2004-07-01 08:01:35 -03:00
|
|
|
------------------------------------------------------------------------
|
|
|
|
-- subtract.decTest -- decimal subtraction --
|
2008-07-27 03:39:07 -03:00
|
|
|
-- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. --
|
2004-07-01 08:01:35 -03:00
|
|
|
------------------------------------------------------------------------
|
|
|
|
-- Please see the document "General Decimal Arithmetic Testcases" --
|
|
|
|
-- at http://www2.hursley.ibm.com/decimal for the description of --
|
|
|
|
-- these testcases. --
|
|
|
|
-- --
|
|
|
|
-- These testcases are experimental ('beta' versions), and they --
|
|
|
|
-- may contain errors. They are offered on an as-is basis. In --
|
|
|
|
-- particular, achieving the same results as the tests here is not --
|
|
|
|
-- a guarantee that an implementation complies with any Standard --
|
|
|
|
-- or specification. The tests are not exhaustive. --
|
|
|
|
-- --
|
|
|
|
-- Please send comments, suggestions, and corrections to the author: --
|
|
|
|
-- Mike Cowlishaw, IBM Fellow --
|
|
|
|
-- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK --
|
|
|
|
-- mfc@uk.ibm.com --
|
|
|
|
------------------------------------------------------------------------
|
2009-10-08 13:28:39 -03:00
|
|
|
version: 2.59
|
2004-07-01 08:01:35 -03:00
|
|
|
|
|
|
|
extended: 1
|
|
|
|
precision: 9
|
|
|
|
rounding: half_up
|
|
|
|
maxExponent: 384
|
|
|
|
minexponent: -383
|
|
|
|
|
|
|
|
-- [first group are 'quick confidence check']
|
|
|
|
subx001 subtract 0 0 -> '0'
|
|
|
|
subx002 subtract 1 1 -> '0'
|
|
|
|
subx003 subtract 1 2 -> '-1'
|
|
|
|
subx004 subtract 2 1 -> '1'
|
|
|
|
subx005 subtract 2 2 -> '0'
|
|
|
|
subx006 subtract 3 2 -> '1'
|
|
|
|
subx007 subtract 2 3 -> '-1'
|
|
|
|
|
|
|
|
subx011 subtract -0 0 -> '-0'
|
|
|
|
subx012 subtract -1 1 -> '-2'
|
|
|
|
subx013 subtract -1 2 -> '-3'
|
|
|
|
subx014 subtract -2 1 -> '-3'
|
|
|
|
subx015 subtract -2 2 -> '-4'
|
|
|
|
subx016 subtract -3 2 -> '-5'
|
|
|
|
subx017 subtract -2 3 -> '-5'
|
|
|
|
|
|
|
|
subx021 subtract 0 -0 -> '0'
|
|
|
|
subx022 subtract 1 -1 -> '2'
|
|
|
|
subx023 subtract 1 -2 -> '3'
|
|
|
|
subx024 subtract 2 -1 -> '3'
|
|
|
|
subx025 subtract 2 -2 -> '4'
|
|
|
|
subx026 subtract 3 -2 -> '5'
|
|
|
|
subx027 subtract 2 -3 -> '5'
|
|
|
|
|
|
|
|
subx030 subtract 11 1 -> 10
|
|
|
|
subx031 subtract 10 1 -> 9
|
|
|
|
subx032 subtract 9 1 -> 8
|
|
|
|
subx033 subtract 1 1 -> 0
|
|
|
|
subx034 subtract 0 1 -> -1
|
|
|
|
subx035 subtract -1 1 -> -2
|
|
|
|
subx036 subtract -9 1 -> -10
|
|
|
|
subx037 subtract -10 1 -> -11
|
|
|
|
subx038 subtract -11 1 -> -12
|
|
|
|
|
|
|
|
subx040 subtract '5.75' '3.3' -> '2.45'
|
|
|
|
subx041 subtract '5' '-3' -> '8'
|
|
|
|
subx042 subtract '-5' '-3' -> '-2'
|
|
|
|
subx043 subtract '-7' '2.5' -> '-9.5'
|
|
|
|
subx044 subtract '0.7' '0.3' -> '0.4'
|
|
|
|
subx045 subtract '1.3' '0.3' -> '1.0'
