2000-05-27 08:28:26 -03:00
\documentclass { howto}
2000-06-29 22:44:05 -03:00
\title { What's New in Python 2.0}
\release { 0.04}
2000-06-02 23:52:40 -03:00
\author { A.M. Kuchling and Moshe Zadka}
\authoraddress { \email { amk1@bigfoot.com} , \email { moshez@math.huji.ac.il} }
2000-05-27 08:28:26 -03:00
\begin { document}
\maketitle \tableofcontents
\section { Introduction}
2000-06-27 23:16:00 -03:00
{ \large This is a draft document; please report inaccuracies and
omissions to the authors. This document should not be treated as
2000-06-29 22:44:05 -03:00
definitive; features described here might be removed or changed during
the beta cycle before the final release of Python 2.0.
2000-06-09 23:41:46 -03:00
}
2000-06-29 22:44:05 -03:00
A new release of Python, version 2.0, will be released some time this
2000-06-30 21:13:30 -03:00
summer. Beta versions are already available from
\url { http://www.pythonlabs.com/tech/python2.html} . This article
covers the exciting new features in 2.0, highlights some other useful
changes, and points out a few incompatible changes that may require
rewriting code.
2000-05-27 08:28:26 -03:00
2000-06-02 23:52:40 -03:00
Python's development never completely stops between releases, and a
steady flow of bug fixes and improvements are always being submitted.
A host of minor fixes, a few optimizations, additional docstrings, and
2000-06-29 22:44:05 -03:00
better error messages went into 2.0; to list them all would be
2000-06-02 23:52:40 -03:00
impossible, but they're certainly significant. Consult the
publicly-available CVS logs if you want to see the full list.
2000-05-27 08:28:26 -03:00
% ======================================================================
\section { Unicode}
2000-06-29 22:44:05 -03:00
The largest new feature in Python 2.0 is a new fundamental data type:
2000-06-02 23:52:40 -03:00
Unicode strings. Unicode uses 16-bit numbers to represent characters
instead of the 8-bit number used by ASCII, meaning that 65,536
distinct characters can be supported.
The final interface for Unicode support was arrived at through
2000-06-03 00:06:58 -03:00
countless often-stormy discussions on the python-dev mailing list, and
2000-06-30 09:46:41 -03:00
mostly implemented by Marc-Andr\' e Lemburg, based on a Unicode string
type implementation by Fredrik Lundh. A detailed explanation of the
interface is in the file \file { Misc/unicode.txt} in the Python source
distribution; it's also available on the Web at
2000-06-03 00:06:58 -03:00
\url { http://starship.python.net/crew/lemburg/unicode-proposal.txt} .
2000-06-02 23:52:40 -03:00
This article will simply cover the most significant points from the
full interface.
In Python source code, Unicode strings are written as
\code { u"string"} . Arbitrary Unicode characters can be written using a
2000-06-03 00:06:58 -03:00
new escape sequence, \code { \e u\var { HHHH} } , where \var { HHHH} is a
2000-06-02 23:52:40 -03:00
4-digit hexadecimal number from 0000 to FFFF. The existing
2000-06-03 00:06:58 -03:00
\code { \e x\var { HHHH} } escape sequence can also be used, and octal
2000-06-02 23:52:40 -03:00
escapes can be used for characters up to U+01FF, which is represented
2000-06-03 00:06:58 -03:00
by \code { \e 777} .
2000-06-02 23:52:40 -03:00
Unicode strings, just like regular strings, are an immutable sequence
2000-06-25 11:32:48 -03:00
type. They can be indexed and sliced, but not modified in place.
2000-06-30 09:46:41 -03:00
Unicode strings have an \method { encode( \optional { encoding} )} method
2000-06-25 11:32:48 -03:00
that returns an 8-bit string in the desired encoding. Encodings are
named by strings, such as \code { 'ascii'} , \code { 'utf-8'} ,
\code { 'iso-8859-1'} , or whatever. A codec API is defined for
implementing and registering new encodings that are then available
throughout a Python program. If an encoding isn't specified, the
default encoding is usually 7-bit ASCII, though it can be changed for
your Python installation by calling the
2000-06-10 12:11:20 -03:00
\function { sys.setdefaultencoding(\var { encoding} )} function in a
2000-06-27 23:16:00 -03:00
customised version of \file { site.py} .
2000-06-02 23:52:40 -03:00
Combining 8-bit and Unicode strings always coerces to Unicode, using
the default ASCII encoding; the result of \code { 'a' + u'bc'} is
2000-06-08 23:48:18 -03:00
\code { u'abc'} .
2000-06-02 23:52:40 -03:00
New built-in functions have been added, and existing built-ins
modified to support Unicode:
\begin { itemize}
\item \code { unichr(\var { ch} )} returns a Unicode string 1 character
long, containing the character \var { ch} .
\item \code { ord(\var { u} )} , where \var { u} is a 1-character regular or Unicode string, returns the number of the character as an integer.
2000-06-03 00:06:58 -03:00
\item \code { unicode(\var { string} , \optional { \var { encoding} ,}
\optional { \var { errors} } ) } creates a Unicode string from an 8-bit
2000-06-02 23:52:40 -03:00
string. \code { encoding} is a string naming the encoding to use.
