cpython/Objects/object.c

2426 lines
57 KiB
C
Raw Normal View History

1991-02-19 08:39:46 -04:00
1990-12-20 11:06:42 -04:00
/* Generic object operations; and implementation of None (NoObject) */
1990-10-14 09:07:46 -03:00
1997-05-02 00:12:38 -03:00
#include "Python.h"
#include "frameobject.h"
1990-10-14 09:07:46 -03:00
#ifdef __cplusplus
extern "C" {
#endif
#ifdef Py_REF_DEBUG
Py_ssize_t _Py_RefTotal;
Py_ssize_t
_Py_GetRefTotal(void)
{
PyObject *o;
Py_ssize_t total = _Py_RefTotal;
/* ignore the references to the dummy object of the dicts and sets
because they are not reliable and not useful (now that the
hash table code is well-tested) */
o = _PyDict_Dummy();
if (o != NULL)
total -= o->ob_refcnt;
o = _PySet_Dummy();
if (o != NULL)
total -= o->ob_refcnt;
return total;
}
#endif /* Py_REF_DEBUG */
1990-10-14 09:07:46 -03:00
int Py_DivisionWarningFlag;
int Py_Py3kWarningFlag;
Add warning mode for classic division, almost exactly as specified in PEP 238. Changes: - add a new flag variable Py_DivisionWarningFlag, declared in pydebug.h, defined in object.c, set in main.c, and used in {int,long,float,complex}object.c. When this flag is set, the classic division operator issues a DeprecationWarning message. - add a new API PyRun_SimpleStringFlags() to match PyRun_SimpleString(). The main() function calls this so that commands run with -c can also benefit from -Dnew. - While I was at it, I changed the usage message in main() somewhat: alphabetized the options, split it in *four* parts to fit in under 512 bytes (not that I still believe this is necessary -- doc strings elsewhere are much longer), and perhaps most visibly, don't display the full list of options on each command line error. Instead, the full list is only displayed when -h is used, and otherwise a brief reminder of -h is displayed. When -h is used, write to stdout so that you can do `python -h | more'. Notes: - I don't want to use the -W option to control whether the classic division warning is issued or not, because the machinery to decide whether to display the warning or not is very expensive (it involves calling into the warnings.py module). You can use -Werror to turn the warnings into exceptions though. - The -Dnew option doesn't select future division for all of the program -- only for the __main__ module. I don't know if I'll ever change this -- it would require changes to the .pyc file magic number to do it right, and a more global notion of compiler flags. - You can usefully combine -Dwarn and -Dnew: this gives the __main__ module new division, and warns about classic division everywhere else.
2001-08-31 14:40:15 -03:00
1990-12-20 11:06:42 -04:00
/* Object allocation routines used by NEWOBJ and NEWVAROBJ macros.
These are used by the individual routines for object creation.
Do not call them otherwise, they do not initialize the object! */
1990-10-14 09:07:46 -03:00
#ifdef Py_TRACE_REFS
/* Head of circular doubly-linked list of all objects. These are linked
* together via the _ob_prev and _ob_next members of a PyObject, which
* exist only in a Py_TRACE_REFS build.
*/
static PyObject refchain = {&refchain, &refchain};
/* Insert op at the front of the list of all objects. If force is true,
* op is added even if _ob_prev and _ob_next are non-NULL already. If
* force is false amd _ob_prev or _ob_next are non-NULL, do nothing.
* force should be true if and only if op points to freshly allocated,
* uninitialized memory, or you've unlinked op from the list and are
2003-03-23 14:06:08 -04:00
* relinking it into the front.
* Note that objects are normally added to the list via _Py_NewReference,
* which is called by PyObject_Init. Not all objects are initialized that
* way, though; exceptions include statically allocated type objects, and
* statically allocated singletons (like Py_True and Py_None).
*/
void
_Py_AddToAllObjects(PyObject *op, int force)
{
#ifdef Py_DEBUG
if (!force) {
/* If it's initialized memory, op must be in or out of
* the list unambiguously.
*/
assert((op->_ob_prev == NULL) == (op->_ob_next == NULL));
}
#endif
if (force || op->_ob_prev == NULL) {
op->_ob_next = refchain._ob_next;
op->_ob_prev = &refchain;
refchain._ob_next->_ob_prev = op;
refchain._ob_next = op;
}
}
#endif /* Py_TRACE_REFS */
#ifdef COUNT_ALLOCS
1997-05-02 00:12:38 -03:00
static PyTypeObject *type_list;
2006-04-18 08:49:53 -03:00
/* All types are added to type_list, at least when
they get one object created. That makes them
immortal, which unfortunately contributes to
garbage itself. If unlist_types_without_objects
is set, they will be removed from the type_list
once the last object is deallocated. */
static int unlist_types_without_objects;
extern Py_ssize_t tuple_zero_allocs, fast_tuple_allocs;
extern Py_ssize_t quick_int_allocs, quick_neg_int_allocs;
extern Py_ssize_t null_strings, one_strings;
void
dump_counts(FILE* f)
{
1997-05-02 00:12:38 -03:00
PyTypeObject *tp;
for (tp = type_list; tp; tp = tp->tp_next)
fprintf(f, "%s alloc'd: %" PY_FORMAT_SIZE_T "d, "
"freed: %" PY_FORMAT_SIZE_T "d, "
"max in use: %" PY_FORMAT_SIZE_T "d\n",
2001-08-02 01:15:00 -03:00
tp->tp_name, tp->tp_allocs, tp->tp_frees,
tp->tp_maxalloc);
fprintf(f, "fast tuple allocs: %" PY_FORMAT_SIZE_T "d, "
"empty: %" PY_FORMAT_SIZE_T "d\n",
fast_tuple_allocs, tuple_zero_allocs);
fprintf(f, "fast int allocs: pos: %" PY_FORMAT_SIZE_T "d, "
"neg: %" PY_FORMAT_SIZE_T "d\n",
quick_int_allocs, quick_neg_int_allocs);
fprintf(f, "null strings: %" PY_FORMAT_SIZE_T "d, "
"1-strings: %" PY_FORMAT_SIZE_T "d\n",
null_strings, one_strings);
}
PyObject *
2000-07-09 12:48:49 -03:00
get_counts(void)
{
PyTypeObject *tp;
PyObject *result;
PyObject *v;
result = PyList_New(0);
if (result == NULL)
return NULL;
for (tp = type_list; tp; tp = tp->tp_next) {
v = Py_BuildValue("(snnn)", tp->tp_name, tp->tp_allocs,
2001-08-02 01:15:00 -03:00
tp->tp_frees, tp->tp_maxalloc);
if (v == NULL) {
Py_DECREF(result);
return NULL;
}
if (PyList_Append(result, v) < 0) {
Py_DECREF(v);
Py_DECREF(result);
return NULL;
}
Py_DECREF(v);
}
return result;
}
void
2000-07-09 12:48:49 -03:00
inc_count(PyTypeObject *tp)
{
if (tp->tp_next == NULL && tp->tp_prev == NULL) {
1995-04-06 11:46:26 -03:00
/* first time; insert in linked list */
if (tp->tp_next != NULL) /* sanity check */
1997-05-02 00:12:38 -03:00
Py_FatalError("XXX inc_count sanity check");
if (type_list)
type_list->tp_prev = tp;
tp->tp_next = type_list;
/* Note that as of Python 2.2, heap-allocated type objects
* can go away, but this code requires that they stay alive
* until program exit. That's why we're careful with
* refcounts here. type_list gets a new reference to tp,
* while ownership of the reference type_list used to hold
* (if any) was transferred to tp->tp_next in the line above.
* tp is thus effectively immortal after this.
*/
Py_INCREF(tp);
type_list = tp;
#ifdef Py_TRACE_REFS
/* Also insert in the doubly-linked list of all objects,
* if not already there.
*/
_Py_AddToAllObjects((PyObject *)tp, 0);
#endif
}
2001-08-02 01:15:00 -03:00
tp->tp_allocs++;
if (tp->tp_allocs - tp->tp_frees > tp->tp_maxalloc)
tp->tp_maxalloc = tp->tp_allocs - tp->tp_frees;
}
void dec_count(PyTypeObject *tp)
{
tp->tp_frees++;
if (unlist_types_without_objects &&
tp->tp_allocs == tp->tp_frees) {
/* unlink the type from type_list */
if (tp->tp_prev)
tp->tp_prev->tp_next = tp->tp_next;
else
type_list = tp->tp_next;
if (tp->tp_next)
tp->tp_next->tp_prev = tp->tp_prev;
tp->tp_next = tp->tp_prev = NULL;
Py_DECREF(tp);
}
}
#endif
#ifdef Py_REF_DEBUG
/* Log a fatal error; doesn't return. */
void
_Py_NegativeRefcount(const char *fname, int lineno, PyObject *op)
{
char buf[300];
PyOS_snprintf(buf, sizeof(buf),
"%s:%i object at %p has negative ref count "
"%" PY_FORMAT_SIZE_T "d",
fname, lineno, op, op->ob_refcnt);
Py_FatalError(buf);
}
#endif /* Py_REF_DEBUG */
void
Py_IncRef(PyObject *o)
{
Py_XINCREF(o);
}
void
Py_DecRef(PyObject *o)
{
Py_XDECREF(o);
}
1997-05-02 00:12:38 -03:00
PyObject *
2000-07-09 12:48:49 -03:00
PyObject_Init(PyObject *op, PyTypeObject *tp)
1990-10-14 09:07:46 -03:00
{
if (op == NULL)
return PyErr_NoMemory();
/* Any changes should be reflected in PyObject_INIT (objimpl.h) */
Py_TYPE(op) = tp;
1997-05-02 00:12:38 -03:00
_Py_NewReference(op);
1990-10-14 09:07:46 -03:00
return op;
}
PyVarObject *
2006-02-15 13:27:45 -04:00
PyObject_InitVar(PyVarObject *op, PyTypeObject *tp, Py_ssize_t size)
{
if (op == NULL)
return (PyVarObject *) PyErr_NoMemory();
/* Any changes should be reflected in PyObject_INIT_VAR */
op->ob_size = size;
Py_TYPE(op) = tp;
_Py_NewReference((PyObject *)op);
return op;
}
PyObject *
2000-07-09 12:48:49 -03:00
_PyObject_New(PyTypeObject *tp)
{
PyObject *op;
op = (PyObject *) PyObject_MALLOC(_PyObject_SIZE(tp));
if (op == NULL)
return PyErr_NoMemory();
return PyObject_INIT(op, tp);
}
PyVarObject *
2006-02-15 13:27:45 -04:00
_PyObject_NewVar(PyTypeObject *tp, Py_ssize_t nitems)
1990-10-14 09:07:46 -03:00
{
PyVarObject *op;
const size_t size = _PyObject_VAR_SIZE(tp, nitems);
op = (PyVarObject *) PyObject_MALLOC(size);
1990-10-14 09:07:46 -03:00
if (op == NULL)
return (PyVarObject *)PyErr_NoMemory();
return PyObject_INIT_VAR(op, tp, nitems);
}
/* for binary compatibility with 2.2 */
#undef _PyObject_Del
void
2000-07-09 12:48:49 -03:00
_PyObject_Del(PyObject *op)
{
2000-06-30 22:00:38 -03:00
PyObject_FREE(op);
1990-10-14 09:07:46 -03:00
}
/* Implementation of PyObject_Print with recursion checking */
static int
internal_print(PyObject *op, FILE *fp, int flags, int nesting)
1990-10-14 09:07:46 -03:00
{
int ret = 0;
if (nesting > 10) {
PyErr_SetString(PyExc_RuntimeError, "print recursion");
return -1;
}
1997-05-02 00:12:38 -03:00
if (PyErr_CheckSignals())
1991-06-07 13:10:43 -03:00
return -1;
#ifdef USE_STACKCHECK
if (PyOS_CheckStack()) {
PyErr_SetString(PyExc_MemoryError, "stack overflow");
return -1;
}
#endif
clearerr(fp); /* Clear any previous error condition */
1991-06-07 13:10:43 -03:00
if (op == NULL) {
Py_BEGIN_ALLOW_THREADS
1991-06-07 13:10:43 -03:00
fprintf(fp, "<nil>");
Py_END_ALLOW_THREADS
1990-10-14 09:07:46 -03:00
}
1991-06-07 13:10:43 -03:00
else {
if (op->ob_refcnt <= 0)
/* XXX(twouters) cast refcount to long until %zd is
universally available */
Py_BEGIN_ALLOW_THREADS
fprintf(fp, "<refcnt %ld at %p>",
(long)op->ob_refcnt, op);
Py_END_ALLOW_THREADS
else if (Py_TYPE(op)->tp_print == NULL) {
PyObject *s;
if (flags & Py_PRINT_RAW)
s = PyObject_Str(op);
else
s = PyObject_Repr(op);
if (s == NULL)
ret = -1;
else {
ret = internal_print(s, fp, Py_PRINT_RAW,
nesting+1);
}
Py_XDECREF(s);
}
1991-06-07 13:10:43 -03:00
else
ret = (*Py_TYPE(op)->tp_print)(op, fp, flags);
1991-06-07 13:10:43 -03:00
}
if (ret == 0) {
if (ferror(fp)) {
1997-05-02 00:12:38 -03:00
PyErr_SetFromErrno(PyExc_IOError);
clearerr(fp);
ret = -1;
}
}
return ret;
1990-10-14 09:07:46 -03:00
}
int
PyObject_Print(PyObject *op, FILE *fp, int flags)
{
return internal_print(op, fp, flags, 0);
}
/* For debugging convenience. See Misc/gdbinit for some useful gdb hooks */
void _PyObject_Dump(PyObject* op)
{
if (op == NULL)
fprintf(stderr, "NULL\n");
else {
#ifdef WITH_THREAD
PyGILState_STATE gil;
#endif
fprintf(stderr, "object : ");
#ifdef WITH_THREAD
gil = PyGILState_Ensure();
#endif
(void)PyObject_Print(op, stderr, 0);
#ifdef WITH_THREAD
PyGILState_Release(gil);
#endif
/* XXX(twouters) cast refcount to long until %zd is
universally available */
fprintf(stderr, "\n"
"type : %s\n"
"refcount: %ld\n"
"address : %p\n",
Py_TYPE(op)==NULL ? "NULL" : Py_TYPE(op)->tp_name,
(long)op->ob_refcnt,
op);
}
}
1997-05-02 00:12:38 -03:00
PyObject *
2000-07-09 12:48:49 -03:00