|
|
|
|
subx046 subtract '1.25' '1.25' -> '0.00'
|
|
|
|
|
|
|
|
subx050 subtract '1.23456789' '1.00000000' -> '0.23456789'
|
|
|
|
subx051 subtract '1.23456789' '1.00000089' -> '0.23456700'
|
|
|
|
subx052 subtract '0.5555555559' '0.0000000001' -> '0.555555556' Inexact Rounded
|
|
|
|
subx053 subtract '0.5555555559' '0.0000000005' -> '0.555555555' Inexact Rounded
|
|
|
|
subx054 subtract '0.4444444444' '0.1111111111' -> '0.333333333' Inexact Rounded
|
|
|
|
subx055 subtract '1.0000000000' '0.00000001' -> '0.999999990' Rounded
|
|
|
|
subx056 subtract '0.4444444444999' '0' -> '0.444444444' Inexact Rounded
|
|
|
|
subx057 subtract '0.4444444445000' '0' -> '0.444444445' Inexact Rounded
|
|
|
|
|
|
|
|
subx060 subtract '70' '10000e+9' -> '-1.00000000E+13' Inexact Rounded
|
|
|
|
subx061 subtract '700' '10000e+9' -> '-1.00000000E+13' Inexact Rounded
|
|
|
|
subx062 subtract '7000' '10000e+9' -> '-9.99999999E+12' Inexact Rounded
|
|
|
|
subx063 subtract '70000' '10000e+9' -> '-9.99999993E+12' Rounded
|
|
|
|
subx064 subtract '700000' '10000e+9' -> '-9.99999930E+12' Rounded
|
|
|
|
-- symmetry:
|
|
|
|
subx065 subtract '10000e+9' '70' -> '1.00000000E+13' Inexact Rounded
|
|
|
|
subx066 subtract '10000e+9' '700' -> '1.00000000E+13' Inexact Rounded
|
|
|
|
subx067 subtract '10000e+9' '7000' -> '9.99999999E+12' Inexact Rounded
|
|
|
|
subx068 subtract '10000e+9' '70000' -> '9.99999993E+12' Rounded
|
|
|
|
subx069 subtract '10000e+9' '700000' -> '9.99999930E+12' Rounded
|
|
|
|
|
|
|
|
-- change precision
|
|
|
|
subx080 subtract '10000e+9' '70000' -> '9.99999993E+12' Rounded
|
|
|
|
precision: 6
|
|
|
|
subx081 subtract '10000e+9' '70000' -> '1.00000E+13' Inexact Rounded
|
|
|
|
precision: 9
|
|
|
|
|
|
|
|
-- some of the next group are really constructor tests
|
|
|
|
subx090 subtract '00.0' '0.0' -> '0.0'
|
|
|
|
subx091 subtract '00.0' '0.00' -> '0.00'
|
|
|
|
subx092 subtract '0.00' '00.0' -> '0.00'
|
|
|
|
subx093 subtract '00.0' '0.00' -> '0.00'
|
|
|
|
subx094 subtract '0.00' '00.0' -> '0.00'
|
|
|
|
subx095 subtract '3' '.3' -> '2.7'
|
|
|
|
subx096 subtract '3.' '.3' -> '2.7'
|
|
|
|
subx097 subtract '3.0' '.3' -> '2.7'
|
|
|
|
subx098 subtract '3.00' '.3' -> '2.70'
|
|
|
|
subx099 subtract '3' '3' -> '0'
|
|
|
|
subx100 subtract '3' '+3' -> '0'
|
|
|
|
subx101 subtract '3' '-3' -> '6'
|
|
|
|
subx102 subtract '3' '0.3' -> '2.7'
|
|
|
|
subx103 subtract '3.' '0.3' -> '2.7'
|
|
|
|
subx104 subtract '3.0' '0.3' -> '2.7'
|
|
|
|
subx105 subtract '3.00' '0.3' -> '2.70'
|
|
|
|
subx106 subtract '3' '3.0' -> '0.0'
|
|
|
|
subx107 subtract '3' '+3.0' -> '0.0'
|
|
|
|
subx108 subtract '3' '-3.0' -> '6.0'
|
|
|
|
|
|
|
|
-- the above all from add; massaged and extended. Now some new ones...
|
|
|
|
-- [particularly important for comparisons]
|
|
|
|
-- NB: -xE-8 below were non-exponents pre-ANSI X3-274, and -1E-7 or 0E-7
|
|
|
|
-- with input rounding.