The \code { errors} parameter specifies the treatment of characters that
are invalid for the current encoding; passing \code { 'strict'} as the
value causes an exception to be raised on any encoding error, while
\code { 'ignore'} causes errors to be silently ignored and
\code { 'replace'} uses U+FFFD, the official replacement character, in
case of any problems.
\end { itemize}
A new module, \module { unicodedata} , provides an interface to Unicode
character properties. For example, \code { unicodedata.category(u'A')}
returns the 2-character string 'Lu', the 'L' denoting it's a letter,
and 'u' meaning that it's uppercase.
2000-06-03 00:06:58 -03:00
\code { u.bidirectional(u'\e x0660')} returns 'AN', meaning that U+0660 is
2000-06-02 23:52:40 -03:00
an Arabic number.
2000-06-03 00:06:58 -03:00
The \module { codecs} module contains functions to look up existing encodings
and register new ones. Unless you want to implement a
new encoding, you'll most often use the
\function { codecs.lookup(\var { encoding} )} function, which returns a
4-element tuple: \code { (\var { encode_ func} ,
\var { decode_ func} , \var { stream_ reader} , \var { stream_ writer} )} .
2000-06-02 23:52:40 -03:00
\begin { itemize}
\item \var { encode_ func} is a function that takes a Unicode string, and
returns a 2-tuple \code { (\var { string} , \var { length} )} . \var { string}
is an 8-bit string containing a portion (perhaps all) of the Unicode
string converted into the given encoding, and \var { length} tells you how much of the Unicode string was converted.
\item \var { decode_ func} is the mirror of \var { encode_ func} ,
taking a Unicode string and
returns a 2-tuple \code { (\var { ustring} , \var { length} )} containing a Unicode string
and \var { length} telling you how much of the string was consumed.
\item \var { stream_ reader} is a class that supports decoding input from
a stream. \var { stream_ reader(\var { file_ obj} )} returns an object that
supports the \method { read()} , \method { readline()} , and
\method { readlines()} methods. These methods will all translate from
the given encoding and return Unicode strings.
\item \var { stream_ writer} , similarly, is a class that supports
encoding output to a stream. \var { stream_ writer(\var { file_ obj} )}
2000-06-27 23:16:00 -03:00
returns an object that supports the \method { write()} and
\method { writelines()} methods. These methods expect Unicode strings,
translating them to the given encoding on output.
2000-06-02 23:52:40 -03:00
\end { itemize}
For example, the following code writes a Unicode string into a file,
encoding it as UTF-8:
2000-05-27 08:28:26 -03:00
2000-06-02 23:52:40 -03:00
\begin { verbatim}
import codecs
unistr = u'\u 0660\u 2000ab ...'
(UTF8_ encode, UTF8_ decode,
UTF8_ streamreader, UTF8_ streamwriter) = codecs.lookup('UTF-8')
output = UTF8_ streamwriter( open( '/tmp/output', 'wb') )
output.write( unistr )
output.close()
\end { verbatim}
2000-05-27 08:28:26 -03:00
2000-06-02 23:52:40 -03:00
The following code would then read UTF-8 input from the file:
2000-05-27 08:28:26 -03:00
2000-06-02 23:52:40 -03:00
\begin { verbatim}
input = UTF8_ streamread( open( '/tmp/output', 'rb') )
print repr(input.read())
input.close()
\end { verbatim}
Unicode-aware regular expressions are available through the
\module { re} module, which has a new underlying implementation called
SRE written by Fredrik Lundh of Secret Labs AB.
2000-06-10 12:11:20 -03:00
A \code { -U} command line option was added which causes the Python
compiler to interpret all string literals as Unicode string literals.
This is intended to be used in testing and future-proofing your Python
code, since some future version of Python may drop support for 8-bit
strings and provide only Unicode strings.
2000-05-27 08:28:26 -03:00
% ======================================================================
2000-06-02 23:52:40 -03:00
\section { Distutils: Making Modules Easy to Install}
2000-06-29 22:44:05 -03:00
Before Python 2.0, installing modules was a tedious affair -- there
2000-06-02 23:52:40 -03:00
was no way to figure out automatically where Python is installed, or
what compiler options to use for extension modules. Software authors
had to go through an ardous ritual of editing Makefiles and
configuration files, which only really work on Unix and leave Windows
and MacOS unsupported. Software users faced wildly differing
installation instructions
The SIG for distribution utilities, shepherded by Greg Ward, has
created the Distutils, a system to make package installation much
2000-06-03 00:06:58 -03:00
easier. They form the \module { distutils} package, a new part of
2000-06-02 23:52:40 -03:00
Python's standard library. In the best case, installing a Python
module from source will require the same steps: first you simply mean
unpack the tarball or zip archive, and the run ``\code { python setup.py
install} ''. The platform will be automatically detected, the compiler
will be recognized, C extension modules will be compiled, and the
distribution installed into the proper directory. Optional
command-line arguments provide more control over the installation
process, the distutils package offers many places to override defaults
-- separating the build from the install, building or installing in
non-default directories, and more.