PyObject_Repr(PyObject *v)
1990-10-14 09:07:46 -03:00
{
1997-05-02 00:12:38 -03:00
if (PyErr_CheckSignals())
1991-06-07 13:10:43 -03:00
return NULL;
#ifdef USE_STACKCHECK
if (PyOS_CheckStack()) {
PyErr_SetString(PyExc_MemoryError, "stack overflow");
return NULL;
}
#endif
1991-06-07 13:10:43 -03:00
if (v == NULL)
return PyString_FromString("<NULL>");
else if (Py_TYPE(v)->tp_repr == NULL)
return PyString_FromFormat("<%s object at %p>",
Py_TYPE(v)->tp_name, v);
else {
PyObject *res;
res = (*Py_TYPE(v)->tp_repr)(v);
if (res == NULL)
return NULL;
#ifdef Py_USING_UNICODE
if (PyUnicode_Check(res)) {
PyObject* str;
str = PyUnicode_AsEncodedString(res, NULL, NULL);
Py_DECREF(res);
if (str)
res = str;
else
return NULL;
}
#endif
if (!PyString_Check(res)) {
PyErr_Format(PyExc_TypeError,
"__repr__ returned non-string (type %.200s)",
Py_TYPE(res)->tp_name);
Py_DECREF(res);
return NULL;
}
return res;
}
1990-10-14 09:07:46 -03:00
}
1997-05-02 00:12:38 -03:00
PyObject *
_PyObject_Str(PyObject *v)
{
PyObject *res;
int type_ok;
if (v == NULL)
return PyString_FromString("<NULL>");
if (PyString_CheckExact(v)) {
1997-05-02 00:12:38 -03:00
Py_INCREF(v);
return v;
}
#ifdef Py_USING_UNICODE
if (PyUnicode_CheckExact(v)) {
Py_INCREF(v);
return v;
}
#endif
if (Py_TYPE(v)->tp_str == NULL)
return PyObject_Repr(v);
/* It is possible for a type to have a tp_str representation that loops
infinitely. */
if (Py_EnterRecursiveCall(" while getting the str of an object"))
return NULL;
res = (*Py_TYPE(v)->tp_str)(v);
Py_LeaveRecursiveCall();
if (res == NULL)
return NULL;
type_ok = PyString_Check(res);
#ifdef Py_USING_UNICODE
type_ok = type_ok || PyUnicode_Check(res);
#endif
if (!type_ok) {
PyErr_Format(PyExc_TypeError,
"__str__ returned non-string (type %.200s)",
Py_TYPE(res)->tp_name);
Py_DECREF(res);
return NULL;
}
return res;
}
PyObject *
PyObject_Str(PyObject *v)
{
PyObject *res = _PyObject_Str(v);
if (res == NULL)
return NULL;
#ifdef Py_USING_UNICODE
if (PyUnicode_Check(res)) {
PyObject* str;
str = PyUnicode_AsEncodedString(res, NULL, NULL);
Py_DECREF(res);
if (str)
res = str;
else
return NULL;
}
#endif
assert(PyString_Check(res));
return res;
}
#ifdef Py_USING_UNICODE
Changes to recursive-object comparisons, having to do with a test case I found where rich comparison of unequal recursive objects gave unintuituve results. In a discussion with Tim, where we discovered that our intuition on when a<=b should be true was failing, we decided to outlaw ordering comparisons on recursive objects. (Once we have fixed our intuition and designed a matching algorithm that's practical and reasonable to implement, we can allow such orderings again.) - Refactored the recursive-object comparison framework; more is now done in the support routines so less needs to be done in the calling routines (even at the expense of slowing it down a bit -- this should normally never be invoked, it's mostly just there to avoid blowing up the interpreter). - Changed the framework so that the comparison operator used is also stored. (The dictionary now stores triples (v, w, op) instead of pairs (v, w).) - Changed the nesting limit to a more reasonable small 20; this only slows down comparisons of very deeply nested objects (unlikely to occur in practice), while speeding up comparisons of recursive objects (previously, this would first waste time and space on 500 nested comparisons before it would start detecting recursion). - Changed rich comparisons for recursive objects to raise a ValueError exception when recursion is detected for ordering oprators (<, <=, >, >=). Unrelated change: - Moved PyObject_Unicode() to just under PyObject_Str(), where it belongs. MAL's patch must've inserted in a random spot between two functions in the file -- between two helpers for rich comparison...
2001-01-18 18:07:06 -04:00
PyObject *
PyObject_Unicode(PyObject *v)
{
PyObject *res;
PyObject *func;
PyObject *str;
int unicode_method_found = 0;
static PyObject *unicodestr;
if (v == NULL) {
res = PyString_FromString("<NULL>");
if (res == NULL)
return NULL;
str = PyUnicode_FromEncodedObject(res, NULL, "strict");
Py_DECREF(res);
return str;
} else if (PyUnicode_CheckExact(v)) {
Changes to recursive-object comparisons, having to do with a test case I found where rich comparison of unequal recursive objects gave unintuituve results. In a discussion with Tim, where we discovered that our intuition on when a<=b should be true was failing, we decided to outlaw ordering comparisons on recursive objects. (Once we have fixed our intuition and designed a matching algorithm that's practical and reasonable to implement, we can allow such orderings again.) - Refactored the recursive-object comparison framework; more is now done in the support routines so less needs to be done in the calling routines (even at the expense of slowing it down a bit -- this should normally never be invoked, it's mostly just there to avoid blowing up the interpreter). - Changed the framework so that the comparison operator used is also stored. (The dictionary now stores triples (v, w, op) instead of pairs (v, w).) - Changed the nesting limit to a more reasonable small 20; this only slows down comparisons of very deeply nested objects (unlikely to occur in practice), while speeding up comparisons of recursive objects (previously, this would first waste time and space on 500 nested comparisons before it would start detecting recursion). - Changed rich comparisons for recursive objects to raise a ValueError exception when recursion is detected for ordering oprators (<, <=, >, >=). Unrelated change: - Moved PyObject_Unicode() to just under PyObject_Str(), where it belongs. MAL's patch must've inserted in a random spot between two functions in the file -- between two helpers for rich comparison...
2001-01-18 18:07:06 -04:00
Py_INCREF(v);
return v;
}
if (PyInstance_Check(v)) {
/* We're an instance of a classic class */
/* Try __unicode__ from the instance -- alas we have no type */
func = PyObject_GetAttr(v, unicodestr);
if (func != NULL) {
unicode_method_found = 1;
res = PyObject_CallFunctionObjArgs(func, NULL);
Py_DECREF(func);
}
else {
PyErr_Clear();
}
SF patch #470578: Fixes to synchronize unicode() and str() This patch implements what we have discussed on python-dev late in September: str(obj) and unicode(obj) should behave similar, while the old behaviour is retained for unicode(obj, encoding, errors). The patch also adds a new feature with which objects can provide unicode(obj) with input data: the __unicode__ method. Currently no new tp_unicode slot is implemented; this is left as option for the future. Note that PyUnicode_FromEncodedObject() no longer accepts Unicode objects as input. The API name already suggests that Unicode objects do not belong in the list of acceptable objects and the functionality was only needed because PyUnicode_FromEncodedObject() was being used directly by unicode(). The latter was changed in the discussed way: * unicode(obj) calls PyObject_Unicode() * unicode(obj, encoding, errors) calls PyUnicode_FromEncodedObject() One thing left open to discussion is whether to leave the PyUnicode_FromObject() API as a thin API extension on top of PyUnicode_FromEncodedObject() or to turn it into a (macro) alias for PyObject_Unicode() and deprecate it. Doing so would have some surprising consequences though, e.g. u"abc" + 123 would turn out as u"abc123"... [Marc-Andre didn't have time to check this in before the deadline. I hope this is OK, Marc-Andre! You can still make changes and commit them on the trunk after the branch has been made, but then please mail Barry a context diff if you want the change to be merged into the 2.2b1 release branch. GvR]
2001-10-18 23:01:31 -03:00
}
Changes to recursive-object comparisons, having to do with a test case I found where rich comparison of unequal recursive objects gave unintuituve results. In a discussion with Tim, where we discovered that our intuition on when a<=b should be true was failing, we decided to outlaw ordering comparisons on recursive objects. (Once we have fixed our intuition and designed a matching algorithm that's practical and reasonable to implement, we can allow such orderings again.) - Refactored the recursive-object comparison framework; more is now done in the support routines so less needs to be done in the calling routines (even at the expense of slowing it down a bit -- this should normally never be invoked, it's mostly just there to avoid blowing up the interpreter). - Changed the framework so that the comparison operator used is also stored. (The dictionary now stores triples (v, w, op) instead of pairs (v, w).) - Changed the nesting limit to a more reasonable small 20; this only slows down comparisons of very deeply nested objects (unlikely to occur in practice), while speeding up comparisons of recursive objects (previously, this would first waste time and space on 500 nested comparisons before it would start detecting recursion). - Changed rich comparisons for recursive objects to raise a ValueError exception when recursion is detected for ordering oprators (<, <=, >, >=). Unrelated change: - Moved PyObject_Unicode() to just under PyObject_Str(), where it belongs. MAL's patch must've inserted in a random spot between two functions in the file -- between two helpers for rich comparison...
2001-01-18 18:07:06 -04:00
else {
/* Not a classic class instance, try __unicode__. */
func = _PyObject_LookupSpecial(v, "__unicode__", &unicodestr);
if (func != NULL) {
unicode_method_found = 1;
2009-05-08 00:29:26 -03:00
res = PyObject_CallFunctionObjArgs(func, NULL);
Py_DECREF(func);
}
else if (PyErr_Occurred())
return NULL;
}
/* Didn't find __unicode__ */
if (!unicode_method_found) {
if (PyUnicode_Check(v)) {
/* For a Unicode subtype that's didn't overwrite __unicode__,
return a true Unicode object with the same data. */
return PyUnicode_FromUnicode(PyUnicode_AS_UNICODE(v),
PyUnicode_GET_SIZE(v));
Changes to recursive-object comparisons, having to do with a test case I found where rich comparison of unequal recursive objects gave unintuituve results. In a discussion with Tim, where we discovered that our intuition on when a<=b should be true was failing, we decided to outlaw ordering comparisons on recursive objects. (Once we have fixed our intuition and designed a matching algorithm that's practical and reasonable to implement, we can allow such orderings again.) - Refactored the recursive-object comparison framework; more is now done in the support routines so less needs to be done in the calling routines (even at the expense of slowing it down a bit -- this should normally never be invoked, it's mostly just there to avoid blowing up the interpreter). - Changed the framework so that the comparison operator used is also stored. (The dictionary now stores triples (v, w, op) instead of pairs (v, w).) - Changed the nesting limit to a more reasonable small 20; this only slows down comparisons of very deeply nested objects (unlikely to occur in practice), while speeding up comparisons of recursive objects (previously, this would first waste time and space on 500 nested comparisons before it would start detecting recursion). - Changed rich comparisons for recursive objects to raise a ValueError exception when recursion is detected for ordering oprators (<, <=, >, >=). Unrelated change: - Moved PyObject_Unicode() to just under PyObject_Str(), where it belongs. MAL's patch must've inserted in a random spot between two functions in the file -- between two helpers for rich comparison...