|
|
|
|
subx120 subtract '10.23456784' '10.23456789' -> '-5E-8'
|
|
|
|
subx121 subtract '10.23456785' '10.23456789' -> '-4E-8'
|
|
|
|
subx122 subtract '10.23456786' '10.23456789' -> '-3E-8'
|
|
|
|
subx123 subtract '10.23456787' '10.23456789' -> '-2E-8'
|
|
|
|
subx124 subtract '10.23456788' '10.23456789' -> '-1E-8'
|
|
|
|
subx125 subtract '10.23456789' '10.23456789' -> '0E-8'
|
|
|
|
subx126 subtract '10.23456790' '10.23456789' -> '1E-8'
|
|
|
|
subx127 subtract '10.23456791' '10.23456789' -> '2E-8'
|
|
|
|
subx128 subtract '10.23456792' '10.23456789' -> '3E-8'
|
|
|
|
subx129 subtract '10.23456793' '10.23456789' -> '4E-8'
|
|
|
|
subx130 subtract '10.23456794' '10.23456789' -> '5E-8'
|
|
|
|
subx131 subtract '10.23456781' '10.23456786' -> '-5E-8'
|
|
|
|
subx132 subtract '10.23456782' '10.23456786' -> '-4E-8'
|
|
|
|
subx133 subtract '10.23456783' '10.23456786' -> '-3E-8'
|
|
|
|
subx134 subtract '10.23456784' '10.23456786' -> '-2E-8'
|
|
|
|
subx135 subtract '10.23456785' '10.23456786' -> '-1E-8'
|
|
|
|
subx136 subtract '10.23456786' '10.23456786' -> '0E-8'
|
|
|
|
subx137 subtract '10.23456787' '10.23456786' -> '1E-8'
|
|
|
|
subx138 subtract '10.23456788' '10.23456786' -> '2E-8'
|
|
|
|
subx139 subtract '10.23456789' '10.23456786' -> '3E-8'
|
|
|
|
subx140 subtract '10.23456790' '10.23456786' -> '4E-8'
|
|
|
|
subx141 subtract '10.23456791' '10.23456786' -> '5E-8'
|
|
|
|
subx142 subtract '1' '0.999999999' -> '1E-9'
|
|
|
|
subx143 subtract '0.999999999' '1' -> '-1E-9'
|
|
|
|
subx144 subtract '-10.23456780' '-10.23456786' -> '6E-8'
|
|
|
|
subx145 subtract '-10.23456790' '-10.23456786' -> '-4E-8'
|
|
|
|
subx146 subtract '-10.23456791' '-10.23456786' -> '-5E-8'
|
|
|
|
|
|
|
|
precision: 3
|
|
|
|
subx150 subtract '12345678900000' '9999999999999' -> 2.35E+12 Inexact Rounded
|
|
|
|
subx151 subtract '9999999999999' '12345678900000' -> -2.35E+12 Inexact Rounded
|
|
|
|
precision: 6
|
|
|
|
subx152 subtract '12345678900000' '9999999999999' -> 2.34568E+12 Inexact Rounded
|
|
|
|
subx153 subtract '9999999999999' '12345678900000' -> -2.34568E+12 Inexact Rounded
|
|
|
|
precision: 9
|
|
|
|
subx154 subtract '12345678900000' '9999999999999' -> 2.34567890E+12 Inexact Rounded
|
|
|
|
subx155 subtract '9999999999999' '12345678900000' -> -2.34567890E+12 Inexact Rounded
|
|
|
|
precision: 12
|
|
|
|
subx156 subtract '12345678900000' '9999999999999' -> 2.34567890000E+12 Inexact Rounded
|
|
|
|
subx157 subtract '9999999999999' '12345678900000' -> -2.34567890000E+12 Inexact Rounded
|
|
|
|
precision: 15
|
|
|
|
subx158 subtract '12345678900000' '9999999999999' -> 2345678900001
|
|
|
|
subx159 subtract '9999999999999' '12345678900000' -> -2345678900001
|
|
|
|
precision: 9
|
|
|
|
|
|
|
|
-- additional scaled arithmetic tests [0.97 problem]
|
|
|
|
subx160 subtract '0' '.1' -> '-0.1'
|
|
|
|
subx161 subtract '00' '.97983' -> '-0.97983'
|
|
|
|
subx162 subtract '0' '.9' -> '-0.9'
|
|
|
|
subx163 subtract '0' '0.102' -> '-0.102'
|
|
|
|