In order to use the Distutils, you need to write a \file { setup.py}
script. For the simple case, when the software contains only .py
files, a minimal \file { setup.py} can be just a few lines long:
\begin { verbatim}
from distutils.core import setup
setup (name = "foo", version = "1.0",
py_ modules = ["module1", "module2"])
\end { verbatim}
The \file { setup.py} file isn't much more complicated if the software
consists of a few packages:
\begin { verbatim}
from distutils.core import setup
setup (name = "foo", version = "1.0",
packages = ["package", "package.subpackage"])
\end { verbatim}
A C extension can be the most complicated case; here's an example taken from
the PyXML package:
\begin { verbatim}
from distutils.core import setup, Extension
expat_ extension = Extension('xml.parsers.pyexpat',
define_ macros = [('XML_ NS', None)],
include_ dirs = [ 'extensions/expat/xmltok',
'extensions/expat/xmlparse' ],
sources = [ 'extensions/pyexpat.c',
'extensions/expat/xmltok/xmltok.c',
'extensions/expat/xmltok/xmlrole.c',
]
)
setup (name = "PyXML", version = "0.5.4",
ext_ modules =[ expat_ extension ] )
\end { verbatim}
The Distutils can also take care of creating source and binary
distributions. The ``sdist'' command, run by ``\code { python setup.py
sdist} ', builds a source distribution such as \file { foo-1.0.tar.gz} .
2000-07-01 09:33:43 -03:00
Adding new commands isn't difficult, ``bdist_ rpm'' and
``bdist_ wininst'' commands have already been contributed to create an
RPM distribution and a Windows installer for the software,
respectively. Commands to create other distribution formats such as
Debian packages and Solaris \file { .pkg} files are in various stages of
development.
2000-05-27 08:28:26 -03:00
2000-06-02 23:52:40 -03:00
All this is documented in a new manual, \textit { Distributing Python
2000-06-09 23:41:46 -03:00
Modules} , that joins the basic set of Python documentation.
2000-05-27 08:28:26 -03:00
% ======================================================================
\section { String Methods}
2000-06-02 23:52:40 -03:00
Until now string-manipulation functionality was in the \module { string}
Python module, which was usually a front-end for the \module { strop}
module written in C. The addition of Unicode posed a difficulty for
the \module { strop} module, because the functions would all need to be
rewritten in order to accept either 8-bit or Unicode strings. For
functions such as \function { string.replace()} , which takes 3 string
arguments, that means eight possible permutations, and correspondingly
complicated code.
2000-06-29 22:44:05 -03:00
Instead, Python 2.0 pushes the problem onto the string type, making
2000-06-02 23:52:40 -03:00
string manipulation functionality available through methods on both
8-bit strings and Unicode strings.
\begin { verbatim}
>>> 'andrew'.capitalize()
'Andrew'
>>> 'hostname'.replace('os', 'linux')
'hlinuxtname'
>>> 'moshe'.find('sh')
2
\end { verbatim}
One thing that hasn't changed, April Fools' jokes notwithstanding, is
that Python strings are immutable. Thus, the string methods return new
strings, and do not modify the string on which they operate.
The old \module { string} module is still around for backwards
compatibility, but it mostly acts as a front-end to the new string
methods.
2000-06-29 22:44:05 -03:00
Two methods which have no parallel in pre-2.0 versions, although they
2000-06-02 23:52:40 -03:00
did exist in JPython for quite some time, are \method { startswith()}
and \method { endswith} . \code { s.startswith(t)} is equivalent to \code { s[:len(t)]
== t} , while \code { s.endswith(t)} is equivalent to \code { s[-len(t):] == t} .
2000-07-01 09:33:43 -03:00
One other method which deserves special mention is \method { join} . The
\method { join} method of a string receives one parameter, a sequence of
strings, and is equivalent to the \function { string.join} function from
the old \module { string} module, with the arguments reversed. In other
words, \code { s.join(seq)} is equivalent to the old
\code { string.join(seq, s)} .
2000-06-02 23:52:40 -03:00
2000-05-27 08:28:26 -03:00
% ======================================================================
2000-06-29 22:44:05 -03:00
\section { Porting to 2.0}
2000-05-27 08:28:26 -03:00
New Python releases try hard to be compatible with previous releases,
and the record has been pretty good. However, some changes are
2000-06-02 23:52:40 -03:00
considered useful enough, often fixing initial design decisions that
turned to be actively mistaken, that breaking backward compatibility
2000-06-29 22:44:05 -03:00
can't always be avoided. This section lists the changes in Python 2.0
2000-05-27 08:28:26 -03:00
that may cause old Python code to break.
The change which will probably break the most code is tightening up
the arguments accepted by some methods. Some methods would take
multiple arguments and treat them as a tuple, particularly various
2000-06-09 23:24:31 -03:00
list methods such as \method { .append()} and \method { .insert()} .