2001-01-18 18:07:06 -04:00
}
if (PyString_CheckExact(v)) {
Py_INCREF(v);
res = v;
Changes to recursive-object comparisons, having to do with a test case I found where rich comparison of unequal recursive objects gave unintuituve results. In a discussion with Tim, where we discovered that our intuition on when a<=b should be true was failing, we decided to outlaw ordering comparisons on recursive objects. (Once we have fixed our intuition and designed a matching algorithm that's practical and reasonable to implement, we can allow such orderings again.) - Refactored the recursive-object comparison framework; more is now done in the support routines so less needs to be done in the calling routines (even at the expense of slowing it down a bit -- this should normally never be invoked, it's mostly just there to avoid blowing up the interpreter). - Changed the framework so that the comparison operator used is also stored. (The dictionary now stores triples (v, w, op) instead of pairs (v, w).) - Changed the nesting limit to a more reasonable small 20; this only slows down comparisons of very deeply nested objects (unlikely to occur in practice), while speeding up comparisons of recursive objects (previously, this would first waste time and space on 500 nested comparisons before it would start detecting recursion). - Changed rich comparisons for recursive objects to raise a ValueError exception when recursion is detected for ordering oprators (<, <=, >, >=). Unrelated change: - Moved PyObject_Unicode() to just under PyObject_Str(), where it belongs. MAL's patch must've inserted in a random spot between two functions in the file -- between two helpers for rich comparison...
2001-01-18 18:07:06 -04:00
}
SF patch #470578: Fixes to synchronize unicode() and str() This patch implements what we have discussed on python-dev late in September: str(obj) and unicode(obj) should behave similar, while the old behaviour is retained for unicode(obj, encoding, errors). The patch also adds a new feature with which objects can provide unicode(obj) with input data: the __unicode__ method. Currently no new tp_unicode slot is implemented; this is left as option for the future. Note that PyUnicode_FromEncodedObject() no longer accepts Unicode objects as input. The API name already suggests that Unicode objects do not belong in the list of acceptable objects and the functionality was only needed because PyUnicode_FromEncodedObject() was being used directly by unicode(). The latter was changed in the discussed way: * unicode(obj) calls PyObject_Unicode() * unicode(obj, encoding, errors) calls PyUnicode_FromEncodedObject() One thing left open to discussion is whether to leave the PyUnicode_FromObject() API as a thin API extension on top of PyUnicode_FromEncodedObject() or to turn it into a (macro) alias for PyObject_Unicode() and deprecate it. Doing so would have some surprising consequences though, e.g. u"abc" + 123 would turn out as u"abc123"... [Marc-Andre didn't have time to check this in before the deadline. I hope this is OK, Marc-Andre! You can still make changes and commit them on the trunk after the branch has been made, but then please mail Barry a context diff if you want the change to be merged into the 2.2b1 release branch. GvR]
2001-10-18 23:01:31 -03:00
else {
if (Py_TYPE(v)->tp_str != NULL)
res = (*Py_TYPE(v)->tp_str)(v);
SF patch #470578: Fixes to synchronize unicode() and str() This patch implements what we have discussed on python-dev late in September: str(obj) and unicode(obj) should behave similar, while the old behaviour is retained for unicode(obj, encoding, errors). The patch also adds a new feature with which objects can provide unicode(obj) with input data: the __unicode__ method. Currently no new tp_unicode slot is implemented; this is left as option for the future. Note that PyUnicode_FromEncodedObject() no longer accepts Unicode objects as input. The API name already suggests that Unicode objects do not belong in the list of acceptable objects and the functionality was only needed because PyUnicode_FromEncodedObject() was being used directly by unicode(). The latter was changed in the discussed way: * unicode(obj) calls PyObject_Unicode() * unicode(obj, encoding, errors) calls PyUnicode_FromEncodedObject() One thing left open to discussion is whether to leave the PyUnicode_FromObject() API as a thin API extension on top of PyUnicode_FromEncodedObject() or to turn it into a (macro) alias for PyObject_Unicode() and deprecate it. Doing so would have some surprising consequences though, e.g. u"abc" + 123 would turn out as u"abc123"... [Marc-Andre didn't have time to check this in before the deadline. I hope this is OK, Marc-Andre! You can still make changes and commit them on the trunk after the branch has been made, but then please mail Barry a context diff if you want the change to be merged into the 2.2b1 release branch. GvR]
2001-10-18 23:01:31 -03:00
else
res = PyObject_Repr(v);
}
Changes to recursive-object comparisons, having to do with a test case I found where rich comparison of unequal recursive objects gave unintuituve results. In a discussion with Tim, where we discovered that our intuition on when a<=b should be true was failing, we decided to outlaw ordering comparisons on recursive objects. (Once we have fixed our intuition and designed a matching algorithm that's practical and reasonable to implement, we can allow such orderings again.) - Refactored the recursive-object comparison framework; more is now done in the support routines so less needs to be done in the calling routines (even at the expense of slowing it down a bit -- this should normally never be invoked, it's mostly just there to avoid blowing up the interpreter). - Changed the framework so that the comparison operator used is also stored. (The dictionary now stores triples (v, w, op) instead of pairs (v, w).) - Changed the nesting limit to a more reasonable small 20; this only slows down comparisons of very deeply nested objects (unlikely to occur in practice), while speeding up comparisons of recursive objects (previously, this would first waste time and space on 500 nested comparisons before it would start detecting recursion). - Changed rich comparisons for recursive objects to raise a ValueError exception when recursion is detected for ordering oprators (<, <=, >, >=). Unrelated change: - Moved PyObject_Unicode() to just under PyObject_Str(), where it belongs. MAL's patch must've inserted in a random spot between two functions in the file -- between two helpers for rich comparison...
2001-01-18 18:07:06 -04:00
}
Changes to recursive-object comparisons, having to do with a test case I found where rich comparison of unequal recursive objects gave unintuituve results. In a discussion with Tim, where we discovered that our intuition on when a<=b should be true was failing, we decided to outlaw ordering comparisons on recursive objects. (Once we have fixed our intuition and designed a matching algorithm that's practical and reasonable to implement, we can allow such orderings again.) - Refactored the recursive-object comparison framework; more is now done in the support routines so less needs to be done in the calling routines (even at the expense of slowing it down a bit -- this should normally never be invoked, it's mostly just there to avoid blowing up the interpreter). - Changed the framework so that the comparison operator used is also stored. (The dictionary now stores triples (v, w, op) instead of pairs (v, w).) - Changed the nesting limit to a more reasonable small 20; this only slows down comparisons of very deeply nested objects (unlikely to occur in practice), while speeding up comparisons of recursive objects (previously, this would first waste time and space on 500 nested comparisons before it would start detecting recursion). - Changed rich comparisons for recursive objects to raise a ValueError exception when recursion is detected for ordering oprators (<, <=, >, >=). Unrelated change: - Moved PyObject_Unicode() to just under PyObject_Str(), where it belongs. MAL's patch must've inserted in a random spot between two functions in the file -- between two helpers for rich comparison...
2001-01-18 18:07:06 -04:00
if (res == NULL)
return NULL;
if (!PyUnicode_Check(res)) {
SF patch #470578: Fixes to synchronize unicode() and str() This patch implements what we have discussed on python-dev late in September: str(obj) and unicode(obj) should behave similar, while the old behaviour is retained for unicode(obj, encoding, errors). The patch also adds a new feature with which objects can provide unicode(obj) with input data: the __unicode__ method. Currently no new tp_unicode slot is implemented; this is left as option for the future. Note that PyUnicode_FromEncodedObject() no longer accepts Unicode objects as input. The API name already suggests that Unicode objects do not belong in the list of acceptable objects and the functionality was only needed because PyUnicode_FromEncodedObject() was being used directly by unicode(). The latter was changed in the discussed way: * unicode(obj) calls PyObject_Unicode() * unicode(obj, encoding, errors) calls PyUnicode_FromEncodedObject() One thing left open to discussion is whether to leave the PyUnicode_FromObject() API as a thin API extension on top of PyUnicode_FromEncodedObject() or to turn it into a (macro) alias for PyObject_Unicode() and deprecate it. Doing so would have some surprising consequences though, e.g. u"abc" + 123 would turn out as u"abc123"... [Marc-Andre didn't have time to check this in before the deadline. I hope this is OK, Marc-Andre! You can still make changes and commit them on the trunk after the branch has been made, but then please mail Barry a context diff if you want the change to be merged into the 2.2b1 release branch. GvR]
2001-10-18 23:01:31 -03:00
str = PyUnicode_FromEncodedObject(res, NULL, "strict");
Changes to recursive-object comparisons, having to do with a test case I found where rich comparison of unequal recursive objects gave unintuituve results. In a discussion with Tim, where we discovered that our intuition on when a<=b should be true was failing, we decided to outlaw ordering comparisons on recursive objects. (Once we have fixed our intuition and designed a matching algorithm that's practical and reasonable to implement, we can allow such orderings again.) - Refactored the recursive-object comparison framework; more is now done in the support routines so less needs to be done in the calling routines (even at the expense of slowing it down a bit -- this should normally never be invoked, it's mostly just there to avoid blowing up the interpreter). - Changed the framework so that the comparison operator used is also stored. (The dictionary now stores triples (v, w, op) instead of pairs (v, w).) - Changed the nesting limit to a more reasonable small 20; this only slows down comparisons of very deeply nested objects (unlikely to occur in practice), while speeding up comparisons of recursive objects (previously, this would first waste time and space on 500 nested comparisons before it would start detecting recursion). - Changed rich comparisons for recursive objects to raise a ValueError exception when recursion is detected for ordering oprators (<, <=, >, >=). Unrelated change: - Moved PyObject_Unicode() to just under PyObject_Str(), where it belongs. MAL's patch must've inserted in a random spot between two functions in the file -- between two helpers for rich comparison...
2001-01-18 18:07:06 -04:00
Py_DECREF(res);
res = str;
Changes to recursive-object comparisons, having to do with a test case I found where rich comparison of unequal recursive objects gave unintuituve results. In a discussion with Tim, where we discovered that our intuition on when a<=b should be true was failing, we decided to outlaw ordering comparisons on recursive objects. (Once we have fixed our intuition and designed a matching algorithm that's practical and reasonable to implement, we can allow such orderings again.) - Refactored the recursive-object comparison framework; more is now done in the support routines so less needs to be done in the calling routines (even at the expense of slowing it down a bit -- this should normally never be invoked, it's mostly just there to avoid blowing up the interpreter). - Changed the framework so that the comparison operator used is also stored. (The dictionary now stores triples (v, w, op) instead of pairs (v, w).) - Changed the nesting limit to a more reasonable small 20; this only slows down comparisons of very deeply nested objects (unlikely to occur in practice), while speeding up comparisons of recursive objects (previously, this would first waste time and space on 500 nested comparisons before it would start detecting recursion). - Changed rich comparisons for recursive objects to raise a ValueError exception when recursion is detected for ordering oprators (<, <=, >, >=). Unrelated change: - Moved PyObject_Unicode() to just under PyObject_Str(), where it belongs. MAL's patch must've inserted in a random spot between two functions in the file -- between two helpers for rich comparison...
2001-01-18 18:07:06 -04:00
}
return res;
}
#endif
Changes to recursive-object comparisons, having to do with a test case I found where rich comparison of unequal recursive objects gave unintuituve results. In a discussion with Tim, where we discovered that our intuition on when a<=b should be true was failing, we decided to outlaw ordering comparisons on recursive objects. (Once we have fixed our intuition and designed a matching algorithm that's practical and reasonable to implement, we can allow such orderings again.) - Refactored the recursive-object comparison framework; more is now done in the support routines so less needs to be done in the calling routines (even at the expense of slowing it down a bit -- this should normally never be invoked, it's mostly just there to avoid blowing up the interpreter). - Changed the framework so that the comparison operator used is also stored. (The dictionary now stores triples (v, w, op) instead of pairs (v, w).) - Changed the nesting limit to a more reasonable small 20; this only slows down comparisons of very deeply nested objects (unlikely to occur in practice), while speeding up comparisons of recursive objects (previously, this would first waste time and space on 500 nested comparisons before it would start detecting recursion). - Changed rich comparisons for recursive objects to raise a ValueError exception when recursion is detected for ordering oprators (<, <=, >, >=). Unrelated change: - Moved PyObject_Unicode() to just under PyObject_Str(), where it belongs. MAL's patch must've inserted in a random spot between two functions in the file -- between two helpers for rich comparison...
2001-01-18 18:07:06 -04:00
/* Helper to warn about deprecated tp_compare return values. Return:
-2 for an exception;
-1 if v < w;
0 if v == w;
1 if v > w.
(This function cannot return 2.)