subx164 subtract '0' '.4' -> '-0.4'
|
|
|
|
subx165 subtract '0' '.307' -> '-0.307'
|
|
|
|
subx166 subtract '0' '.43822' -> '-0.43822'
|
|
|
|
subx167 subtract '0' '.911' -> '-0.911'
|
|
|
|
subx168 subtract '.0' '.02' -> '-0.02'
|
|
|
|
subx169 subtract '00' '.392' -> '-0.392'
|
|
|
|
subx170 subtract '0' '.26' -> '-0.26'
|
|
|
|
subx171 subtract '0' '0.51' -> '-0.51'
|
|
|
|
subx172 subtract '0' '.2234' -> '-0.2234'
|
|
|
|
subx173 subtract '0' '.2' -> '-0.2'
|
|
|
|
subx174 subtract '.0' '.0008' -> '-0.0008'
|
|
|
|
-- 0. on left
|
|
|
|
subx180 subtract '0.0' '-.1' -> '0.1'
|
|
|
|
subx181 subtract '0.00' '-.97983' -> '0.97983'
|
|
|
|
subx182 subtract '0.0' '-.9' -> '0.9'
|
|
|
|
subx183 subtract '0.0' '-0.102' -> '0.102'
|
|
|
|
subx184 subtract '0.0' '-.4' -> '0.4'
|
|
|
|
subx185 subtract '0.0' '-.307' -> '0.307'
|
|
|
|
subx186 subtract '0.0' '-.43822' -> '0.43822'
|
|
|
|
subx187 subtract '0.0' '-.911' -> '0.911'
|
|
|
|
subx188 subtract '0.0' '-.02' -> '0.02'
|
|
|
|
subx189 subtract '0.00' '-.392' -> '0.392'
|
|
|
|
subx190 subtract '0.0' '-.26' -> '0.26'
|
|
|
|
subx191 subtract '0.0' '-0.51' -> '0.51'
|
|
|
|
subx192 subtract '0.0' '-.2234' -> '0.2234'
|
|
|
|
subx193 subtract '0.0' '-.2' -> '0.2'
|
|
|
|
subx194 subtract '0.0' '-.0008' -> '0.0008'
|
|
|
|
-- negatives of same
|
|
|
|
subx200 subtract '0' '-.1' -> '0.1'
|
|
|
|
subx201 subtract '00' '-.97983' -> '0.97983'
|
|
|
|
subx202 subtract '0' '-.9' -> '0.9'
|
|
|
|
subx203 subtract '0' '-0.102' -> '0.102'
|
|
|
|
subx204 subtract '0' '-.4' -> '0.4'
|
|
|
|
subx205 subtract '0' '-.307' -> '0.307'
|
|
|
|
subx206 subtract '0' '-.43822' -> '0.43822'
|
|
|
|
subx207 subtract '0' '-.911' -> '0.911'
|
|
|
|
subx208 subtract '.0' '-.02' -> '0.02'
|
|
|
|
subx209 subtract '00' '-.392' -> '0.392'
|
|
|
|
subx210 subtract '0' '-.26' -> '0.26'
|
|
|
|
subx211 subtract '0' '-0.51' -> '0.51'
|
|
|
|
subx212 subtract '0' '-.2234' -> '0.2234'
|
|
|
|
subx213 subtract '0' '-.2' -> '0.2'
|
|
|
|
subx214 subtract '.0' '-.0008' -> '0.0008'
|
|
|
|
|
|
|
|
-- more fixed, LHS swaps [really the same as testcases under add]
|
|
|
|
subx220 subtract '-56267E-12' 0 -> '-5.6267E-8'
|
|
|
|
subx221 subtract '-56267E-11' 0 -> '-5.6267E-7'
|
|
|
|
subx222 subtract '-56267E-10' 0 -> '-0.0000056267'
|
|
|
|
subx223 subtract '-56267E-9' 0 -> '-0.000056267'
|
|
|
|
subx224 subtract '-56267E-8' 0 -> '-0.00056267'
|
|
|
|
subx225 subtract '-56267E-7' 0 -> '-0.0056267'
|
|
|
|
subx226 subtract '-56267E-6' 0 -> '-0.056267'
|
|
|
|
subx227 subtract '-56267E-5' 0 -> '-0.56267'
|
|
|
|
subx228 subtract '-56267E-2' 0 -> '-562.67'
|
|
|
|
subx229 subtract '-56267E-1' 0 -> '-5626.7'
|
|
|
|
subx230 subtract '-56267E-0' 0 -> '-56267'
|
|
|
|
-- symmetry ...
|
|
|
|
subx240 subtract 0 '-56267E-12' -> '5.6267E-8'
|
|
|
|
subx241 subtract 0 '-56267E-11' -> '5.6267E-7'
|
|
|
|
subx242 subtract 0 '-56267E-10' -> '0.0000056267'
|
|
|
|
subx243 subtract 0 '-56267E-9' -> '0.000056267'
|
|
|
|
subx244 subtract 0 '-56267E-8' -> '0.00056267'
