises(ftplib.error_proto, self.client.sendcmd, 'echo 999')
def test_all_errors(self):
exceptions = (ftplib.error_reply, ftplib.error_temp, ftplib.error_perm,
ftplib.error_proto, ftplib.Error, IOError, EOFError)
for x in exceptions:
try:
raise x('exception not included in all_errors set')
except ftplib.all_errors:
pass
def test_set_pasv(self):
# passive mode is supposed to be enabled by default
self.assertTrue(self.client.passiveserver)
self.client.set_pasv(True)
self.assertTrue(self.client.passiveserver)
self.client.set_pasv(False)
self.assertFalse(self.client.passiveserver)
def test_voidcmd(self):
self.client.voidcmd('echo 200')
self.client.voidcmd('echo 299')
self.assertRaises(ftplib.error_reply, self.client.voidcmd, 'echo 199')
self.assertRaises(ftplib.error_reply, self.client.voidcmd, 'echo 300')
def test_login(self):
self.client.login()
def test_acct(self):
self.client.acct('passwd')
def test_rename(self):
self.client.rename('a', 'b')
self.server.handler.next_response = '200'
self.assertRaises(ftplib.error_reply, self.client.rename, 'a', 'b')
def test_delete(self):
self.client.delete('foo')
self.server.handler.next_response = '199'
self.assertRaises(ftplib.error_reply, self.client.delete, 'foo')
def test_size(self):
self.client.size('foo')
def test_mkd(self):
dir = self.client.mkd('/foo')
self.assertEqual(dir, '/foo')
def test_rmd(self):
self.client.rmd('foo')
def test_pwd(self):
dir = self.client.pwd()
self.assertEqual(dir, 'pwd ok')
def test_quit(self):
self.assertEqual(self.client.quit(), '221 quit ok')
# Ensure the connection gets closed; sock attribute should be None
self.assertEqual(self.client.sock, None)
def test_retrbinary(self):
received = []
self.client.retrbinary('retr', received.append)
self.assertEqual(''.join(received), RETR_DATA)
def test_retrlines(self):
received = []
self.client.retrlines('retr', received.append)
self.assertEqual(''.join(received), RETR_DATA.replace('\r\n', ''))
def test_storbinary(self):
f = StringIO.StringIO(RETR_DATA)
self.client.storbinary('stor', f)
self.assertEqual(self.server.handler.last_received_data, RETR_DATA)
# test new callback arg
flag = []
f.seek(0)
self.client.storbinary('stor', f, callback=lambda x: flag.append(None))
self.assertTrue(flag)
def test_storlines(self):
f = StringIO.StringIO(RETR_DATA.replace('\r\n', '\n'))
self.client.storlines('stor', f)
self.assertEqual(self.server.handler.last_received_data, RETR_DATA)
# test new callback arg
flag = []
f.seek(0)
self.client.storlines('stor foo', f, callback=lambda x: flag.append(None))
self.assertTrue(flag)
def test_nlst(self):
self.client.nlst()
self.assertEqual(self.client.nlst(), NLST_DATA.split('\r\n')[:-1])
def test_dir(self):
l = []
self.client.dir(lambda x: l.append(x))
self.assertEqual(''.join(l), LIST_DATA.replace('\r\n', ''))
def test_makeport(self):
self.client.makeport()
# IPv4 is in use, just make sure send_eprt has not been used
self.assertEqual(self.server.handler.last_received_cmd, 'port')
def test_makepasv(self):
host, port = self.client.makepasv()
conn = socket.create_connection((host, port), 2)
conn.close()
# IPv4 is in use, just make sure send_epsv has not been used
self.assertEqual(self.server.handler.last_received_cmd, 'pasv')
class TestIPv6Environment(TestCase):
def setUp(self):
self.server = DummyFTPServer((HOST, 0), af=socket.AF_INET6)
self.server.start()
self.client = ftplib.FTP()
self.client.connect(self.server.host, self.server.port)
def tearDown(self):
self.client.close()
self.server.stop()
def test_af(self):
self.assertEqual(self.client.af, socket.AF_INET6)
def test_makeport(self):
self.client.makeport()
self.assertEqual(self.server.handler.last_received_cmd, 'eprt')
def test_makepasv(self):
host, port = self.client.makepasv()
conn = socket.create_connection((host, port), 2)
conn.close()
self.assertEqual(self.server.handler.last_received_cmd, 'epsv')
def test_transfer(self):
def retr():
received = []
self.client.retrbinary('retr', received.append)
self.assertEqual(''.join(received), RETR_DATA)
self.client.set_pasv(True)
retr()
self.client.set_pasv(False)
retr()
class TestTimeouts(TestCase):
def setUp(self):
self.evt = threading.Event()