*/
static int
adjust_tp_compare(int c)
{
if (PyErr_Occurred()) {
if (c != -1 && c != -2) {
PyObject *t, *v, *tb;
PyErr_Fetch(&t, &v, &tb);
if (PyErr_Warn(PyExc_RuntimeWarning,
"tp_compare didn't return -1 or -2 "
"for exception") < 0) {
Py_XDECREF(t);
Py_XDECREF(v);
Py_XDECREF(tb);
}
else
PyErr_Restore(t, v, tb);
}
return -2;
}
else if (c < -1 || c > 1) {
if (PyErr_Warn(PyExc_RuntimeWarning,
"tp_compare didn't return -1, 0 or 1") < 0)
return -2;
else
return c < -1 ? -1 : 1;
}
else {
assert(c >= -1 && c <= 1);
return c;
}
}
/* Macro to get the tp_richcompare field of a type if defined */
#define RICHCOMPARE(t) (PyType_HasFeature((t), Py_TPFLAGS_HAVE_RICHCOMPARE) \
? (t)->tp_richcompare : NULL)
/* Map rich comparison operators to their swapped version, e.g. LT --> GT */
int _Py_SwappedOp[] = {Py_GT, Py_GE, Py_EQ, Py_NE, Py_LT, Py_LE};
/* Try a genuine rich comparison, returning an object. Return:
NULL for exception;
NotImplemented if this particular rich comparison is not implemented or
undefined;
some object not equal to NotImplemented if it is implemented
(this latter object may not be a Boolean).
*/
static PyObject *
try_rich_compare(PyObject *v, PyObject *w, int op)
{
richcmpfunc f;
PyObject *res;
if (v->ob_type != w->ob_type &&
PyType_IsSubtype(w->ob_type, v->ob_type) &&
(f = RICHCOMPARE(w->ob_type)) != NULL) {
res = (*f)(w, v, _Py_SwappedOp[op]);
if (res != Py_NotImplemented)
return res;
Py_DECREF(res);
}
if ((f = RICHCOMPARE(v->ob_type)) != NULL) {
res = (*f)(v, w, op);
if (res != Py_NotImplemented)
return res;
Py_DECREF(res);
}
if ((f = RICHCOMPARE(w->ob_type)) != NULL) {
return (*f)(w, v, _Py_SwappedOp[op]);
}
res = Py_NotImplemented;
Py_INCREF(res);
return res;
}
/* Try a genuine rich comparison, returning an int. Return:
-1 for exception (including the case where try_rich_compare() returns an
object that's not a Boolean);
0 if the outcome is false;
1 if the outcome is true;
2 if this particular rich comparison is not implemented or undefined.
*/
static int
try_rich_compare_bool(PyObject *v, PyObject *w, int op)
{
PyObject *res;
int ok;
if (RICHCOMPARE(v->ob_type) == NULL && RICHCOMPARE(w->ob_type) == NULL)
return 2; /* Shortcut, avoid INCREF+DECREF */
res = try_rich_compare(v, w, op);
if (res == NULL)
return -1;
if (res == Py_NotImplemented) {
Py_DECREF(res);
return 2;
}
ok = PyObject_IsTrue(res);
Py_DECREF(res);
return ok;
}
/* Try rich comparisons to determine a 3-way comparison. Return:
-2 for an exception;
-1 if v < w;
0 if v == w;
1 if v > w;
2 if this particular rich comparison is not implemented or undefined.
*/
static int
try_rich_to_3way_compare(PyObject *v, PyObject *w)
{
static struct { int op; int outcome; } tries[3] = {
/* Try this operator, and if it is true, use this outcome: */
{Py_EQ, 0},
{Py_LT, -1},
{Py_GT, 1},
};
int i;
if (RICHCOMPARE(v->ob_type) == NULL && RICHCOMPARE(w->ob_type) == NULL)
return 2; /* Shortcut */
for (i = 0; i < 3; i++) {
switch (try_rich_compare_bool(v, w, tries[i].op)) {
case -1:
return -2;
case 1:
return tries[i].outcome;
}
}
return 2;
}
/* Try a 3-way comparison, returning an int. Return:
-2 for an exception;
-1 if v < w;
0 if v == w;
1 if v > w;
2 if this particular 3-way comparison is not implemented or undefined.
*/
static int
try_3way_compare(PyObject *v, PyObject *w)
{
int c;
cmpfunc f;
/* Comparisons involving instances are given to instance_compare,
which has the same return conventions as this function. */
f = v->ob_type->tp_compare;
if (PyInstance_Check(v))
return (*f)(v, w);
if (PyInstance_Check(w))
return (*w->ob_type->tp_compare)(v, w);
/* If both have the same (non-NULL) tp_compare, use it. */
if (f != NULL && f == w->ob_type->tp_compare) {
c = (*f)(v, w);
return adjust_tp_compare(c);
}
/* If either tp_compare is _PyObject_SlotCompare, that's safe. */
if (f == _PyObject_SlotCompare ||
w->ob_type->tp_compare == _PyObject_SlotCompare)
return _PyObject_SlotCompare(v, w);
/* If we're here, v and w,
a) are not instances;
b) have different types or a type without tp_compare; and
c) don't have a user-defined tp_compare.
tp_compare implementations in C assume that both arguments
have their type, so we give up if the coercion fails or if
it yields types which are still incompatible (which can
happen with a user-defined nb_coerce).
*/
c = PyNumber_CoerceEx(&v, &w);
if (c < 0)
return -2;
if (c > 0)
return 2;
f = v->ob_type->tp_compare;
if (f != NULL && f == w->ob_type->tp_compare) {
c = (*f)(v, w);
Py_DECREF(v);
Py_DECREF(w);
return adjust_tp_compare(c);
}
/* No comparison defined */
Py_DECREF(v);
Py_DECREF(w);
return 2;
}
/* Final fallback 3-way comparison, returning an int. Return:
-2 if an error occurred;
-1 if v < w;
0 if v == w;
1 if v > w.
*/
static int
default_3way_compare(PyObject *v, PyObject *w)
{
int c;
const char *vname, *wname;
if (v->ob_type == w->ob_type) {
/* When comparing these pointers, they must be cast to
* integer types (i.e. Py_uintptr_t, our spelling of C9X's
* uintptr_t). ANSI specifies that pointer compares other
* than == and != to non-related structures are undefined.
*/
Py_uintptr_t vv = (Py_uintptr_t)v;
Py_uintptr_t ww = (Py_uintptr_t)w;
return (vv < ww) ? -1 : (vv > ww) ? 1 : 0;
}
/* None is smaller than anything */
if (v == Py_None)
return -1;
if (w == Py_None)
return 1;
/* different type: compare type names; numbers are smaller */
if (PyNumber_Check(v))
vname = "";
else
vname = v->ob_type->tp_name;
if (PyNumber_Check(w))
wname = "";
else
wname = w->ob_type->tp_name;
c = strcmp(vname, wname);
if (c < 0)
return -1;
if (c > 0)
return 1;
/* Same type name, or (more likely) incomparable numeric types */
return ((Py_uintptr_t)(v->ob_type) < (
Py_uintptr_t)(w->ob_type)) ? -1 : 1;
}
/* Do a 3-way comparison, by hook or by crook. Return:
-2 for an exception (but see below);
-1 if v < w;
0 if v == w;
1 if v > w;
BUT: if the object implements a tp_compare function, it returns
whatever this function returns (whether with an exception or not).
*/
static int
do_cmp(PyObject *v, PyObject *w)
{
int c;
cmpfunc f;
if (v->ob_type == w->ob_type
&& (f = v->ob_type->tp_compare) != NULL) {
c = (*f)(v, w);
if (PyInstance_Check(v)) {
/* Instance tp_compare has a different signature.
But if it returns undefined we fall through. */
if (c != 2)
return c;
2002-05-31 17:23:33 -03:00
/* Else fall through to try_rich_to_3way_compare() */
}
else
return adjust_tp_compare(c);
}
/* We only get here if one of the following is true:
a) v and w have different types
b) v and w have the same type, which doesn't have tp_compare
c) v and w are instances, and either __cmp__ is not defined or
__cmp__ returns NotImplemented
*/
c = try_rich_to_3way_compare(v, w);
if (c < 2)
return c;
c = try_3way_compare(v, w);
if (c < 2)
return c;
return default_3way_compare(v, w);
}
/* Compare v to w. Return
-1 if v < w or exception (PyErr_Occurred() true in latter case).
0 if v == w.
1 if v > w.
XXX The docs (C API manual) say the return value is undefined in case
XXX of error.
*/
1990-10-14 09:07:46 -03:00
int
2000-07-09 12:48:49 -03:00
PyObject_Compare(PyObject *v, PyObject *w)
1990-10-14 09:07:46 -03:00
{
int result;
if (v == NULL || w == NULL) {
PyErr_BadInternalCall();
return -1;
}
1990-10-14 09:07:46 -03:00
if (v == w)
return 0;
if (Py_EnterRecursiveCall(" in cmp"))
return -1;
result = do_cmp(v, w);
Py_LeaveRecursiveCall();
return result < 0 ? -1 : result;
}
/* Return (new reference to) Py_True or Py_False. */
static PyObject *
convert_3way_to_object(int op, int c)
{
PyObject *result;
switch (op) {
case Py_LT: c = c < 0; break;
case Py_LE: c = c <= 0; break;
case Py_EQ: c = c == 0; break;
case Py_NE: c = c != 0; break;
case Py_GT: c = c > 0; break;
case Py_GE: c = c >= 0; break;
}
result = c ? Py_True : Py_False;
Py_INCREF(result);
return result;
1990-10-14 09:07:46 -03:00
}
/* We want a rich comparison but don't have one. Try a 3-way cmp instead.
Return
NULL if error
Py_True if v op w
Py_False if not (v op w)
*/
static PyObject *
try_3way_to_rich_compare(PyObject *v, PyObject *w, int op)
{
int c;
c = try_3way_compare(v, w);
if (c >= 2) {
/* Py3K warning if types are not equal and comparison isn't == or != */
if (Py_Py3kWarningFlag &&
v->ob_type != w->ob_type && op != Py_EQ && op != Py_NE &&
2008-04-27 00:01:45 -03:00
PyErr_WarnEx(PyExc_DeprecationWarning,
"comparing unequal types not supported "
2008-04-27 00:01:45 -03:00
"in 3.x", 1) < 0) {
return NULL;
}
c = default_3way_compare(v, w);
}
if (c <= -2)
return NULL;
return convert_3way_to_object(op, c);
}
1990-10-14 09:07:46 -03:00
/* Do rich comparison on v and w. Return
NULL if error
Else a new reference to an object other than Py_NotImplemented, usually(?):
Py_True if v op w
Py_False if not (v op w)
*/
2001-01-21 12:25:18 -04:00
static PyObject *
do_richcmp(PyObject *v, PyObject *w, int op)
{
PyObject *res;
res = try_rich_compare(v, w, op);
if (res != Py_NotImplemented)
return res;
Py_DECREF(res);
return try_3way_to_rich_compare(v, w, op);
}
/* Return:
NULL for exception;
some object not equal to NotImplemented if it is implemented
(this latter object may not be a Boolean).
*/
PyObject *
PyObject_RichCompare(PyObject *v, PyObject *w, int op)
{
PyObject *res;
assert(Py_LT <= op && op <= Py_GE);
if (Py_EnterRecursiveCall(" in cmp"))
return NULL;
/* If the types are equal, and not old-style instances, try to
get out cheap (don't bother with coercions etc.). */
if (v->ob_type == w->ob_type && !PyInstance_Check(v)) {
cmpfunc fcmp;
richcmpfunc frich = RICHCOMPARE(v->ob_type);
/* If the type has richcmp, try it first. try_rich_compare
tries it two-sided, which is not needed since we've a
single type only. */
if (frich != NULL) {
res = (*frich)(v, w, op);
if (res != Py_NotImplemented)
goto Done;
Py_DECREF(res);
}
/* No richcmp, or this particular richmp not implemented.
Try 3-way cmp. */
fcmp = v->ob_type->tp_compare;
if (fcmp != NULL) {
int c = (*fcmp)(v, w);
c = adjust_tp_compare(c);
if (c == -2) {
res = NULL;
goto Done;
}
res = convert_3way_to_object(op, c);
goto Done;
}
}
/* Fast path not taken, or couldn't deliver a useful result. */
res = do_richcmp(v, w, op);
Done:
Py_LeaveRecursiveCall();
return res;
}
/* Return -1 if error; 1 if v op w; 0 if not (v op w). */
int
PyObject_RichCompareBool(PyObject *v, PyObject *w, int op)
{
PyObject *res;
int ok;
/* Quick result when objects are the same.