|
|
|
|
subx245 subtract 0 '-56267E-7' -> '0.0056267'
|
|
|
|
subx246 subtract 0 '-56267E-6' -> '0.056267'
|
|
|
|
subx247 subtract 0 '-56267E-5' -> '0.56267'
|
|
|
|
subx248 subtract 0 '-56267E-2' -> '562.67'
|
|
|
|
subx249 subtract 0 '-56267E-1' -> '5626.7'
|
|
|
|
subx250 subtract 0 '-56267E-0' -> '56267'
|
|
|
|
|
|
|
|
-- now some more from the 'new' add
|
|
|
|
precision: 9
|
|
|
|
subx301 subtract '1.23456789' '1.00000000' -> '0.23456789'
|
|
|
|
subx302 subtract '1.23456789' '1.00000011' -> '0.23456778'
|
|
|
|
|
|
|
|
subx311 subtract '0.4444444444' '0.5555555555' -> '-0.111111111' Inexact Rounded
|
|
|
|
subx312 subtract '0.4444444440' '0.5555555555' -> '-0.111111112' Inexact Rounded
|
|
|
|
subx313 subtract '0.4444444444' '0.5555555550' -> '-0.111111111' Inexact Rounded
|
|
|
|
subx314 subtract '0.44444444449' '0' -> '0.444444444' Inexact Rounded
|
|
|
|
subx315 subtract '0.444444444499' '0' -> '0.444444444' Inexact Rounded
|
|
|
|
subx316 subtract '0.4444444444999' '0' -> '0.444444444' Inexact Rounded
|
|
|
|
subx317 subtract '0.4444444445000' '0' -> '0.444444445' Inexact Rounded
|
|
|
|
subx318 subtract '0.4444444445001' '0' -> '0.444444445' Inexact Rounded
|
|
|
|
subx319 subtract '0.444444444501' '0' -> '0.444444445' Inexact Rounded
|
|
|
|
subx320 subtract '0.44444444451' '0' -> '0.444444445' Inexact Rounded
|
|
|
|
|
|
|
|
-- some carrying effects
|
|
|
|
subx321 subtract '0.9998' '0.0000' -> '0.9998'
|
|
|
|
subx322 subtract '0.9998' '0.0001' -> '0.9997'
|
|
|
|
subx323 subtract '0.9998' '0.0002' -> '0.9996'
|
|
|
|
subx324 subtract '0.9998' '0.0003' -> '0.9995'
|
|
|
|
subx325 subtract '0.9998' '-0.0000' -> '0.9998'
|
|
|
|
subx326 subtract '0.9998' '-0.0001' -> '0.9999'
|
|
|
|
subx327 subtract '0.9998' '-0.0002' -> '1.0000'
|
|
|
|
subx328 subtract '0.9998' '-0.0003' -> '1.0001'
|
|
|
|
|
|
|
|
subx330 subtract '70' '10000e+9' -> '-1.00000000E+13' Inexact Rounded
|
|
|
|
subx331 subtract '700' '10000e+9' -> '-1.00000000E+13' Inexact Rounded
|
|
|
|
subx332 subtract '7000' '10000e+9' -> '-9.99999999E+12' Inexact Rounded
|
|
|
|
subx333 subtract '70000' '10000e+9' -> '-9.99999993E+12' Rounded
|
|
|
|
subx334 subtract '700000' '10000e+9' -> '-9.99999930E+12' Rounded
|
|
|
|
subx335 subtract '7000000' '10000e+9' -> '-9.99999300E+12' Rounded
|
|
|
|
-- symmetry:
|
|
|
|
subx340 subtract '10000e+9' '70' -> '1.00000000E+13' Inexact Rounded
|
|
|
|
subx341 subtract '10000e+9' '700' -> '1.00000000E+13' Inexact Rounded
|
|
|
|
subx342 subtract '10000e+9' '7000' -> '9.99999999E+12' Inexact Rounded
|
|
|
|
subx343 subtract '10000e+9' '70000' -> '9.99999993E+12' Rounded
|
|
|
|
subx344 subtract '10000e+9' '700000' -> '9.99999930E+12' Rounded
|
|
|
|
subx345 subtract '10000e+9' '7000000' -> '9.99999300E+12' Rounded
|
|
|
|
|
|
|
|
-- same, higher precision
|
|
|
|
precision: 15
|
|
|
|
subx346 subtract '10000e+9' '7' -> '9999999999993'
|
|
|
|
subx347 subtract '10000e+9' '70' -> '9999999999930'
|
|
|
|