2000-05-27 08:28:26 -03:00
In earlier versions of Python, if \code { L} is a list, \code { L.append(
2000-06-29 22:44:05 -03:00
1,2 )} appends the tuple \code { (1,2)} to the list. In Python 2.0 this
2000-05-27 08:28:26 -03:00
causes a \exception { TypeError} exception to be raised, with the
message: 'append requires exactly 1 argument; 2 given'. The fix is to
simply add an extra set of parentheses to pass both values as a tuple:
\code { L.append( (1,2) )} .
The earlier versions of these methods were more forgiving because they
used an old function in Python's C interface to parse their arguments;
2000-06-29 22:44:05 -03:00
2.0 modernizes them to use \function { PyArg_ ParseTuple} , the current
2000-05-27 08:28:26 -03:00
argument parsing function, which provides more helpful error messages
and treats multi-argument calls as errors. If you absolutely must use
2000-06-29 22:44:05 -03:00
2.0 but can't fix your code, you can edit \file { Objects/listobject.c}
2000-05-27 08:28:26 -03:00
and define the preprocessor symbol \code { NO_ STRICT_ LIST_ APPEND} to
preserve the old behaviour; this isn't recommended.
Some of the functions in the \module { socket} module are still
forgiving in this way. For example, \function { socket.connect(
('hostname', 25) )} is the correct form, passing a tuple representing
2000-06-09 23:24:31 -03:00
an IP address, but \function { socket.connect( 'hostname', 25 )} also
2000-05-27 08:28:26 -03:00
works. \function { socket.connect_ ex()} and \function { socket.bind()} are
2000-06-29 22:44:05 -03:00
similarly easy-going. 2.0alpha1 tightened these functions up, but
2000-05-27 08:28:26 -03:00
because the documentation actually used the erroneous multiple
2000-06-09 23:24:31 -03:00
argument form, many people wrote code which would break with the
stricter checking. GvR backed out the changes in the face of public
reaction, so for the\module { socket} module, the documentation was
fixed and the multiple argument form is simply marked as deprecated;
it \emph { will} be tightened up again in a future Python version.
2000-05-27 08:28:26 -03:00
Some work has been done to make integers and long integers a bit more
interchangeable. In 1.5.2, large-file support was added for Solaris,
to allow reading files larger than 2Gb; this made the \method { tell()}
method of file objects return a long integer instead of a regular
integer. Some code would subtract two file offsets and attempt to use
the result to multiply a sequence or slice a string, but this raised a
2000-06-29 22:44:05 -03:00
\exception { TypeError} . In 2.0, long integers can be used to multiply
2000-06-09 23:24:31 -03:00
or slice a sequence, and it'll behave as you'd intuitively expect it
to; \code { 3L * 'abc'} produces 'abcabcabc', and \code {
(0,1,2,3)[2L:4L]} produces (2,3). Long integers can also be used in
various new places where previously only integers were accepted, such
as in the \method { seek()} method of file objects.
2000-05-27 08:28:26 -03:00
The subtlest long integer change of all is that the \function { str()}
of a long integer no longer has a trailing 'L' character, though
\function { repr()} still includes it. The 'L' annoyed many people who
wanted to print long integers that looked just like regular integers,
since they had to go out of their way to chop off the character. This
2000-06-29 22:44:05 -03:00
is no longer a problem in 2.0, but code which assumes the 'L' is
2000-05-27 08:28:26 -03:00
there, and does \code { str(longval)[:-1]} will now lose the final
digit.
Taking the \function { repr()} of a float now uses a different
formatting precision than \function { str()} . \function { repr()} uses
2000-06-25 11:32:48 -03:00
\code { \% .17g} format string for C's \function { sprintf()} , while
\function { str()} uses \code { \% .12g} as before. The effect is that
2000-05-27 08:28:26 -03:00
\function { repr()} may occasionally show more decimal places than
\function { str()} , for numbers
2000-06-09 23:41:46 -03:00
For example, the number 8.1 can't be represented exactly in binary, so
\code { repr(8.1)} is \code { '8.0999999999999996'} , while str(8.1) is
\code { '8.1'} .
2000-05-27 08:28:26 -03:00
2000-06-29 22:44:05 -03:00
The \code { -X} command-line option, which turned all standard
2000-06-30 09:46:41 -03:00
exceptions into strings instead of classes, has been removed; the
standard exceptions will now always be classes. The
\module { exceptions} module containing the standard exceptions was
translated from Python to a built-in C module, written by Barry Warsaw
and Fredrik Lundh.
2000-05-27 08:28:26 -03:00
2000-06-27 23:16:00 -03:00
% ======================================================================
\section { Optional Collection of Cycles}
The C implementation of Python uses reference counting to implement
garbage collection. Every Python object maintains a count of the
number of references pointing to itself, and adjusts the count as
references are created or destroyed. Once the reference count reaches
zero, the object is no longer accessible, since you need to have a
reference to an object to access it, and if the count is zero, no
references exist any longer.
Reference counting has some pleasant properties: it's easy to
understand and implement, and the resulting implementation is
portable, fairly fast, and reacts well with other libraries that
implement their own memory handling schemes. The major problem with
reference counting is that it sometimes doesn't realise that objects
are no longer accessible, resulting in a memory leak. This happens
when there are cycles of references.