- Issue #2550: The approach used by client/server code for obtaining ports to listen on in network-oriented tests has been refined in an effort to facilitate running multiple instances of the entire regression test suite in parallel without issue. test_support.bind_port() has been fixed such that it will always return a unique port -- which wasn't always the case with the previous implementation, especially if socket options had been set that affected address reuse (i.e. SO_REUSEADDR, SO_REUSEPORT). The new implementation of bind_port() will actually raise an exception if it is passed an AF_INET/SOCK_STREAM socket with either the SO_REUSEADDR or SO_REUSEPORT socket option set. Furthermore, if available, bind_port() will set the SO_EXCLUSIVEADDRUSE option on the socket it's been passed. This currently only applies to Windows. This option prevents any other sockets from binding to the host/port we've bound to, thus removing the possibility of the 'non-deterministic' behaviour, as Microsoft puts it, that occurs when a second SOCK_STREAM socket binds and accepts to a host/port that's already been bound by another socket. The optional preferred port parameter to bind_port() has been removed. Under no circumstances should tests be hard coding ports! test_support.find_unused_port() has also been introduced, which will pass a temporary socket object to bind_port() in order to obtain an unused port. The temporary socket object is then closed and deleted, and the port is returned. This method should only be used for obtaining an unused port in order to pass to an external program (i.e. the -accept [port] argument to openssl's s_server mode) or as a parameter to a server-oriented class that doesn't give you direct access to the underlying socket used. Finally, test_support.HOST has been introduced, which should be used for the host argument of any relevant socket calls (i.e. bind and connect). The following tests were updated to following the new conventions: test_socket, test_smtplib, test_asyncore, test_ssl, test_httplib, test_poplib, test_ftplib, test_telnetlib, test_socketserver, test_asynchat and test_socket_ssl. It is now possible for multiple instances of the regression test suite to run in parallel without issue.
2008-04-08 20:47:30 -03:00
self.sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
self.sock.settimeout(3)
self.port = test_support.bind_port(self.sock)
threading.Thread(target=self.server, args=(self.evt,self.sock)).start()
# Wait for the server to be ready.
self.evt.wait()
self.evt.clear()
- Issue #2550: The approach used by client/server code for obtaining ports to listen on in network-oriented tests has been refined in an effort to facilitate running multiple instances of the entire regression test suite in parallel without issue. test_support.bind_port() has been fixed such that it will always return a unique port -- which wasn't always the case with the previous implementation, especially if socket options had been set that affected address reuse (i.e. SO_REUSEADDR, SO_REUSEPORT). The new implementation of bind_port() will actually raise an exception if it is passed an AF_INET/SOCK_STREAM socket with either the SO_REUSEADDR or SO_REUSEPORT socket option set. Furthermore, if available, bind_port() will set the SO_EXCLUSIVEADDRUSE option on the socket it's been passed. This currently only applies to Windows. This option prevents any other sockets from binding to the host/port we've bound to, thus removing the possibility of the 'non-deterministic' behaviour, as Microsoft puts it, that occurs when a second SOCK_STREAM socket binds and accepts to a host/port that's already been bound by another socket. The optional preferred port parameter to bind_port() has been removed. Under no circumstances should tests be hard coding ports! test_support.find_unused_port() has also been introduced, which will pass a temporary socket object to bind_port() in order to obtain an unused port. The temporary socket object is then closed and deleted, and the port is returned. This method should only be used for obtaining an unused port in order to pass to an external program (i.e. the -accept [port] argument to openssl's s_server mode) or as a parameter to a server-oriented class that doesn't give you direct access to the underlying socket used. Finally, test_support.HOST has been introduced, which should be used for the host argument of any relevant socket calls (i.e. bind and connect). The following tests were updated to following the new conventions: test_socket, test_smtplib, test_asyncore, test_ssl, test_httplib, test_poplib, test_ftplib, test_telnetlib, test_socketserver, test_asynchat and test_socket_ssl. It is now possible for multiple instances of the regression test suite to run in parallel without issue.
2008-04-08 20:47:30 -03:00
ftplib.FTP.port = self.port
def tearDown(self):
self.evt.wait()
def server(self, evt, serv):