Guarantees that identity implies equality. */
if (v == w) {
if (op == Py_EQ)
return 1;
else if (op == Py_NE)
return 0;
}
res = PyObject_RichCompare(v, w, op);
if (res == NULL)
return -1;
if (PyBool_Check(res))
ok = (res == Py_True);
else
ok = PyObject_IsTrue(res);
Py_DECREF(res);
return ok;
}
/* Set of hash utility functions to help maintaining the invariant that
2004-03-21 13:35:06 -04:00
if a==b then hash(a)==hash(b)
All the utility functions (_Py_Hash*()) return "-1" to signify an error.
*/
long
2000-07-09 12:48:49 -03:00
_Py_HashDouble(double v)
{
double intpart, fractpart;
int expo;
long hipart;
long x; /* the final hash value */
/* This is designed so that Python numbers of different types
* that compare equal hash to the same value; otherwise comparisons
* of mapping keys will turn out weird.
*/
if (!Py_IS_FINITE(v)) {
if (Py_IS_INFINITY(v))
return v < 0 ? -271828 : 314159;
else
return 0;
}
fractpart = modf(v, &intpart);
if (fractpart == 0.0) {
/* This must return the same hash as an equal int or long. */
if (intpart > LONG_MAX/2 || -intpart > LONG_MAX/2) {
/* Convert to long and use its hash. */
PyObject *plong; /* converted to Python long */
plong = PyLong_FromDouble(v);
if (plong == NULL)
return -1;
x = PyObject_Hash(plong);
Py_DECREF(plong);
return x;
}
/* Fits in a C long == a Python int, so is its own hash. */
x = (long)intpart;
if (x == -1)
x = -2;
return x;
}
/* The fractional part is non-zero, so we don't have to worry about
* making this match the hash of some other type.
* Use frexp to get at the bits in the double.
* Since the VAX D double format has 56 mantissa bits, which is the
* most of any double format in use, each of these parts may have as
* many as (but no more than) 56 significant bits.
* So, assuming sizeof(long) >= 4, each part can be broken into two
* longs; frexp and multiplication are used to do that.
* Also, since the Cray double format has 15 exponent bits, which is
* the most of any double format in use, shifting the exponent field
* left by 15 won't overflow a long (again assuming sizeof(long) >= 4).
*/
v = frexp(v, &expo);
v *= 2147483648.0; /* 2**31 */
hipart = (long)v; /* take the top 32 bits */
v = (v - (double)hipart) * 2147483648.0; /* get the next 32 bits */
x = hipart + (long)v + (expo << 15);
if (x == -1)
x = -2;
return x;
}
long
2000-07-09 12:48:49 -03:00
_Py_HashPointer(void *p)
{
long x;
size_t y = (size_t)p;
/* bottom 3 or 4 bits are likely to be 0; rotate y by 4 to avoid
excessive hash collisions for dicts and sets */
2009-02-13 09:57:40 -04:00
y = (y >> 4) | (y << (8 * SIZEOF_VOID_P - 4));
x = (long)y;
if (x == -1)
x = -2;
return x;
}
long
PyObject_HashNotImplemented(PyObject *self)
{
PyErr_Format(PyExc_TypeError, "unhashable type: '%.200s'",
self->ob_type->tp_name);
return -1;
}
long
2000-07-09 12:48:49 -03:00
PyObject_Hash(PyObject *v)
{
1997-05-02 00:12:38 -03:00
PyTypeObject *tp = v->ob_type;
if (tp->tp_hash != NULL)
return (*tp->tp_hash)(v);
/* To keep to the general practice that inheriting
* solely from object in C code should work without
* an explicit call to PyType_Ready, we implicitly call
* PyType_Ready here and then check the tp_hash slot again
*/
if (tp->tp_dict == NULL) {
if (PyType_Ready(tp) < 0)
return -1;
if (tp->tp_hash != NULL)
return (*tp->tp_hash)(v);
}
if (tp->tp_compare == NULL && RICHCOMPARE(tp) == NULL) {
return _Py_HashPointer(v); /* Use address as hash value */
}
/* If there's a cmp but no hash defined, the object can't be hashed */
return PyObject_HashNotImplemented(v);
}
1997-05-02 00:12:38 -03:00
PyObject *
PyObject_GetAttrString(PyObject *v, const char *name)
1990-12-20 11:06:42 -04:00
{
2001-08-02 01:15:00 -03:00
PyObject *w, *res;
if (Py_TYPE(v)->tp_getattr != NULL)
return (*Py_TYPE(v)->tp_getattr)(v, (char*)name);
w = PyString_InternFromString(name);
2001-08-02 01:15:00 -03:00
if (w == NULL)
return NULL;
res = PyObject_GetAttr(v, w);
Py_XDECREF(w);
return res;
1990-12-20 11:06:42 -04:00
}
int
PyObject_HasAttrString(PyObject *v, const char *name)
{
1997-05-02 00:12:38 -03:00
PyObject *res = PyObject_GetAttrString(v, name);
if (res != NULL) {
1997-05-02 00:12:38 -03:00
Py_DECREF(res);
return 1;
}
1997-05-02 00:12:38 -03:00
PyErr_Clear();
return 0;
}
1990-12-20 11:06:42 -04:00
int
PyObject_SetAttrString(PyObject *v, const char *name, PyObject *w)
1990-12-20 11:06:42 -04:00
{
2001-08-02 01:15:00 -03:00
PyObject *s;
int res;
if (Py_TYPE(v)->tp_setattr != NULL)
return (*Py_TYPE(v)->tp_setattr)(v, (char*)name, w);
s = PyString_InternFromString(name);
2001-08-02 01:15:00 -03:00
if (s == NULL)
return -1;
res = PyObject_SetAttr(v, s, w);
Py_XDECREF(s);
return res;
}
PyObject *
2000-07-09 12:48:49 -03:00
PyObject_GetAttr(PyObject *v, PyObject *name)
{
PyTypeObject *tp = Py_TYPE(v);
2001-08-02 01:15:00 -03:00
if (!PyString_Check(name)) {
#ifdef Py_USING_UNICODE
/* The Unicode to string conversion is done here because the
existing tp_getattro slots expect a string object as name
and we wouldn't want to break those. */
if (PyUnicode_Check(name)) {
name = _PyUnicode_AsDefaultEncodedString(name, NULL);
if (name == NULL)
return NULL;
}
else
#endif
{
PyErr_Format(PyExc_TypeError,
"attribute name must be string, not '%.200s'",
Py_TYPE(name)->tp_name);
return NULL;
}
}
2001-08-02 01:15:00 -03:00
if (tp->tp_getattro != NULL)
return (*tp->tp_getattro)(v, name);
if (tp->tp_getattr != NULL)
return (*tp->tp_getattr)(v, PyString_AS_STRING(name));
2001-08-02 01:15:00 -03:00
PyErr_Format(PyExc_AttributeError,
"'%.50s' object has no attribute '%.400s'",
tp->tp_name, PyString_AS_STRING(name));
2001-08-02 01:15:00 -03:00
return NULL;
}
int
2000-07-09 12:48:49 -03:00
PyObject_HasAttr(PyObject *v, PyObject *name)
{
PyObject *res = PyObject_GetAttr(v, name);
if (res != NULL) {
Py_DECREF(res);
return 1;
}
PyErr_Clear();
return 0;
}
int
2000-07-09 12:48:49 -03:00
PyObject_SetAttr(PyObject *v, PyObject *name, PyObject *value)
{
PyTypeObject *tp = Py_TYPE(v);
int err;
if (!PyString_Check(name)){
#ifdef Py_USING_UNICODE
/* The Unicode to string conversion is done here because the
existing tp_setattro slots expect a string object as name
and we wouldn't want to break those. */
if (PyUnicode_Check(name)) {
name = PyUnicode_AsEncodedString(name, NULL, NULL);
if (name == NULL)
return -1;
}
else
#endif
{
PyErr_Format(PyExc_TypeError,
"attribute name must be string, not '%.200s'",
Py_TYPE(name)->tp_name);
return -1;
}
}
2001-08-02 01:15:00 -03:00
else
Py_INCREF(name);
PyString_InternInPlace(&name);
2001-08-02 01:15:00 -03:00
if (tp->tp_setattro != NULL) {
err = (*tp->tp_setattro)(v, name, value);
Py_DECREF(name);
return err;
}
if (tp->tp_setattr != NULL) {
err = (*tp->tp_setattr)(v, PyString_AS_STRING(name), value);
2001-08-02 01:15:00 -03:00
Py_DECREF(name);
return err;
}
Py_DECREF(name);
2001-08-02 01:15:00 -03:00
if (tp->tp_getattr == NULL && tp->tp_getattro == NULL)
PyErr_Format(PyExc_TypeError,
"'%.100s' object has no attributes "
"(%s .%.100s)",
tp->tp_name,
value==NULL ? "del" : "assign to",
PyString_AS_STRING(name));
2001-08-02 01:15:00 -03:00
else
PyErr_Format(PyExc_TypeError,
"'%.100s' object has only read-only attributes "
"(%s .%.100s)",
tp->tp_name,
value==NULL ? "del" : "assign to",
PyString_AS_STRING(name));
2001-08-02 01:15:00 -03:00
return -1;
}
/* Helper to get a pointer to an object's __dict__ slot, if any */
PyObject **
_PyObject_GetDictPtr(PyObject *obj)
{
Py_ssize_t dictoffset;
PyTypeObject *tp = Py_TYPE(obj);
2001-08-02 01:15:00 -03:00
if (!(tp->tp_flags & Py_TPFLAGS_HAVE_CLASS))
return NULL;
dictoffset = tp->tp_dictoffset;
if (dictoffset == 0)
return NULL;
if (dictoffset < 0) {
2006-02-15 13:27:45 -04:00
Py_ssize_t tsize;
size_t size;
tsize = ((PyVarObject *)obj)->ob_size;
if (tsize < 0)
tsize = -tsize;
size = _PyObject_VAR_SIZE(tp, tsize);
dictoffset += (long)size;
assert(dictoffset > 0);
assert(dictoffset % SIZEOF_VOID_P == 0);
2001-08-02 01:15:00 -03:00
}
return (PyObject **) ((char *)obj + dictoffset);
}
PyObject *
PyObject_SelfIter(PyObject *obj)
{
Py_INCREF(obj);
return obj;
}
/* Helper used when the __next__ method is removed from a type:
tp_iternext is never NULL and can be safely called without checking
on every iteration.