Consider the simplest possible cycle,
a class instance which has a reference to itself:
\begin { verbatim}
instance = SomeClass()
instance.myself = instance
\end { verbatim}
After the above two lines of code have been executed, the reference
count of \code { instance} is 2; one reference is from the variable
named \samp { 'instance'} , and the other is from the \samp { myself}
attribute of the instance.
If the next line of code is \code { del instance} , what happens? The
reference count of \code { instance} is decreased by 1, so it has a
reference count of 1; the reference in the \samp { myself} attribute
still exists. Yet the instance is no longer accessible through Python
code, and it could be deleted. Several objects can participate in a
cycle if they have references to each other, causing all of the
objects to be leaked.
An experimental step has been made toward fixing this problem. When
2000-06-29 22:44:05 -03:00
compiling Python, the \verb |--with-cycle-gc| option can be specified.
This causes a cycle detection algorithm to be periodically executed,
which looks for inaccessible cycles and deletes the objects involved.
2000-06-30 09:46:41 -03:00
A new \module { gc} module provides functions to perform a garbage
collection, obtain debugging statistics, and tuning the collector's parameters.
2000-06-27 23:16:00 -03:00
2000-06-29 22:44:05 -03:00
Why isn't cycle detection enabled by default? Running the cycle detection
2000-06-27 23:16:00 -03:00
algorithm takes some time, and some tuning will be required to
minimize the overhead cost. It's not yet obvious how much performance
2000-06-29 22:44:05 -03:00
is lost, because benchmarking this is tricky and depends crucially
on how often the program creates and destroys objects.
Several people tackled this problem and contributed to a solution. An
early implementation of the cycle detection approach was written by
Toby Kelsey. The current algorithm was suggested by Eric Tiedemann
during a visit to CNRI, and Guido van Rossum and Neil Schemenauer
wrote two different implementations, which were later integrated by
Neil. Lots of other people offered suggestions along the way; the
2000-06-27 23:16:00 -03:00
March 2000 archives of the python-dev mailing list contain most of the
relevant discussion, especially in the threads titled ``Reference
cycle collection for Python'' and ``Finalization again''.
2000-05-27 08:28:26 -03:00
% ======================================================================
\section { Core Changes}
2000-05-31 00:28:42 -03:00
Various minor changes have been made to Python's syntax and built-in
functions. None of the changes are very far-reaching, but they're
handy conveniences.
A change to syntax makes it more convenient to call a given function
with a tuple of arguments and/or a dictionary of keyword arguments.
2000-06-03 00:06:58 -03:00
In Python 1.5 and earlier, you do this with the \function { apply()}
2000-05-31 00:28:42 -03:00
built-in function: \code { apply(f, \var { args} , \var { kw} )} calls the
function \function { f()} with the argument tuple \var { args} and the
keyword arguments in the dictionary \var { kw} . Thanks to a patch from
2000-06-29 22:44:05 -03:00
Greg Ewing, 2.0 adds \code { f(*\var { args} , **\var { kw} )} as a shorter
2000-05-31 00:28:42 -03:00
and clearer way to achieve the same effect. This syntax is
symmetrical with the syntax for defining functions:
\begin { verbatim}
def f(*args, **kw):
# args is a tuple of positional args,
# kw is a dictionary of keyword args
...
\end { verbatim}
2000-06-03 00:06:58 -03:00
A new format style is available when using the \code { \% } operator.
2000-05-31 00:28:42 -03:00
'\% r' will insert the \function { repr()} of its argument. This was
also added from symmetry considerations, this time for symmetry with
2000-06-02 23:52:40 -03:00
the existing '\% s' format style, which inserts the \function { str()} of
2000-06-03 00:06:58 -03:00
its argument. For example, \code { '\% r \% s' \% ('abc', 'abc')} returns a
2000-05-31 00:28:42 -03:00
string containing \verb |'abc' abc|.
2000-06-03 00:06:58 -03:00
The \function { int()} and \function { long()} functions now accept an
2000-05-31 00:28:42 -03:00
optional ``base'' parameter when the first argument is a string.
\code { int('123', 10)} returns 123, while \code { int('123', 16)} returns
291. \code { int(123, 16)} raises a \exception { TypeError} exception
with the message ``can't convert non-string with explicit base''.
Previously there was no way to implement a class that overrode
2000-06-03 00:06:58 -03:00
Python's built-in \keyword { in} operator and implemented a custom
2000-05-31 00:28:42 -03:00
version. \code { \var { obj} in \var { seq} } returns true if \var { obj} is
present in the sequence \var { seq} ; Python computes this by simply
trying every index of the sequence until either \var { obj} is found or
an \exception { IndexError} is encountered. Moshe Zadka contributed a
patch which adds a \method { _ _ contains_ _ } magic method for providing a
2000-06-03 00:06:58 -03:00
custom implementation for \keyword { in} . Additionally, new built-in
objects written in C can define what \keyword { in} means for them via a
new slot in the sequence protocol.