subx348 subtract '10000e+9' '700' -> '9999999999300'
|
|
|
|
subx349 subtract '10000e+9' '7000' -> '9999999993000'
|
|
|
|
subx350 subtract '10000e+9' '70000' -> '9999999930000'
|
|
|
|
subx351 subtract '10000e+9' '700000' -> '9999999300000'
|
|
|
|
subx352 subtract '7' '10000e+9' -> '-9999999999993'
|
|
|
|
subx353 subtract '70' '10000e+9' -> '-9999999999930'
|
|
|
|
subx354 subtract '700' '10000e+9' -> '-9999999999300'
|
|
|
|
subx355 subtract '7000' '10000e+9' -> '-9999999993000'
|
|
|
|
subx356 subtract '70000' '10000e+9' -> '-9999999930000'
|
|
|
|
subx357 subtract '700000' '10000e+9' -> '-9999999300000'
|
|
|
|
|
|
|
|
-- zero preservation
|
|
|
|
precision: 6
|
|
|
|
subx360 subtract '10000e+9' '70000' -> '1.00000E+13' Inexact Rounded
|
|
|
|
subx361 subtract 1 '0.0001' -> '0.9999'
|
|
|
|
subx362 subtract 1 '0.00001' -> '0.99999'
|
|
|
|
subx363 subtract 1 '0.000001' -> '0.999999'
|
|
|
|
subx364 subtract 1 '0.0000001' -> '1.00000' Inexact Rounded
|
|
|
|
subx365 subtract 1 '0.00000001' -> '1.00000' Inexact Rounded
|
|
|
|
|
|
|
|
-- some funny zeros [in case of bad signum]
|
|
|
|
subx370 subtract 1 0 -> 1
|
|
|
|
subx371 subtract 1 0. -> 1
|
|
|
|
subx372 subtract 1 .0 -> 1.0
|
|
|
|
subx373 subtract 1 0.0 -> 1.0
|
|
|
|
subx374 subtract 0 1 -> -1
|
|
|
|
subx375 subtract 0. 1 -> -1
|
|
|
|
subx376 subtract .0 1 -> -1.0
|
|
|
|
subx377 subtract 0.0 1 -> -1.0
|
|
|
|
|
|
|
|
precision: 9
|
|
|
|
|
|
|
|
-- leading 0 digit before round
|
|
|
|
subx910 subtract -103519362 -51897955.3 -> -51621406.7
|
|
|
|
subx911 subtract 159579.444 89827.5229 -> 69751.9211
|
|
|
|
|
|
|
|
subx920 subtract 333.123456 33.1234566 -> 299.999999 Inexact Rounded
|
|
|
|
subx921 subtract 333.123456 33.1234565 -> 300.000000 Inexact Rounded
|
|
|
|
subx922 subtract 133.123456 33.1234565 -> 99.9999995
|
|
|
|
subx923 subtract 133.123456 33.1234564 -> 99.9999996
|
|
|
|
subx924 subtract 133.123456 33.1234540 -> 100.000002 Rounded
|
|
|
|
subx925 subtract 133.123456 43.1234560 -> 90.0000000
|
|
|
|
subx926 subtract 133.123456 43.1234561 -> 89.9999999
|
|
|
|
subx927 subtract 133.123456 43.1234566 -> 89.9999994
|
|
|
|
subx928 subtract 101.123456 91.1234566 -> 9.9999994
|
|
|
|
subx929 subtract 101.123456 99.1234566 -> 1.9999994
|
|
|
|
|
|
|
|
-- more of the same; probe for cluster boundary problems
|
|
|
|
precision: 1
|
|
|
|
subx930 subtract 11 2 -> 9
|
|
|
|
precision: 2
|
|
|
|
subx932 subtract 101 2 -> 99
|
|
|
|
precision: 3
|
|
|
|
subx934 subtract 101 2.1 -> 98.9
|
|
|
|
subx935 subtract 101 92.01 -> 8.99
|
|
|
|
precision: 4
|
|
|
|
subx936 subtract 101 2.01 -> 98.99
|
|
|
|
subx937 subtract 101 92.01 -> 8.99
|
|
|
|
subx938 subtract 101 92.006 -> 8.994
|
|
|
|
precision: 5
|
|
|
|
subx939 subtract 101 2.001 -> 98.999
|
|
|
|
subx940 subtract 101 92.001 -> 8.999
|
|
|
|
subx941 subtract 101 92.0006 -> 8.9994
|
|
|
|
precision: 6
|
|
|
|
subx942 subtract 101 2.0001 -> 98.9999
|
|
|
|
subx943 subtract 101 92.0001 -> 8.9999
|
|
|
|
subx944 subtract 101 92.00006 -> 8.99994
|
|