*/
PyObject *
_PyObject_NextNotImplemented(PyObject *self)
{
PyErr_Format(PyExc_TypeError,
"'%.200s' object is not iterable",
Py_TYPE(self)->tp_name);
return NULL;
}
/* Generic GetAttr functions - put these in your tp_[gs]etattro slot */
2001-08-02 01:15:00 -03:00
PyObject *
PyObject_GenericGetAttr(PyObject *obj, PyObject *name)
{
PyTypeObject *tp = Py_TYPE(obj);
PyObject *descr = NULL;
PyObject *res = NULL;
2001-08-02 01:15:00 -03:00
descrgetfunc f;
Py_ssize_t dictoffset;
2001-08-02 01:15:00 -03:00
PyObject **dictptr;
if (!PyString_Check(name)){
#ifdef Py_USING_UNICODE
/* The Unicode to string conversion is done here because the
existing tp_setattro slots expect a string object as name
and we wouldn't want to break those. */
if (PyUnicode_Check(name)) {
name = PyUnicode_AsEncodedString(name, NULL, NULL);
if (name == NULL)
return NULL;
}
else
#endif
{
PyErr_Format(PyExc_TypeError,
"attribute name must be string, not '%.200s'",
Py_TYPE(name)->tp_name);
return NULL;
}
}
else
Py_INCREF(name);
2001-08-02 01:15:00 -03:00
if (tp->tp_dict == NULL) {
if (PyType_Ready(tp) < 0)
goto done;
2001-08-02 01:15:00 -03:00
}
#if 0 /* XXX this is not quite _PyType_Lookup anymore */
/* Inline _PyType_Lookup */
{
2006-02-15 13:27:45 -04:00
Py_ssize_t i, n;
PyObject *mro, *base, *dict;
/* Look in tp_dict of types in MRO */
mro = tp->tp_mro;
assert(mro != NULL);
assert(PyTuple_Check(mro));
n = PyTuple_GET_SIZE(mro);
for (i = 0; i < n; i++) {
base = PyTuple_GET_ITEM(mro, i);
if (PyClass_Check(base))
dict = ((PyClassObject *)base)->cl_dict;
else {
assert(PyType_Check(base));
dict = ((PyTypeObject *)base)->tp_dict;
}
assert(dict && PyDict_Check(dict));
descr = PyDict_GetItem(dict, name);
if (descr != NULL)
break;
}
}
#else
descr = _PyType_Lookup(tp, name);
#endif
Py_XINCREF(descr);
2001-08-02 01:15:00 -03:00
f = NULL;
if (descr != NULL &&
PyType_HasFeature(descr->ob_type, Py_TPFLAGS_HAVE_CLASS)) {
2001-08-02 01:15:00 -03:00
f = descr->ob_type->tp_descr_get;
if (f != NULL && PyDescr_IsData(descr)) {
res = f(descr, obj, (PyObject *)obj->ob_type);
Py_DECREF(descr);
goto done;
}
2001-08-02 01:15:00 -03:00
}
/* Inline _PyObject_GetDictPtr */
dictoffset = tp->tp_dictoffset;
if (dictoffset != 0) {
PyObject *dict;
if (dictoffset < 0) {
2006-02-15 13:27:45 -04:00
Py_ssize_t tsize;
size_t size;
tsize = ((PyVarObject *)obj)->ob_size;
if (tsize < 0)
tsize = -tsize;
size = _PyObject_VAR_SIZE(tp, tsize);
dictoffset += (long)size;
assert(dictoffset > 0);
assert(dictoffset % SIZEOF_VOID_P == 0);
}
dictptr = (PyObject **) ((char *)obj + dictoffset);
dict = *dictptr;
2001-08-02 01:15:00 -03:00
if (dict != NULL) {
2008-01-24 13:58:05 -04:00
Py_INCREF(dict);
res = PyDict_GetItem(dict, name);
2001-08-02 01:15:00 -03:00
if (res != NULL) {
Py_INCREF(res);
Py_XDECREF(descr);
2008-01-24 13:58:05 -04:00
Py_DECREF(dict);
goto done;
2001-08-02 01:15:00 -03:00
}
2008-01-24 13:58:05 -04:00
Py_DECREF(dict);
2001-08-02 01:15:00 -03:00
}
}
if (f != NULL) {
res = f(descr, obj, (PyObject *)Py_TYPE(obj));
Py_DECREF(descr);
goto done;
}
2001-08-02 01:15:00 -03:00
if (descr != NULL) {
res = descr;
/* descr was already increfed above */
goto done;
2001-08-02 01:15:00 -03:00
}
PyErr_Format(PyExc_AttributeError,
"'%.50s' object has no attribute '%.400s'",
tp->tp_name, PyString_AS_STRING(name));
done:
Py_DECREF(name);
return res;
2001-08-02 01:15:00 -03:00
}
int
PyObject_GenericSetAttr(PyObject *obj, PyObject *name, PyObject *value)
{
PyTypeObject *tp = Py_TYPE(obj);
2001-08-02 01:15:00 -03:00
PyObject *descr;
descrsetfunc f;
PyObject **dictptr;
int res = -1;
if (!PyString_Check(name)){
#ifdef Py_USING_UNICODE
/* The Unicode to string conversion is done here because the
existing tp_setattro slots expect a string object as name
and we wouldn't want to break those. */
if (PyUnicode_Check(name)) {
name = PyUnicode_AsEncodedString(name, NULL, NULL);
if (name == NULL)
return -1;
}
else
#endif
{
PyErr_Format(PyExc_TypeError,
"attribute name must be string, not '%.200s'",
Py_TYPE(name)->tp_name);
return -1;
}
}
else
Py_INCREF(name);
2001-08-02 01:15:00 -03:00
if (tp->tp_dict == NULL) {
if (PyType_Ready(tp) < 0)
goto done;
2001-08-02 01:15:00 -03:00
}
descr = _PyType_Lookup(tp, name);
f = NULL;
if (descr != NULL &&
PyType_HasFeature(descr->ob_type, Py_TPFLAGS_HAVE_CLASS)) {
2001-08-02 01:15:00 -03:00
f = descr->ob_type->tp_descr_set;
if (f != NULL && PyDescr_IsData(descr)) {
res = f(descr, obj, value);
goto done;
}
2001-08-02 01:15:00 -03:00
}
dictptr = _PyObject_GetDictPtr(obj);
if (dictptr != NULL) {
PyObject *dict = *dictptr;
if (dict == NULL && value != NULL) {
dict = PyDict_New();
if (dict == NULL)
goto done;
2001-08-02 01:15:00 -03:00
*dictptr = dict;
}
if (dict != NULL) {
2008-01-24 13:58:05 -04:00
Py_INCREF(dict);
2001-08-02 01:15:00 -03:00
if (value == NULL)
res = PyDict_DelItem(dict, name);
else
res = PyDict_SetItem(dict, name, value);
if (res < 0 && PyErr_ExceptionMatches(PyExc_KeyError))
PyErr_SetObject(PyExc_AttributeError, name);
2008-01-24 13:58:05 -04:00
Py_DECREF(dict);
goto done;
2001-08-02 01:15:00 -03:00
}
}
if (f != NULL) {
res = f(descr, obj, value);
goto done;
}
2001-08-02 01:15:00 -03:00
if (descr == NULL) {
PyErr_Format(PyExc_AttributeError,
"'%.100s' object has no attribute '%.200s'",
tp->tp_name, PyString_AS_STRING(name));
goto done;
2001-08-02 01:15:00 -03:00
}
PyErr_Format(PyExc_AttributeError,
"'%.50s' object attribute '%.400s' is read-only",
tp->tp_name, PyString_AS_STRING(name));
done:
Py_DECREF(name);
return res;
}
/* Test a value used as condition, e.g., in a for or if statement.
Return -1 if an error occurred */
int
2000-07-09 12:48:49 -03:00
PyObject_IsTrue(PyObject *v)
{
2006-02-15 13:27:45 -04:00
Py_ssize_t res;
if (v == Py_True)
return 1;
if (v == Py_False)
return 0;
1997-05-02 00:12:38 -03:00
if (v == Py_None)
return 0;
else if (v->ob_type->tp_as_number != NULL &&
v->ob_type->tp_as_number->nb_nonzero != NULL)
res = (*v->ob_type->tp_as_number->nb_nonzero)(v);
else if (v->ob_type->tp_as_mapping != NULL &&
v->ob_type->tp_as_mapping->mp_length != NULL)
res = (*v->ob_type->tp_as_mapping->mp_length)(v);
else if (v->ob_type->tp_as_sequence != NULL &&
v->ob_type->tp_as_sequence->sq_length != NULL)
res = (*v->ob_type->tp_as_sequence->sq_length)(v);
else
return 1;
2006-02-15 13:27:45 -04:00
/* if it is negative, it should be either -1 or -2 */
return (res > 0) ? 1 : Py_SAFE_DOWNCAST(res, Py_ssize_t, int);
1990-12-20 11:06:42 -04:00
}
/* equivalent of 'not v'
1998-04-09 14:53:59 -03:00
Return -1 if an error occurred */
int
2000-07-09 12:48:49 -03:00
PyObject_Not(PyObject *v)
1998-04-09 14:53:59 -03:00
{
int res;
res = PyObject_IsTrue(v);
if (res < 0)
return res;
return res == 0;
}
/* Coerce two numeric types to the "larger" one.
Increment the reference count on each argument.
Return value:
-1 if an error occurred;
0 if the coercion succeeded (and then the reference counts are increased);
1 if no coercion is possible (and no error is raised).
*/
int
2000-07-09 12:48:49 -03:00
PyNumber_CoerceEx(PyObject **pv, PyObject **pw)
{
1997-05-02 00:12:38 -03:00
register PyObject *v = *pv;
register PyObject *w = *pw;
int res;
/* Shortcut only for old-style types */
if (v->ob_type == w->ob_type &&
!PyType_HasFeature(v->ob_type, Py_TPFLAGS_CHECKTYPES))
{
1997-05-02 00:12:38 -03:00
Py_INCREF(v);
Py_INCREF(w);
return 0;
}
if (v->ob_type->tp_as_number && v->ob_type->tp_as_number->nb_coerce) {
res = (*v->ob_type->tp_as_number->nb_coerce)(pv, pw);
if (res <= 0)
return res;
}
if (w->ob_type->tp_as_number && w->ob_type->tp_as_number->nb_coerce) {
res = (*w->ob_type->tp_as_number->nb_coerce)(pw, pv);
if (res <= 0)
return res;
}
return 1;
}
/* Coerce two numeric types to the "larger" one.
Increment the reference count on each argument.
Return -1 and raise an exception if no coercion is possible
(and then no reference count is incremented).
*/
int
2000-07-09 12:48:49 -03:00
PyNumber_Coerce(PyObject **pv, PyObject **pw)
{
int err = PyNumber_CoerceEx(pv, pw);
if (err <= 0)
return err;
1997-05-02 00:12:38 -03:00
PyErr_SetString(PyExc_TypeError, "number coercion failed");
return -1;
}
1990-10-14 09:07:46 -03:00
1995-01-25 20:38:22 -04:00
/* Test whether an object can be called */
int
2000-07-09 12:48:49 -03:00
PyCallable_Check(PyObject *x)
1995-01-25 20:38:22 -04:00
{
if (x == NULL)
return 0;
1997-05-02 00:12:38 -03:00
if (PyInstance_Check(x)) {
PyObject *call = PyObject_GetAttrString(x, "__call__");
1995-01-25 20:38:22 -04:00
if (call == NULL) {
1997-05-02 00:12:38 -03:00
PyErr_Clear();
1995-01-25 20:38:22 -04:00
return 0;
}
/* Could test recursively but don't, for fear of endless
recursion if some joker sets self.__call__ = self */
1997-05-02 00:12:38 -03:00
Py_DECREF(call);
1995-01-25 20:38:22 -04:00
return 1;
}
2001-08-02 01:15:00 -03:00
else {
return x->ob_type->tp_call != NULL;
}
1995-01-25 20:38:22 -04:00
}
/* ------------------------- PyObject_Dir() helpers ------------------------- */
/* Helper for PyObject_Dir.
Merge the __dict__ of aclass into dict, and recursively also all
the __dict__s of aclass's base classes. The order of merging isn't
defined, as it's expected that only the final set of dict keys is
interesting.
Return 0 on success, -1 on error.
*/
static int
merge_class_dict(PyObject* dict, PyObject* aclass)
{
PyObject *classdict;
PyObject *bases;
assert(PyDict_Check(dict));
assert(aclass);
/* Merge in the type's dict (if any). */
classdict = PyObject_GetAttrString(aclass, "__dict__");
if (classdict == NULL)
PyErr_Clear();
else {
int status = PyDict_Update(dict, classdict);
Py_DECREF(classdict);
if (status < 0)
return -1;
}
/* Recursively merge in the base types' (if any) dicts. */
bases = PyObject_GetAttrString(aclass, "__bases__");
if (bases == NULL)
PyErr_Clear();
else {
/* We have no guarantee that bases is a real tuple */
2006-02-15 13:27:45 -04:00
Py_ssize_t i, n;
n = PySequence_Size(bases); /* This better be right */
if (n < 0)
PyErr_Clear();
else {
for (i = 0; i < n; i++) {
int status;
PyObject *base = PySequence_GetItem(bases, i);
if (base == NULL) {
Py_DECREF(bases);
return -1;
}
status = merge_class_dict(dict, base);
Py_DECREF(base);
if (status < 0) {
Py_DECREF(bases);
return -1;
}
}
}
Py_DECREF(bases);
}
return 0;
}
/* Helper for PyObject_Dir.
If obj has an attr named attrname that's a list, merge its string
elements into keys of dict.
Return 0 on success, -1 on error. Errors due to not finding the attr,
or the attr not being a list, are suppressed.
*/
static int
merge_list_attr(PyObject* dict, PyObject* obj, const char *attrname)
{
PyObject *list;
int result = 0;
assert(PyDict_Check(dict));
assert(obj);
assert(attrname);
list = PyObject_GetAttrString(obj, attrname);
if (list == NULL)
PyErr_Clear();
else if (PyList_Check(list)) {
int i;
for (i = 0; i < PyList_GET_SIZE(list); ++i) {
PyObject *item = PyList_GET_ITEM(list, i);
if (PyString_Check(item)) {
result = PyDict_SetItem(dict, item, Py_None);
if (result < 0)
break;
}
}
if (Py_Py3kWarningFlag &&
(strcmp(attrname, "__members__") == 0 ||
strcmp(attrname, "__methods__") == 0)) {
2008-04-27 00:01:45 -03:00
if (PyErr_WarnEx(PyExc_DeprecationWarning,
"__members__ and __methods__ not "
2008-04-27 00:01:45 -03:00
"supported in 3.x", 1) < 0) {
Py_XDECREF(list);
return -1;
}
}
}
Py_XDECREF(list);
return result;
}
/* Helper for PyObject_Dir without arguments: returns the local scope. */
static PyObject *
_dir_locals(void)
{
PyObject *names;
PyObject *locals = PyEval_GetLocals();
if (locals == NULL) {
PyErr_SetString(PyExc_SystemError, "frame does not exist");
return NULL;
}
names = PyMapping_Keys(locals);
if (!names)
return NULL;
if (!PyList_Check(names)) {
PyErr_Format(PyExc_TypeError,
"dir(): expected keys() of locals to be a list, "
"not '%.200s'", Py_TYPE(names)->tp_name);
Py_DECREF(names);
return NULL;
}
/* the locals don't need to be DECREF'd */
return names;
}
/* Helper for PyObject_Dir of type objects: returns __dict__ and __bases__.