2000-05-31 00:28:42 -03:00
Earlier versions of Python used a recursive algorithm for deleting
objects. Deeply nested data structures could cause the interpreter to
fill up the C stack and crash; Christian Tismer rewrote the deletion
logic to fix this problem. On a related note, comparing recursive
objects recursed infinitely and crashed; Jeremy Hylton rewrote the
code to no longer crash, producing a useful result instead. For
example, after this code:
\begin { verbatim}
a = []
b = []
a.append(a)
b.append(b)
\end { verbatim}
The comparison \code { a==b} returns true, because the two recursive
data structures are isomorphic.
\footnote { See the thread ``trashcan and PR\# 7'' in the April 2000 archives of the python-dev mailing list for the discussion leading up to this implementation, and some useful relevant links.
%http://www.python.org/pipermail/python-dev/2000-April/004834.html
}
Work has been done on porting Python to 64-bit Windows on the Itanium
2000-06-02 23:52:40 -03:00
processor, mostly by Trent Mick of ActiveState. (Confusingly, \code { sys.platform} is still \code { 'win32'} on
Win64 because it seems that for ease of porting, MS Visual C++ treats code
as 32 bit.
) PythonWin also supports Windows CE; see the Python CE page at
2000-06-25 11:32:48 -03:00
\url { http://starship.python.net/crew/mhammond/ce/} for more information.
2000-05-31 00:28:42 -03:00
2000-06-02 23:52:40 -03:00
An attempt has been made to alleviate one of Python's warts, the
often-confusing \exception { NameError} exception when code refers to a
local variable before the variable has been assigned a value. For
example, the following code raises an exception on the \keyword { print}
2000-06-29 22:44:05 -03:00
statement in both 1.5.2 and 2.0; in 1.5.2 a \exception { NameError}
exception is raised, while 2.0 raises a new
2000-06-25 11:32:48 -03:00
\exception { UnboundLocalError} exception.
\exception { UnboundLocalError} is a subclass of \exception { NameError} ,
so any existing code that expects \exception { NameError} to be raised
should still work.
2000-06-02 23:52:40 -03:00
\begin { verbatim}
def f():
print "i=",i
i = i + 1
f()
\end { verbatim}
2000-05-31 00:28:42 -03:00
A new variable holding more detailed version information has been
added to the \module { sys} module. \code { sys.version_ info} is a tuple
\code { (\var { major} , \var { minor} , \var { micro} , \var { level} ,
2000-06-30 21:14:43 -03:00
\var { serial} )} For example, in a hypothetical 2.0.1beta1,
\code { sys.version_ info} would be \code { (2, 0, 1, 'beta', 1)} .
\var { level} is a string such as \code { "alpha"} , \code { "beta"} , or
\code { ""} for a final release.
2000-05-27 08:28:26 -03:00
% ======================================================================
2000-06-02 23:52:40 -03:00
\section { Extending/Embedding Changes}
2000-05-27 08:28:26 -03:00
Some of the changes are under the covers, and will only be apparent to
2000-06-30 21:14:43 -03:00
people writing C extension modules or embedding a Python interpreter
2000-05-27 08:28:26 -03:00
in a larger application. If you aren't dealing with Python's C API,
2000-05-31 00:28:42 -03:00
you can safely skip this section.
2000-05-27 08:28:26 -03:00
2000-06-09 23:41:46 -03:00
The version number of the Python C API was incremented, so C
extensions compiled for 1.5.2 must be recompiled in order to work with
2000-06-29 22:44:05 -03:00
2.0. On Windows, attempting to import a third party extension built
2000-06-09 23:41:46 -03:00
for Python 1.5.x usually results in an immediate crash; there's not
2000-06-30 09:46:41 -03:00
much we can do about this. (Here's Mark Hammond's explanation of the
reasons for the crash. The 1.5 module is linked against
\file { Python15.dll} . When \file { Python.exe} , linked against
\file { Python16.dll} , starts up, it initializes the Python data
structures in \file { Python16.dll} . When Python then imports the
module \file { foo.pyd} linked against \file { Python15.dll} , it
immediately tries to call the functions in that DLL. As Python has
not been initialized in that DLL, the program immediately crashes.)
2000-06-09 23:41:46 -03:00
2000-05-27 08:28:26 -03:00
Users of Jim Fulton's ExtensionClass module will be pleased to find
out that hooks have been added so that ExtensionClasses are now
supported by \function { isinstance()} and \function { issubclass()} .
This means you no longer have to remember to write code such as
\code { if type(obj) == myExtensionClass} , but can use the more natural
\code { if isinstance(obj, myExtensionClass)} .
2000-06-03 00:06:58 -03:00
The \file { Python/importdl.c} file, which was a mass of \# ifdefs to
2000-05-27 08:28:26 -03:00
support dynamic loading on many different platforms, was cleaned up
2000-06-27 23:16:00 -03:00
and reorganised by Greg Stein. \file { importdl.c} is now quite small,
2000-05-27 08:28:26 -03:00
and platform-specific code has been moved into a bunch of
\file { Python/dynload_ *.c} files.