# This method sets the evt 3 times:
# 1) when the connection is ready to be accepted.
# 2) when it is safe for the caller to close the connection
# 3) when we have closed the socket
serv.listen(5)
# (1) Signal the caller that we are ready to accept the connection.
evt.set()
try:
conn, addr = serv.accept()
except socket.timeout:
pass
else:
conn.send("1 Hola mundo\n")
# (2) Signal the caller that it is safe to close the socket.
evt.set()
conn.close()
finally:
serv.close()
# (3) Signal the caller that we are done.
evt.set()
def testTimeoutDefault(self):
# default -- use global socket timeout
2009-06-30 19:57:08 -03:00
self.assertTrue(socket.getdefaulttimeout() is None)
socket.setdefaulttimeout(30)
try:
ftp = ftplib.FTP("localhost")
finally:
socket.setdefaulttimeout(None)
self.assertEqual(ftp.sock.gettimeout(), 30)
self.evt.wait()
ftp.close()
def testTimeoutNone(self):
# no timeout -- do not use global socket timeout
2009-06-30 19:57:08 -03:00
self.assertTrue(socket.getdefaulttimeout() is None)
socket.setdefaulttimeout(30)
try:
ftp = ftplib.FTP("localhost", timeout=None)
finally:
socket.setdefaulttimeout(None)
self.assertTrue(ftp.sock.gettimeout() is None)
self.evt.wait()
ftp.close()
def testTimeoutValue(self):
# a value
- Issue #2550: The approach used by client/server code for obtaining ports to listen on in network-oriented tests has been refined in an effort to facilitate running multiple instances of the entire regression test suite in parallel without issue. test_support.bind_port() has been fixed such that it will always return a unique port -- which wasn't always the case with the previous implementation, especially if socket options had been set that affected address reuse (i.e. SO_REUSEADDR, SO_REUSEPORT). The new implementation of bind_port() will actually raise an exception if it is passed an AF_INET/SOCK_STREAM socket with either the SO_REUSEADDR or SO_REUSEPORT socket option set. Furthermore, if available, bind_port() will set the SO_EXCLUSIVEADDRUSE option on the socket it's been passed. This currently only applies to Windows. This option prevents any other sockets from binding to the host/port we've bound to, thus removing the possibility of the 'non-deterministic' behaviour, as Microsoft puts it, that occurs when a second SOCK_STREAM socket binds and accepts to a host/port that's already been bound by another socket. The optional preferred port parameter to bind_port() has been removed. Under no circumstances should tests be hard coding ports! test_support.find_unused_port() has also been introduced, which will pass a temporary socket object to bind_port() in order to obtain an unused port. The temporary socket object is then closed and deleted, and the port is returned. This method should only be used for obtaining an unused port in order to pass to an external program (i.e. the -accept [port] argument to openssl's s_server mode) or as a parameter to a server-oriented class that doesn't give you direct access to the underlying socket used. Finally, test_support.HOST has been introduced, which should be used for the host argument of any relevant socket calls (i.e. bind and connect). The following tests were updated to following the new conventions: test_socket, test_smtplib, test_asyncore, test_ssl, test_httplib, test_poplib, test_ftplib, test_telnetlib, test_socketserver, test_asynchat and test_socket_ssl. It is now possible for multiple instances of the regression test suite to run in parallel without issue.
2008-04-08 20:47:30 -03:00
ftp = ftplib.FTP(HOST, timeout=30)
self.assertEqual(ftp.sock.gettimeout(), 30)
self.evt.wait()
ftp.close()
def testTimeoutConnect(self):
ftp = ftplib.FTP()
- Issue #2550: The approach used by client/server code for obtaining ports to listen on in network-oriented tests has been refined in an effort to facilitate running multiple instances of the entire regression test suite in parallel without issue. test_support.bind_port() has been fixed such that it will always return a unique port -- which wasn't always the case with the previous implementation, especially if socket options had been set that affected address reuse (i.e. SO_REUSEADDR, SO_REUSEPORT). The new implementation of bind_port() will actually raise an exception if it is passed an AF_INET/SOCK_STREAM socket with either the SO_REUSEADDR or SO_REUSEPORT socket option set. Furthermore, if available, bind_port() will set the SO_EXCLUSIVEADDRUSE option on the socket it's been passed. This currently only applies to Windows. This option prevents any other sockets from binding to the host/port we've bound to, thus removing the possibility of the 'non-deterministic' behaviour, as Microsoft puts it, that occurs when a second SOCK_STREAM socket binds and accepts to a host/port that's already been bound by another socket. The optional preferred port parameter to bind_port() has been removed. Under no circumstances should tests be hard coding ports! test_support.find_unused_port() has also been introduced, which will pass a temporary socket object to bind_port() in order to obtain an unused port. The temporary socket object is then closed and deleted, and the port is returned. This method should only be used for obtaining an unused port in order to pass to an external program (i.e. the -accept [port] argument to openssl's s_server mode) or as a parameter to a server-oriented class that doesn't give you direct access to the underlying socket used. Finally, test_support.HOST has been introduced, which should be used for the host argument of any relevant socket calls (i.e. bind and connect). The following tests were updated to following the new conventions: test_socket, test_smtplib, test_asyncore, test_ssl, test_httplib, test_poplib, test_ftplib, test_telnetlib, test_socketserver, test_asynchat and test_socket_ssl. It is now possible for multiple instances of the regression test suite to run in parallel without issue.