We deliberately don't suck up its __class__, as methods belonging to the
metaclass would probably be more confusing than helpful.
*/
static PyObject *
_specialized_dir_type(PyObject *obj)
{
PyObject *result = NULL;
PyObject *dict = PyDict_New();
if (dict != NULL && merge_class_dict(dict, obj) == 0)
result = PyDict_Keys(dict);
Py_XDECREF(dict);
return result;
}
/* Helper for PyObject_Dir of module objects: returns the module's __dict__. */
static PyObject *
_specialized_dir_module(PyObject *obj)
{
PyObject *result = NULL;
PyObject *dict = PyObject_GetAttrString(obj, "__dict__");
if (dict != NULL) {
if (PyDict_Check(dict))
result = PyDict_Keys(dict);
else {
char *name = PyModule_GetName(obj);
if (name)
PyErr_Format(PyExc_TypeError,
"%.200s.__dict__ is not a dictionary",
name);
}
}
Py_XDECREF(dict);
return result;
}
/* Helper for PyObject_Dir of generic objects: returns __dict__, __class__,
and recursively up the __class__.__bases__ chain.
*/
static PyObject *
_generic_dir(PyObject *obj)
{
PyObject *result = NULL;
PyObject *dict = NULL;
PyObject *itsclass = NULL;
/* Get __dict__ (which may or may not be a real dict...) */
dict = PyObject_GetAttrString(obj, "__dict__");
if (dict == NULL) {
PyErr_Clear();
dict = PyDict_New();
}
else if (!PyDict_Check(dict)) {
Py_DECREF(dict);
dict = PyDict_New();
}
else {
/* Copy __dict__ to avoid mutating it. */
PyObject *temp = PyDict_Copy(dict);
Py_DECREF(dict);
dict = temp;
}
if (dict == NULL)
goto error;
/* Merge in __members__ and __methods__ (if any).
* This is removed in Python 3000. */
if (merge_list_attr(dict, obj, "__members__") < 0)
goto error;
if (merge_list_attr(dict, obj, "__methods__") < 0)
goto error;
/* Merge in attrs reachable from its class. */
itsclass = PyObject_GetAttrString(obj, "__class__");
if (itsclass == NULL)
/* XXX(tomer): Perhaps fall back to obj->ob_type if no
__class__ exists? */
PyErr_Clear();
else {
if (merge_class_dict(dict, itsclass) != 0)
goto error;
}
result = PyDict_Keys(dict);
/* fall through */
error:
Py_XDECREF(itsclass);
Py_XDECREF(dict);
return result;
}
/* Helper for PyObject_Dir: object introspection.
This calls one of the above specialized versions if no __dir__ method
exists. */
static PyObject *
_dir_object(PyObject *obj)
{
2007-03-13 04:23:16 -03:00
PyObject *result = NULL;
PyObject *dirfunc = PyObject_GetAttrString((PyObject *)obj->ob_type,
"__dir__");
assert(obj);
if (dirfunc == NULL) {
/* use default implementation */
PyErr_Clear();
if (PyModule_Check(obj))
result = _specialized_dir_module(obj);
else if (PyType_Check(obj) || PyClass_Check(obj))
result = _specialized_dir_type(obj);
else
result = _generic_dir(obj);
}
else {
/* use __dir__ */
result = PyObject_CallFunctionObjArgs(dirfunc, obj, NULL);
Py_DECREF(dirfunc);
if (result == NULL)
return NULL;
/* result must be a list */
/* XXX(gbrandl): could also check if all items are strings */
if (!PyList_Check(result)) {
PyErr_Format(PyExc_TypeError,
"__dir__() must return a list, not %.200s",
Py_TYPE(result)->tp_name);
Py_DECREF(result);
result = NULL;
}
}
return result;
}
/* Implementation of dir() -- if obj is NULL, returns the names in the current
(local) scope. Otherwise, performs introspection of the object: returns a
sorted list of attribute names (supposedly) accessible from the object
*/
PyObject *
PyObject_Dir(PyObject *obj)
{
PyObject * result;
if (obj == NULL)
/* no object -- introspect the locals */
result = _dir_locals();
else
/* object -- introspect the object */
result = _dir_object(obj);
assert(result == NULL || PyList_Check(result));
if (result != NULL && PyList_Sort(result) != 0) {
/* sorting the list failed */
Py_DECREF(result);
result = NULL;
}
return result;
}
1995-01-25 20:38:22 -04:00
1990-10-14 09:07:46 -03:00
/*
NoObject is usable as a non-NULL undefined value, used by the macro None.
There is (and should be!) no way to create other objects of this type,
1990-12-20 11:06:42 -04:00
so there is exactly one (which is indestructible, by the way).
(XXX This type and the type of NotImplemented below should be unified.)
1990-10-14 09:07:46 -03:00
*/
1992-03-27 13:26:13 -04:00
/* ARGSUSED */
1997-05-02 00:12:38 -03:00
static PyObject *
2000-07-09 12:48:49 -03:00
none_repr(PyObject *op)
1990-12-20 11:06:42 -04:00
{
return PyString_FromString("None");
1990-10-14 09:07:46 -03:00
}
/* ARGUSED */
static void
none_dealloc(PyObject* ignore)
{
/* This should never get called, but we also don't want to SEGV if
* we accidentally decref None out of existence.
*/
2002-08-07 13:21:51 -03:00
Py_FatalError("deallocating None");
}
static PyTypeObject PyNone_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"NoneType",
1990-10-14 09:07:46 -03:00
0,
0,
none_dealloc, /*tp_dealloc*/ /*never called*/
0, /*tp_print*/
1990-12-20 11:06:42 -04:00
0, /*tp_getattr*/
0, /*tp_setattr*/
0, /*tp_compare*/
none_repr, /*tp_repr*/
1990-12-20 11:06:42 -04:00
0, /*tp_as_number*/
0, /*tp_as_sequence*/
0, /*tp_as_mapping*/
(hashfunc)_Py_HashPointer, /*tp_hash */
1990-10-14 09:07:46 -03:00
};
1997-05-02 00:12:38 -03:00
PyObject _Py_NoneStruct = {
_PyObject_EXTRA_INIT
1, &PyNone_Type
1990-10-14 09:07:46 -03:00
};
/* NotImplemented is an object that can be used to signal that an
operation is not implemented for the given type combination. */
static PyObject *
NotImplemented_repr(PyObject *op)
{
return PyString_FromString("NotImplemented");
}
static PyTypeObject PyNotImplemented_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"NotImplementedType",
0,
0,
none_dealloc, /*tp_dealloc*/ /*never called*/
0, /*tp_print*/
0, /*tp_getattr*/
0, /*tp_setattr*/
0, /*tp_compare*/
NotImplemented_repr, /*tp_repr*/
0, /*tp_as_number*/
0, /*tp_as_sequence*/
0, /*tp_as_mapping*/
0, /*tp_hash */
};
PyObject _Py_NotImplementedStruct = {
_PyObject_EXTRA_INIT
1, &PyNotImplemented_Type
};
void
_Py_ReadyTypes(void)
{
if (PyType_Ready(&PyType_Type) < 0)
Py_FatalError("Can't initialize type type");
if (PyType_Ready(&_PyWeakref_RefType) < 0)
Py_FatalError("Can't initialize weakref type");
2009-04-18 23:32:42 -03:00
if (PyType_Ready(&_PyWeakref_CallableProxyType) < 0)
Py_FatalError("Can't initialize callable weakref proxy type");
if (PyType_Ready(&_PyWeakref_ProxyType) < 0)
Py_FatalError("Can't initialize weakref proxy type");
if (PyType_Ready(&PyBool_Type) < 0)
Py_FatalError("Can't initialize bool type");
if (PyType_Ready(&PyString_Type) < 0)
Py_FatalError("Can't initialize str type");
if (PyType_Ready(&PyByteArray_Type) < 0)
2009-04-18 23:40:43 -03:00
Py_FatalError("Can't initialize bytearray type");
Merged revisions 61750,61752,61754,61756,61760,61763,61768,61772,61775,61805,61809,61812,61819,61917,61920,61930,61933-61934 via svnmerge from svn+ssh://pythondev@svn.python.org/python/branches/trunk-bytearray ........ r61750 | christian.heimes | 2008-03-22 20:47:44 +0100 (Sat, 22 Mar 2008) | 1 line Copied files from py3k w/o modifications ........ r61752 | christian.heimes | 2008-03-22 20:53:20 +0100 (Sat, 22 Mar 2008) | 7 lines Take One * Added initialization code, warnings, flags etc. to the appropriate places * Added new buffer interface to string type * Modified tests * Modified Makefile.pre.in to compile the new files * Added bytesobject.c to Python.h ........ r61754 | christian.heimes | 2008-03-22 21:22:19 +0100 (Sat, 22 Mar 2008) | 2 lines Disabled bytearray.extend for now since it causes an infinite recursion Fixed serveral unit tests ........ r61756 | christian.heimes | 2008-03-22 21:43:38 +0100 (Sat, 22 Mar 2008) | 5 lines Added PyBytes support to several places: str + bytearray ord(bytearray) bytearray(str, encoding) ........ r61760 | christian.heimes | 2008-03-22 21:56:32 +0100 (Sat, 22 Mar 2008) | 1 line Fixed more unit tests related to type('') is not unicode ........ r61763 | christian.heimes | 2008-03-22 22:20:28 +0100 (Sat, 22 Mar 2008) | 2 lines Fixed more unit tests Fixed bytearray.extend ........ r61768 | christian.heimes | 2008-03-22 22:40:50 +0100 (Sat, 22 Mar 2008) | 1 line Implemented old buffer interface for bytearray ........ r61772 | christian.heimes | 2008-03-22 23:24:52 +0100 (Sat, 22 Mar 2008) | 1 line Added backport of the io module ........ r61775 | christian.heimes | 2008-03-23 03:50:49 +0100 (Sun, 23 Mar 2008) | 1 line Fix str assignement to bytearray. Assignment of a str of size 1 is interpreted as a single byte ........ r61805 | christian.heimes | 2008-03-23 19:33:48 +0100 (Sun, 23 Mar 2008) | 3 lines Fixed more tests Fixed bytearray() comparsion with unicode() Fixed iterator assignment of bytearray ........ r61809 | christian.heimes | 2008-03-23 21:02:21 +0100 (Sun, 23 Mar 2008) | 2 lines str(bytesarray()) now returns the bytes and not the representation of the bytearray object Enabled and fixed more unit tests ........ r61812 | christian.heimes | 2008-03-23 21:53:08 +0100 (Sun, 23 Mar 2008) | 3 lines Clear error PyNumber_AsSsize_t() fails Use CHARMASK for ob_svall access disabled a test with memoryview again ........ r61819 | christian.heimes | 2008-03-23 23:05:57 +0100 (Sun, 23 Mar 2008) | 1 line Untested updates to the PCBuild directory ........ r61917 | christian.heimes | 2008-03-26 00:57:06 +0100 (Wed, 26 Mar 2008) | 1 line The type system of Python 2.6 has subtle differences to 3.0's. I've removed the Py_TPFLAGS_BASETYPE flags from bytearray for now. bytearray can't be subclasses until the issues with bytearray subclasses are fixed. ........ r61920 | christian.heimes | 2008-03-26 01:44:08 +0100 (Wed, 26 Mar 2008) | 2 lines Disabled last failing test I don't understand what the test is testing and how it suppose to work. Ka-Ping, please check it out. ........ r61930 | christian.heimes | 2008-03-26 12:46:18 +0100 (Wed, 26 Mar 2008) | 1 line Re-enabled bytes warning code ........ r61933 | christian.heimes | 2008-03-26 13:20:46 +0100 (Wed, 26 Mar 2008) | 1 line Fixed a bug in the new buffer protocol. The buffer slots weren't copied into a subclass. ........ r61934 | christian.heimes | 2008-03-26 13:25:09 +0100 (Wed, 26 Mar 2008) | 1 line Re-enabled bytearray subclassing - all tests are passing. ........