|
|
precision: 7
|
|
|
|
subx945 subtract 101 2.00001 -> 98.99999
|
|
|
|
subx946 subtract 101 92.00001 -> 8.99999
|
|
|
|
subx947 subtract 101 92.000006 -> 8.999994
|
|
|
|
precision: 8
|
|
|
|
subx948 subtract 101 2.000001 -> 98.999999
|
|
|
|
subx949 subtract 101 92.000001 -> 8.999999
|
|
|
|
subx950 subtract 101 92.0000006 -> 8.9999994
|
|
|
|
precision: 9
|
|
|
|
subx951 subtract 101 2.0000001 -> 98.9999999
|
|
|
|
subx952 subtract 101 92.0000001 -> 8.9999999
|
|
|
|
subx953 subtract 101 92.00000006 -> 8.99999994
|
|
|
|
|
|
|
|
precision: 9
|
|
|
|
|
|
|
|
-- more LHS swaps [were fixed]
|
|
|
|
subx390 subtract '-56267E-10' 0 -> '-0.0000056267'
|
|
|
|
subx391 subtract '-56267E-6' 0 -> '-0.056267'
|
|
|
|
subx392 subtract '-56267E-5' 0 -> '-0.56267'
|
|
|
|
subx393 subtract '-56267E-4' 0 -> '-5.6267'
|
|
|
|
subx394 subtract '-56267E-3' 0 -> '-56.267'
|
|
|
|
subx395 subtract '-56267E-2' 0 -> '-562.67'
|
|
|
|
subx396 subtract '-56267E-1' 0 -> '-5626.7'
|
|
|
|
subx397 subtract '-56267E-0' 0 -> '-56267'
|
|
|
|
subx398 subtract '-5E-10' 0 -> '-5E-10'
|
|
|
|
subx399 subtract '-5E-7' 0 -> '-5E-7'
|
|
|
|
subx400 subtract '-5E-6' 0 -> '-0.000005'
|
|
|
|
subx401 subtract '-5E-5' 0 -> '-0.00005'
|
|
|
|
subx402 subtract '-5E-4' 0 -> '-0.0005'
|
|
|
|
subx403 subtract '-5E-1' 0 -> '-0.5'
|
|
|
|
subx404 subtract '-5E0' 0 -> '-5'
|
|
|
|
subx405 subtract '-5E1' 0 -> '-50'
|
|
|
|
subx406 subtract '-5E5' 0 -> '-500000'
|
|
|
|
subx407 subtract '-5E8' 0 -> '-500000000'
|
|
|
|
subx408 subtract '-5E9' 0 -> '-5.00000000E+9' Rounded
|
|
|
|
subx409 subtract '-5E10' 0 -> '-5.00000000E+10' Rounded
|
|
|
|
subx410 subtract '-5E11' 0 -> '-5.00000000E+11' Rounded
|
|
|
|
subx411 subtract '-5E100' 0 -> '-5.00000000E+100' Rounded
|
|
|
|
|
|
|
|
-- more RHS swaps [were fixed]
|
|
|
|
subx420 subtract 0 '-56267E-10' -> '0.0000056267'
|
|
|
|
subx421 subtract 0 '-56267E-6' -> '0.056267'
|
|
|
|
subx422 subtract 0 '-56267E-5' -> '0.56267'
|
|
|
|
subx423 subtract 0 '-56267E-4' -> '5.6267'
|
|
|
|
subx424 subtract 0 '-56267E-3' -> '56.267'
|
|
|
|
subx425 subtract 0 '-56267E-2' -> '562.67'
|
|
|
|
subx426 subtract 0 '-56267E-1' -> '5626.7'
|
|
|
|
subx427 subtract 0 '-56267E-0' -> '56267'
|
|
|
|
subx428 subtract 0 '-5E-10' -> '5E-10'
|
|
|
|
subx429 subtract 0 '-5E-7' -> '5E-7'
|
|
|
|
subx430 subtract 0 '-5E-6' -> '0.000005'
|
|
|
|
subx431 subtract 0 '-5E-5' -> '0.00005'
|
|
|
|
subx432 subtract 0 '-5E-4' -> '0.0005'
|
|
|
|
subx433 subtract 0 '-5E-1' -> '0.5'
|
|
|
|
subx434 subtract 0 '-5E0' -> '5'
|
|
|
|
subx435 subtract 0 '-5E1' -> '50'
|
|
|
|
subx436 subtract 0 '-5E5' -> '500000'
|
|
|
|
subx437 subtract 0 '-5E8' -> '500000000'
|
|
|
|
subx438 subtract 0 '-5E9' -> '5.00000000E+9' Rounded
|
|
|
|
subx439 subtract 0 '-5E10' -> '5.00000000E+10' Rounded
|
|
|
|
subx440 subtract 0 '-5E11' -> '5.00000000E+11' Rounded
|
|
|
|
subx441 subtract 0 '-5E100' -> '5.00000000E+100' Rounded
|
|
|
|
|
|
|
|
|
|
|
|
-- try borderline precision, with carries, etc.