Vladimir Marangozov's long-awaited malloc restructuring was completed,
to make it easy to have the Python interpreter use a custom allocator
instead of C's standard \function { malloc()} . For documentation, read
the comments in \file { Include/mymalloc.h} and
\file { Include/objimpl.h} . For the lengthy discussions during which
the interface was hammered out, see the Web archives of the 'patches'
and 'python-dev' lists at python.org.
2000-06-09 23:24:31 -03:00
Recent versions of the GUSI development environment for MacOS support
POSIX threads. Therefore, Python's POSIX threading support now works
on the Macintosh. Threading support using the user-space GNU \texttt { pth}
library was also contributed.
2000-05-27 08:28:26 -03:00
Threading support on Windows was enhanced, too. Windows supports
thread locks that use kernel objects only in case of contention; in
the common case when there's no contention, they use simpler functions
which are an order of magnitude faster. A threaded version of Python
2000-06-29 22:44:05 -03:00
1.5.2 on NT is twice as slow as an unthreaded version; with the 2.0
2000-05-27 08:28:26 -03:00
changes, the difference is only 10\% . These improvements were
contributed by Yakov Markovitch.
% ======================================================================
\section { Module changes}
2000-06-02 23:52:40 -03:00
Lots of improvements and bugfixes were made to Python's extensive
standard library; some of the affected modules include
\module { readline} , \module { ConfigParser} , \module { cgi} ,
\module { calendar} , \module { posix} , \module { readline} , \module { xmllib} ,
\module { aifc} , \module { chunk, wave} , \module { random} , \module { shelve} ,
and \module { nntplib} . Consult the CVS logs for the exact
patch-by-patch details.
Brian Gallew contributed OpenSSL support for the \module { socket}
2000-06-09 23:24:31 -03:00
module. OpenSSL is an implementation of the Secure Socket Layer,
which encrypts the data being sent over a socket. When compiling
Python, you can edit \file { Modules/Setup} to include SSL support,
which adds an additional function to the \module { socket} module:
2000-06-02 23:52:40 -03:00
\function { socket.ssl(\var { socket} , \var { keyfile} , \var { certfile} )} ,
2000-06-09 23:24:31 -03:00
which takes a socket object and returns an SSL socket. The
\module { httplib} and \module { urllib} modules were also changed to
support ``https://'' URLs, though no one has implemented FTP or SMTP
over SSL.
2000-06-02 23:52:40 -03:00
2000-06-27 23:16:00 -03:00
The \module { httplib} module has been rewritten by Greg Stein to
support HTTP/1.1. Backward compatibility with the 1.5 version of
\module { httplib} is provided, though using HTTP/1.1 features such as
pipelining will require rewriting code to use a different set of
interfaces.
2000-06-02 23:52:40 -03:00
The \module { Tkinter} module now supports Tcl/Tk version 8.1, 8.2, or
8.3, and support for the older 7.x versions has been dropped. The
Tkinter module also supports displaying Unicode strings in Tk
widgets.
The \module { curses} module has been greatly extended, starting from
Oliver Andrich's enhanced version, to provide many additional
functions from ncurses and SYSV curses, such as colour, alternative
2000-06-27 23:16:00 -03:00
character set support, pads, and mouse support. This means the module
is no longer compatible with operating systems that only have BSD
curses, but there don't seem to be any currently maintained OSes that
fall into this category.
2000-06-02 23:52:40 -03:00
2000-06-29 22:44:05 -03:00
As mentioned in the earlier discussion of 2.0's Unicode support, the
2000-06-09 23:24:31 -03:00
underlying implementation of the regular expressions provided by the
\module { re} module has been changed. SRE, a new regular expression
engine written by Fredrik Lundh and partially funded by Hewlett
Packard, supports matching against both 8-bit strings and Unicode
strings.
2000-05-27 08:28:26 -03:00
% ======================================================================
\section { New modules}
2000-06-09 23:24:31 -03:00
A number of new modules were added. We'll simply list them with brief
2000-06-29 22:44:05 -03:00
descriptions; consult the 2.0 documentation for the details of a
2000-06-09 23:24:31 -03:00
particular module.
\begin { itemize}
2000-06-30 09:46:41 -03:00
\item { \module { atexit} } :
For registering functions to be called before the Python interpreter exits.
Code that currently sets
\code { sys.exitfunc} directly should be changed to
use the \module { atexit} module instead, importing \module { atexit}
and calling \function { atexit.register()} with
the function to be called on exit.
(Contributed by Skip Montanaro.)
2000-06-09 23:24:31 -03:00
\item { \module { codecs} , \module { encodings} , \module { unicodedata} :} Added as part of the new Unicode support.
2000-07-01 09:33:43 -03:00
\item { \module { filecmp} :} Supersedes the old \module { cmp} , \module { cmpcache} and
2000-06-09 23:24:31 -03:00
\module { dircmp} modules, which have now become deprecated.
2000-06-10 12:11:20 -03:00
(Contributed by Gordon MacMillan and Moshe Zadka.)
2000-06-09 23:24:31 -03:00
\item { \module { linuxaudio} :} Support for the \file { /dev/audio} device on Linux,
a twin to the existing \module { sunaudiodev} module.