2008-03-26 09:49:49 -03:00
if (PyType_Ready(&PyList_Type) < 0)
2009-04-18 23:40:43 -03:00
Py_FatalError("Can't initialize list type");
if (PyType_Ready(&PyNone_Type) < 0)
Py_FatalError("Can't initialize None type");
if (PyType_Ready(&PyNotImplemented_Type) < 0)
Py_FatalError("Can't initialize NotImplemented type");
if (PyType_Ready(&PyTraceBack_Type) < 0)
Py_FatalError("Can't initialize traceback type");
if (PyType_Ready(&PySuper_Type) < 0)
Py_FatalError("Can't initialize super type");
if (PyType_Ready(&PyBaseObject_Type) < 0)
Py_FatalError("Can't initialize object type");
if (PyType_Ready(&PyRange_Type) < 0)
Py_FatalError("Can't initialize xrange type");
if (PyType_Ready(&PyDict_Type) < 0)
Py_FatalError("Can't initialize dict type");
if (PyType_Ready(&PySet_Type) < 0)
Py_FatalError("Can't initialize set type");
if (PyType_Ready(&PyUnicode_Type) < 0)
Py_FatalError("Can't initialize unicode type");
if (PyType_Ready(&PySlice_Type) < 0)
Py_FatalError("Can't initialize slice type");
if (PyType_Ready(&PyStaticMethod_Type) < 0)
Py_FatalError("Can't initialize static method type");
#ifndef WITHOUT_COMPLEX
if (PyType_Ready(&PyComplex_Type) < 0)
Py_FatalError("Can't initialize complex type");
#endif
if (PyType_Ready(&PyFloat_Type) < 0)
2009-04-18 17:25:25 -03:00
Py_FatalError("Can't initialize float type");
if (PyType_Ready(&PyBuffer_Type) < 0)
Py_FatalError("Can't initialize buffer type");
if (PyType_Ready(&PyLong_Type) < 0)
Py_FatalError("Can't initialize long type");
if (PyType_Ready(&PyInt_Type) < 0)
Py_FatalError("Can't initialize int type");
if (PyType_Ready(&PyFrozenSet_Type) < 0)
Py_FatalError("Can't initialize frozenset type");
if (PyType_Ready(&PyProperty_Type) < 0)
Py_FatalError("Can't initialize property type");
if (PyType_Ready(&PyMemoryView_Type) < 0)
Py_FatalError("Can't initialize memoryview type");
if (PyType_Ready(&PyTuple_Type) < 0)
2009-04-18 17:25:25 -03:00
Py_FatalError("Can't initialize tuple type");
if (PyType_Ready(&PyEnum_Type) < 0)
2009-04-18 17:25:25 -03:00
Py_FatalError("Can't initialize enumerate type");
if (PyType_Ready(&PyReversed_Type) < 0)
2009-04-18 17:25:25 -03:00
Py_FatalError("Can't initialize reversed type");
if (PyType_Ready(&PyCode_Type) < 0)
Py_FatalError("Can't initialize code type");
if (PyType_Ready(&PyFrame_Type) < 0)
Py_FatalError("Can't initialize frame type");
if (PyType_Ready(&PyCFunction_Type) < 0)
Py_FatalError("Can't initialize builtin function type");
if (PyType_Ready(&PyMethod_Type) < 0)
Py_FatalError("Can't initialize method type");
if (PyType_Ready(&PyFunction_Type) < 0)
Py_FatalError("Can't initialize function type");
if (PyType_Ready(&PyClass_Type) < 0)
Py_FatalError("Can't initialize class type");
if (PyType_Ready(&PyDictProxy_Type) < 0)
Py_FatalError("Can't initialize dict proxy type");
if (PyType_Ready(&PyGen_Type) < 0)
Py_FatalError("Can't initialize generator type");
if (PyType_Ready(&PyGetSetDescr_Type) < 0)
Py_FatalError("Can't initialize get-set descriptor type");
if (PyType_Ready(&PyWrapperDescr_Type) < 0)
Py_FatalError("Can't initialize wrapper type");
if (PyType_Ready(&PyInstance_Type) < 0)
Py_FatalError("Can't initialize instance type");
if (PyType_Ready(&PyEllipsis_Type) < 0)
Py_FatalError("Can't initialize ellipsis type");
if (PyType_Ready(&PyMemberDescr_Type) < 0)
Py_FatalError("Can't initialize member descriptor type");
if (PyType_Ready(&PyFile_Type) < 0)
Py_FatalError("Can't initialize file type");
}
1990-10-14 09:07:46 -03:00
#ifdef Py_TRACE_REFS
1990-10-14 09:07:46 -03:00
void
2000-07-09 12:48:49 -03:00
_Py_NewReference(PyObject *op)
1990-10-14 09:07:46 -03:00
{
_Py_INC_REFTOTAL;
1990-10-14 09:07:46 -03:00
op->ob_refcnt = 1;
_Py_AddToAllObjects(op, 1);
_Py_INC_TPALLOCS(op);
1990-10-14 09:07:46 -03:00
}
void
2000-07-09 12:48:49 -03:00
_Py_ForgetReference(register PyObject *op)
1990-10-14 09:07:46 -03:00
{
#ifdef SLOW_UNREF_CHECK
register PyObject *p;
#endif
if (op->ob_refcnt < 0)
1997-05-02 00:12:38 -03:00
Py_FatalError("UNREF negative refcnt");
if (op == &refchain ||
op->_ob_prev->_ob_next != op || op->_ob_next->_ob_prev != op)
1997-05-02 00:12:38 -03:00
Py_FatalError("UNREF invalid object");
#ifdef SLOW_UNREF_CHECK
1990-12-20 11:06:42 -04:00
for (p = refchain._ob_next; p != &refchain; p = p->_ob_next) {
if (p == op)
break;
}
if (p == &refchain) /* Not found */
1997-05-02 00:12:38 -03:00
Py_FatalError("UNREF unknown object");
#endif
1990-10-14 09:07:46 -03:00
op->_ob_next->_ob_prev = op->_ob_prev;
op->_ob_prev->_ob_next = op->_ob_next;
op->_ob_next = op->_ob_prev = NULL;
_Py_INC_TPFREES(op);
1990-12-20 11:06:42 -04:00
}
void
2000-07-09 12:48:49 -03:00
_Py_Dealloc(PyObject *op)
1990-12-20 11:06:42 -04:00
{
destructor dealloc = Py_TYPE(op)->tp_dealloc;
1997-05-02 00:12:38 -03:00
_Py_ForgetReference(op);
(*dealloc)(op);
1990-10-14 09:07:46 -03:00
}
/* Print all live objects. Because PyObject_Print is called, the
* interpreter must be in a healthy state.
*/
void
2000-07-09 12:48:49 -03:00
_Py_PrintReferences(FILE *fp)
1990-10-14 09:07:46 -03:00
{
1997-05-02 00:12:38 -03:00
PyObject *op;
fprintf(fp, "Remaining objects:\n");
1990-10-14 09:07:46 -03:00
for (op = refchain._ob_next; op != &refchain; op = op->_ob_next) {
fprintf(fp, "%p [%" PY_FORMAT_SIZE_T "d] ", op, op->ob_refcnt);
1997-05-02 00:12:38 -03:00
if (PyObject_Print(op, fp, 0) != 0)
PyErr_Clear();
1990-10-14 09:07:46 -03:00
putc('\n', fp);
}
}
/* Print the addresses of all live objects. Unlike _Py_PrintReferences, this
* doesn't make any calls to the Python C API, so is always safe to call.
*/
void
_Py_PrintReferenceAddresses(FILE *fp)
{
PyObject *op;
fprintf(fp, "Remaining object addresses:\n");
for (op = refchain._ob_next; op != &refchain; op = op->_ob_next)
fprintf(fp, "%p [%" PY_FORMAT_SIZE_T "d] %s\n", op,
op->ob_refcnt, Py_TYPE(op)->tp_name);
}
PyObject *
2000-07-09 12:48:49 -03:00
_Py_GetObjects(PyObject *self, PyObject *args)
{
int i, n;
PyObject *t = NULL;
PyObject *res, *op;
if (!PyArg_ParseTuple(args, "i|O", &n, &t))
return NULL;
op = refchain._ob_next;
res = PyList_New(0);
if (res == NULL)
return NULL;
for (i = 0; (n == 0 || i < n) && op != &refchain; i++) {
while (op == self || op == args || op == res || op == t ||
(t != NULL && Py_TYPE(op) != (PyTypeObject *) t)) {
op = op->_ob_next;
if (op == &refchain)
return res;
}
if (PyList_Append(res, op) < 0) {
Py_DECREF(res);
return NULL;
}
op = op->_ob_next;
}
return res;
}
1990-10-14 09:07:46 -03:00
#endif
1996-01-11 21:24:09 -04:00
/* Hack to force loading of capsule.o */
PyTypeObject *_Py_capsule_hack = &PyCapsule_Type;
1996-01-11 21:24:09 -04:00
/* Hack to force loading of cobject.o */
1996-12-05 17:58:58 -04:00
PyTypeObject *_Py_cobject_hack = &PyCObject_Type;
/* Hack to force loading of abstract.o */
2006-02-15 13:27:45 -04:00
Py_ssize_t (*_Py_abstract_hack)(PyObject *) = PyObject_Size;
2000-08-16 09:27:23 -03:00
/* Python's malloc wrappers (see pymem.h) */
void *
2000-07-09 12:48:49 -03:00
PyMem_Malloc(size_t nbytes)
{
return PyMem_MALLOC(nbytes);
}
void *
PyMem_Realloc(void *p, size_t nbytes)
{
return PyMem_REALLOC(p, nbytes);
}
void
PyMem_Free(void *p)
{
PyMem_FREE(p);
}
/* These methods are used to control infinite recursion in repr, str, print,
etc. Container objects that may recursively contain themselves,
e.g. builtin dictionaries and lists, should used Py_ReprEnter() and
Py_ReprLeave() to avoid infinite recursion.
Py_ReprEnter() returns 0 the first time it is called for a particular
object and 1 every time thereafter. It returns -1 if an exception
occurred. Py_ReprLeave() has no return value.
See dictobject.c and listobject.c for examples of use.
*/
#define KEY "Py_Repr"
int
2000-07-09 12:48:49 -03:00
Py_ReprEnter(PyObject *obj)
{
PyObject *dict;
PyObject *list;
2006-02-15 13:27:45 -04:00
Py_ssize_t i;
dict = PyThreadState_GetDict();
if (dict == NULL)
return 0;
list = PyDict_GetItemString(dict, KEY);
if (list == NULL) {
list = PyList_New(0);
if (list == NULL)
return -1;
if (PyDict_SetItemString(dict, KEY, list) < 0)
return -1;
Py_DECREF(list);
}
i = PyList_GET_SIZE(list);
while (--i >= 0) {
if (PyList_GET_ITEM(list, i) == obj)
return 1;
}
PyList_Append(list, obj);
return 0;
}
void
2000-07-09 12:48:49 -03:00
Py_ReprLeave(PyObject *obj)
{
PyObject *dict;
PyObject *list;
2006-02-15 13:27:45 -04:00
Py_ssize_t i;
dict = PyThreadState_GetDict();
if (dict == NULL)
return;
list = PyDict_GetItemString(dict, KEY);
if (list == NULL || !PyList_Check(list))
return;
i = PyList_GET_SIZE(list);
/* Count backwards because we always expect obj to be list[-1] */
while (--i >= 0) {
if (PyList_GET_ITEM(list, i) == obj) {
PyList_SetSlice(list, i, i + 1, NULL);
break;
}
}
}
/* Trashcan support. */
/* Current call-stack depth of tp_dealloc calls. */
int _PyTrash_delete_nesting = 0;
/* List of objects that still need to be cleaned up, singly linked via their
* gc headers' gc_prev pointers.
*/
PyObject *_PyTrash_delete_later = NULL;
/* Add op to the _PyTrash_delete_later list. Called when the current
* call-stack depth gets large. op must be a currently untracked gc'ed
* object, with refcount 0. Py_DECREF must already have been called on it.
*/
void
2000-07-09 12:48:49 -03:00
_PyTrash_deposit_object(PyObject *op)
{
assert(PyObject_IS_GC(op));
assert(_Py_AS_GC(op)->gc.gc_refs == _PyGC_REFS_UNTRACKED);
assert(op->ob_refcnt == 0);
_Py_AS_GC(op)->gc.gc_prev = (PyGC_Head *)_PyTrash_delete_later;
_PyTrash_delete_later = op;
}
/* Dealloccate all the objects in the _PyTrash_delete_later list. Called when
* the call-stack unwinds again.
*/
void
2000-07-09 12:48:49 -03:00
_PyTrash_destroy_chain(void)
{
while (_PyTrash_delete_later) {
PyObject *op = _PyTrash_delete_later;
destructor dealloc = Py_TYPE(op)->tp_dealloc;
_PyTrash_delete_later =
(PyObject*) _Py_AS_GC(op)->gc.gc_prev;
/* Call the deallocator directly. This used to try to
* fool Py_DECREF into calling it indirectly, but
* Py_DECREF was already called on this object, and in
* assorted non-release builds calling Py_DECREF again ends
* up distorting allocation statistics.
*/
assert(op->ob_refcnt == 0);
++_PyTrash_delete_nesting;
(*dealloc)(op);
--_PyTrash_delete_nesting;
}
}
#ifdef __cplusplus
}
#endif