2008-04-08 20:47:30 -03:00
ftp.connect(HOST, timeout=30)
self.assertEqual(ftp.sock.gettimeout(), 30)
self.evt.wait()
ftp.close()
def testTimeoutDifferentOrder(self):
ftp = ftplib.FTP(timeout=30)
- Issue #2550: The approach used by client/server code for obtaining ports to listen on in network-oriented tests has been refined in an effort to facilitate running multiple instances of the entire regression test suite in parallel without issue. test_support.bind_port() has been fixed such that it will always return a unique port -- which wasn't always the case with the previous implementation, especially if socket options had been set that affected address reuse (i.e. SO_REUSEADDR, SO_REUSEPORT). The new implementation of bind_port() will actually raise an exception if it is passed an AF_INET/SOCK_STREAM socket with either the SO_REUSEADDR or SO_REUSEPORT socket option set. Furthermore, if available, bind_port() will set the SO_EXCLUSIVEADDRUSE option on the socket it's been passed. This currently only applies to Windows. This option prevents any other sockets from binding to the host/port we've bound to, thus removing the possibility of the 'non-deterministic' behaviour, as Microsoft puts it, that occurs when a second SOCK_STREAM socket binds and accepts to a host/port that's already been bound by another socket. The optional preferred port parameter to bind_port() has been removed. Under no circumstances should tests be hard coding ports! test_support.find_unused_port() has also been introduced, which will pass a temporary socket object to bind_port() in order to obtain an unused port. The temporary socket object is then closed and deleted, and the port is returned. This method should only be used for obtaining an unused port in order to pass to an external program (i.e. the -accept [port] argument to openssl's s_server mode) or as a parameter to a server-oriented class that doesn't give you direct access to the underlying socket used. Finally, test_support.HOST has been introduced, which should be used for the host argument of any relevant socket calls (i.e. bind and connect). The following tests were updated to following the new conventions: test_socket, test_smtplib, test_asyncore, test_ssl, test_httplib, test_poplib, test_ftplib, test_telnetlib, test_socketserver, test_asynchat and test_socket_ssl. It is now possible for multiple instances of the regression test suite to run in parallel without issue.
2008-04-08 20:47:30 -03:00
ftp.connect(HOST)
self.assertEqual(ftp.sock.gettimeout(), 30)
self.evt.wait()
ftp.close()
def testTimeoutDirectAccess(self):
ftp = ftplib.FTP()
ftp.timeout = 30
- Issue #2550: The approach used by client/server code for obtaining ports to listen on in network-oriented tests has been refined in an effort to facilitate running multiple instances of the entire regression test suite in parallel without issue. test_support.bind_port() has been fixed such that it will always return a unique port -- which wasn't always the case with the previous implementation, especially if socket options had been set that affected address reuse (i.e. SO_REUSEADDR, SO_REUSEPORT). The new implementation of bind_port() will actually raise an exception if it is passed an AF_INET/SOCK_STREAM socket with either the SO_REUSEADDR or SO_REUSEPORT socket option set. Furthermore, if available, bind_port() will set the SO_EXCLUSIVEADDRUSE option on the socket it's been passed. This currently only applies to Windows. This option prevents any other sockets from binding to the host/port we've bound to, thus removing the possibility of the 'non-deterministic' behaviour, as Microsoft puts it, that occurs when a second SOCK_STREAM socket binds and accepts to a host/port that's already been bound by another socket. The optional preferred port parameter to bind_port() has been removed. Under no circumstances should tests be hard coding ports! test_support.find_unused_port() has also been introduced, which will pass a temporary socket object to bind_port() in order to obtain an unused port. The temporary socket object is then closed and deleted, and the port is returned. This method should only be used for obtaining an unused port in order to pass to an external program (i.e. the -accept [port] argument to openssl's s_server mode) or as a parameter to a server-oriented class that doesn't give you direct access to the underlying socket used. Finally, test_support.HOST has been introduced, which should be used for the host argument of any relevant socket calls (i.e. bind and connect). The following tests were updated to following the new conventions: test_socket, test_smtplib, test_asyncore, test_ssl, test_httplib, test_poplib, test_ftplib, test_telnetlib, test_socketserver, test_asynchat and test_socket_ssl. It is now possible for multiple instances of the regression test suite to run in parallel without issue.
2008-04-08 20:47:30 -03:00
ftp.connect(HOST)
self.assertEqual(ftp.sock.gettimeout(), 30)
self.evt.wait()
ftp.close()
def test_main():
tests = [TestFTPClass, TestTimeouts]
if socket.has_ipv6:
try:
DummyFTPServer((HOST, 0), af=socket.AF_INET6)
except socket.error:
pass
else:
tests.append(TestIPv6Environment)
thread_info = test_support.threading_setup()
try:
test_support.run_unittest(*tests)
finally:
test_support.threading_cleanup(*thread_info)
if __name__ == '__main__':
test_main()