(Contributed by Peter Bosch.)
\item { \module { mmap} :} An interface to memory-mapped files on both
Windows and Unix. A file's contents can be mapped directly into
memory, at which point it behaves like a mutable string, so its
contents can be read and modified. They can even be passed to
functions that expect ordinary strings, such as the \module { re}
module. (Contributed by Sam Rushing, with some extensions by
A.M. Kuchling.)
\item { \module { PyExpat} :} An interface to the Expat XML parser.
(Contributed by Paul Prescod.)
\item { \module { robotparser} :} Parse a \file { robots.txt} file, which is
used for writing Web spiders that politely avoid certain areas of a
Web site. The parser accepts the contents of a \file { robots.txt} file
builds a set of rules from it, and can then answer questions about
the fetchability of a given URL. (Contributed by Skip Montanaro.)
\item { \module { tabnanny} :} A module/script to
checks Python source code for ambiguous indentation.
(Contributed by Tim Peters.)
2000-06-09 23:41:46 -03:00
\item { \module { UserString} :} A base class useful for deriving objects that behave like strings.
2000-06-30 09:46:41 -03:00
\item { \module { winreg} and \module { _ winreg} :} An interface to the
2000-07-01 09:33:43 -03:00
Windows registry. \module { _ winreg} is an adaptation of functions that
have been part of PythonWin since 1995, but has now been added to the core
distribution, and enhanced to support Unicode. \module { winreg} is an
object-oriented API on top of the \module { _ winreg} module.
\module { _ winreg} was written by Bill Tutt and Mark Hammond, and \module { winreg}
was designed by Thomas Heller and implemented by Paul Prescod.
2000-06-09 23:24:31 -03:00
\item { \module { zipfile} :} A module for reading and writing ZIP-format
archives. These are archives produced by \program { PKZIP} on
DOS/Windows or \program { zip} on Unix, not to be confused with
\program { gzip} -format files (which are supported by the \module { gzip}
module)
(Contributed by James C. Ahlstrom.)
2000-06-27 23:16:00 -03:00
\item { \module { imputil} :} A module that provides a simpler way for
writing customised import hooks, in comparison to the existing
\module { ihooks} module. (Implemented by Greg Stein, with much
discussion on python-dev along the way.)
2000-06-09 23:24:31 -03:00
\end { itemize}
2000-05-27 08:28:26 -03:00
% ======================================================================
\section { IDLE Improvements}
2000-06-10 12:11:20 -03:00
IDLE is the official Python cross-platform IDE, written using Tkinter.
2000-06-29 22:44:05 -03:00
Python 2.0 includes IDLE 0.6, which adds a number of new features and
2000-06-10 12:11:20 -03:00
improvements. A partial list:
\begin { itemize}
\item UI improvements and optimizations,
especially in the area of syntax highlighting and auto-indentation.
\item The class browser now shows more information, such as the top
2000-06-29 22:44:05 -03:00
level functions in a module.
2000-06-10 12:11:20 -03:00
\item Tab width is now a user settable option. When opening an existing Python
file, IDLE automatically detects the indentation conventions, and adapts.
\item There is now support for calling browsers on various platforms,
used to open the Python documentation in a browser.
\item IDLE now has a command line, which is largely similar to
the vanilla Python interpreter.
\item Call tips were added in many places.
\item IDLE can now be installed as a package.
\item In the editor window, there is now a line/column bar at the bottom.
\item Three new keystroke commands: Check module (Alt-F5), Import
2000-06-29 22:44:05 -03:00
module (F5) and Run script (Ctrl-F5).
2000-06-10 12:11:20 -03:00
\end { itemize}
2000-05-27 08:28:26 -03:00
% ======================================================================
\section { Deleted and Deprecated Modules}
2000-06-09 23:24:31 -03:00
A few modules have been dropped because they're obsolete, or because
there are now better ways to do the same thing. The \module { stdwin}
module is gone; it was for a platform-independent windowing toolkit
that's no longer developed.
2000-06-09 23:41:46 -03:00
A number of modules have been moved to the
\file { lib-old} subdirectory:
\module { cmp} , \module { cmpcache} , \module { dircmp} , \module { dump} ,
\module { find} , \module { grep} , \module { packmail} ,
\module { poly} , \module { util} , \module { whatsound} , \module { zmod} .
If you have code which relies on a module that's been moved to
2000-06-09 23:24:31 -03:00
\file { lib-old} , you can simply add that directory to \code { sys.path}
2000-06-09 23:41:46 -03:00
to get them back, but you're encouraged to update any code that uses
these modules.
2000-06-09 23:24:31 -03:00
2000-06-29 22:44:05 -03:00
\section { Acknowledgements}
2000-06-09 23:24:31 -03:00
2000-06-30 21:23:02 -03:00
The authors would like to thank the following people for offering
2000-06-30 09:46:41 -03:00
suggestions on drafts of this article: Fredrik Lundh, Skip
Montanaro, Vladimir Marangozov, Guido van Rossum, Neil Schemenauer.
2000-05-27 08:28:26 -03:00
\end { document}