cpython/Lib/test/test_generators.py

321 lines
7.5 KiB
Python
Raw Normal View History

tutorial_tests = """
Let's try a simple generator:
>>> def f():
... yield 1
... yield 2
>>> g = f()
>>> g.next()
1
>>> g.next()
2
>>> g.next()
Traceback (most recent call last):
File "<stdin>", line 1, in ?
File "<stdin>", line 2, in g
StopIteration
"return" stops the generator:
>>> def f():
... yield 1
... return
... yield 2 # never reached
...
>>> g = f()
>>> g.next()
1
>>> g.next()
Traceback (most recent call last):
File "<stdin>", line 1, in ?
File "<stdin>", line 3, in f
StopIteration
>>> g.next() # once stopped, can't be resumed
Traceback (most recent call last):
File "<stdin>", line 1, in ?
StopIteration
"raise StopIteration" stops the generator too:
>>> def f():
... yield 1
... return
... yield 2 # never reached
...
>>> g = f()
>>> g.next()
1
>>> g.next()
Traceback (most recent call last):
File "<stdin>", line 1, in ?
StopIteration
>>> g.next()
Traceback (most recent call last):
File "<stdin>", line 1, in ?
StopIteration
However, they are not exactly equivalent:
>>> def g1():
... try:
... return
... except:
... yield 1
...
>>> list(g1())
[]
>>> def g2():
... try:
... raise StopIteration
... except:
... yield 42
>>> print list(g2())
[42]
This may be surprising at first:
>>> def g3():
... try:
... return
... finally:
... yield 1
...
>>> list(g3())
[1]
Let's create an alternate range() function implemented as a generator:
>>> def yrange(n):
... for i in range(n):
... yield i
...
>>> list(yrange(5))
[0, 1, 2, 3, 4]
Generators always return to the most recent caller:
>>> def creator():
... r = yrange(5)
... print "creator", r.next()
... return r
...
>>> def caller():
... r = creator()
... for i in r:
... print "caller", i
...
>>> caller()
creator 0
caller 1
caller 2
caller 3
caller 4
Generators can call other generators:
>>> def zrange(n):
... for i in yrange(n):
... yield i
...
>>> list(zrange(5))
[0, 1, 2, 3, 4]
"""
# The examples from PEP 255.
pep_tests = """
Specification: Return
Note that return isn't always equivalent to raising StopIteration: the
difference lies in how enclosing try/except constructs are treated.
For example,
>>> def f1():
... try:
... return
... except:
... yield 1
>>> print list(f1())
[]
because, as in any function, return simply exits, but
>>> def f2():
... try:
... raise StopIteration
... except:
... yield 42
>>> print list(f2())
[42]
because StopIteration is captured by a bare "except", as is any
exception.
Specification: Generators and Exception Propagation
>>> def f():
... return 1/0
>>> def g():
... yield f() # the zero division exception propagates
... yield 42 # and we'll never get here
>>> k = g()
>>> k.next()
Traceback (most recent call last):
File "<stdin>", line 1, in ?
File "<stdin>", line 2, in g
File "<stdin>", line 2, in f
ZeroDivisionError: integer division or modulo by zero
>>> k.next() # and the generator cannot be resumed
Traceback (most recent call last):
File "<stdin>", line 1, in ?
StopIteration
>>>
Specification: Try/Except/Finally
>>> def f():
... try:
... yield 1
... try:
... yield 2
... 1/0
... yield 3 # never get here
... except ZeroDivisionError:
... yield 4
... yield 5
... raise
... except:
... yield 6
... yield 7 # the "raise" above stops this
... except:
... yield 8
... yield 9
... try:
... x = 12
... finally:
... yield 10
... yield 11
>>> print list(f())
[1, 2, 4, 5, 8, 9, 10, 11]
>>>
Guido's binary tree example.
>>> # A binary tree class.
>>> class Tree:
...
... def __init__(self, label, left=None, right=None):
... self.label = label
... self.left = left
... self.right = right
...
... def __repr__(self, level=0, indent=" "):
... s = level*indent + `self.label`
... if self.left:
... s = s + "\\n" + self.left.__repr__(level+1, indent)
... if self.right:
... s = s + "\\n" + self.right.__repr__(level+1, indent)
... return s
...
... def __iter__(self):
... return inorder(self)
>>> # Create a Tree from a list.
>>> def tree(list):
... n = len(list)
... if n == 0:
... return []
... i = n / 2
... return Tree(list[i], tree(list[:i]), tree(list[i+1:]))
>>> # Show it off: create a tree.
>>> t = tree("ABCDEFGHIJKLMNOPQRSTUVWXYZ")
>>> # A recursive generator that generates Tree leaves in in-order.
>>> def inorder(t):
... if t:
... for x in inorder(t.left):
... yield x
... yield t.label
... for x in inorder(t.right):
... yield x
>>> # Show it off: create a tree.
... t = tree("ABCDEFGHIJKLMNOPQRSTUVWXYZ")
... # Print the nodes of the tree in in-order.
... for x in t:
... print x,
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
>>> # A non-recursive generator.
>>> def inorder(node):
... stack = []
... while node:
... while node.left:
... stack.append(node)
... node = node.left
... yield node.label
... while not node.right:
... try:
... node = stack.pop()
... except IndexError:
... return
... yield node.label
... node = node.right
>>> # Exercise the non-recursive generator.
>>> for x in t:
... print x,
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
"""
# A few examples from Iterator-List and Python-Dev email.
email_tests = """
The difference between yielding None and returning it.
>>> def g():
... for i in range(3):
... yield None
... yield None
... return
>>> list(g())
[None, None, None, None]
Ensure that explicitly raising StopIteration acts like any other exception
in try/except, not like a return.
>>> def g():
... yield 1
... try:
... raise StopIteration
... except:
... yield 2
... yield 3
>>> list(g())
[1, 2, 3]
"""
__test__ = {"tut": tutorial_tests,
"pep": pep_tests,
"zemail": email_tests}
# Magic test name that regrtest.py invokes *after* importing this module.
# This worms around a bootstrap problem.
# Note that doctest and regrtest both look in sys.argv for a "-v" argument,
# so this works as expected in both ways of running regrtest.
def test_main():
import doctest, test_generators
doctest.testmod(test_generators)
# This part isn't needed for regrtest, but for running the test directly.
if __name__ == "__main__":
test_main()