|
|
|
|
precision: 15
|
|
|
|
subx461 subtract '1E+12' '1' -> '999999999999'
|
|
|
|
subx462 subtract '1E+12' '-1.11' -> '1000000000001.11'
|
|
|
|
subx463 subtract '1.11' '-1E+12' -> '1000000000001.11'
|
|
|
|
subx464 subtract '-1' '-1E+12' -> '999999999999'
|
|
|
|
subx465 subtract '7E+12' '1' -> '6999999999999'
|
|
|
|
subx466 subtract '7E+12' '-1.11' -> '7000000000001.11'
|
|
|
|
subx467 subtract '1.11' '-7E+12' -> '7000000000001.11'
|
|
|
|
subx468 subtract '-1' '-7E+12' -> '6999999999999'
|
|
|
|
|
|
|
|
-- 123456789012345 123456789012345 1 23456789012345
|
|
|
|
subx470 subtract '0.444444444444444' '-0.555555555555563' -> '1.00000000000001' Inexact Rounded
|
|
|
|
subx471 subtract '0.444444444444444' '-0.555555555555562' -> '1.00000000000001' Inexact Rounded
|
|
|
|
subx472 subtract '0.444444444444444' '-0.555555555555561' -> '1.00000000000001' Inexact Rounded
|
|
|
|
subx473 subtract '0.444444444444444' '-0.555555555555560' -> '1.00000000000000' Inexact Rounded
|
|
|
|
subx474 subtract '0.444444444444444' '-0.555555555555559' -> '1.00000000000000' Inexact Rounded
|
|
|
|
subx475 subtract '0.444444444444444' '-0.555555555555558' -> '1.00000000000000' Inexact Rounded
|
|
|
|
subx476 subtract '0.444444444444444' '-0.555555555555557' -> '1.00000000000000' Inexact Rounded
|
|
|
|
subx477 subtract '0.444444444444444' '-0.555555555555556' -> '1.00000000000000' Rounded
|
|
|
|
subx478 subtract '0.444444444444444' '-0.555555555555555' -> '0.999999999999999'
|
|
|
|
subx479 subtract '0.444444444444444' '-0.555555555555554' -> '0.999999999999998'
|
|
|
|
subx480 subtract '0.444444444444444' '-0.555555555555553' -> '0.999999999999997'
|
|
|
|
subx481 subtract '0.444444444444444' '-0.555555555555552' -> '0.999999999999996'
|
|
|
|
subx482 subtract '0.444444444444444' '-0.555555555555551' -> '0.999999999999995'
|
|
|
|
subx483 subtract '0.444444444444444' '-0.555555555555550' -> '0.999999999999994'
|
|
|
|
|
|
|
|
-- and some more, including residue effects and different roundings
|
|
|
|
precision: 9
|
|
|
|
rounding: half_up
|
|
|
|
subx500 subtract '123456789' 0 -> '123456789'
|
|
|
|
subx501 subtract '123456789' 0.000000001 -> '123456789' Inexact Rounded
|
|
|
|
subx502 subtract '123456789' 0.000001 -> '123456789' Inexact Rounded
|
|
|
|
subx503 subtract '123456789' 0.1 -> '123456789' Inexact Rounded
|
|
|
|
subx504 subtract '123456789' 0.4 -> '123456789' Inexact Rounded
|
|
|
|
subx505 subtract '123456789' 0.49 -> '123456789' Inexact Rounded
|
|
|
|
subx506 subtract '123456789' 0.499999 -> '123456789' Inexact Rounded
|
|
|
|
subx507 subtract '123456789' 0.499999999 -> '123456789' Inexact Rounded
|
|
|
|
subx508 subtract '123456789' 0.5 -> '123456789' Inexact Rounded
|
|
|
|
subx509 subtract '123456789' 0.500000001 -> '123456788' Inexact Rounded
|
|
|
|
subx510 subtract '123456789' 0.500001 -> '123456788' Inexact Rounded
|
|
|
|
subx511 subtract '123456789' 0.51 -> '123456788' Inexact Rounded
|
|
|
|
subx512 subtract '123456789' 0.6 -> '123456788' Inexact Rounded
|
|
|
|
subx513 subtract '123456789' 0.9 -> '123456788' Inexact Rounded
|
|
|
|
subx514 subtract '123456789' 0.99999 -> '123456788' Inexact Rounded
|
|
|
|
subx515 subtract '123456789' 0.999999999 -> '123456788' Inexact Rounded
|
|
|
|
subx516 subtract '123456789' 1 -> '123456788'
|
|
|
|
subx517 subtract '123456789' 1.000000001 -> '123456788' Inexact Rounded
|
|
|
|
subx518 subtract '123456789' 1.00001 -> '123456788' Inexact Rounded
|
|
|
|
subx519 subtract '123456789' 1.1 -> '123456788' Inexact Rounded
|
|
|
|
|
|
|
|
rounding: half_even
|
|
|
|
subx520 subtract '123456789' 0 -> '123456789'
|
|
|
|
subx521 subtract '123456789' 0.000000001 -> '123456789' Inexact Rounded
|
|
|
|
subx522 subtract '123456789' 0.000001 -> '123456789' Inexact Rounded
|
|
|
|
subx523 subtract '123456789' 0.1 -> '123456789' Inexact Rounded
|
|
|
|
subx524 subtract '123456789' 0.4 -> '123456789' Inexact Rounded
|
|
|
|
subx525 subtract '123456789' 0.49 -> '123456789' Inexact Rounded
|
|
|
|
subx526 subtract '123456789' 0.499999 -> '123456789' Inexact Rounded
|
|
|
|
subx527 subtract '123456789' 0.499999999 -> '123456789' Inexact Rounded
|
|
|
|
subx528 subtract '123456789' 0.5 -> '123456788' Inexact Rounded
|
|
|
|
subx529 subtract '123456789' 0.500000001 -> '123456788' Inexact Rounded
|
|
|
|
subx530 subtract '123456789' 0.500001 -> '123456788' Inexact Rounded
|
|
|
|
subx531 subtract '123456789' 0.51 -> '123456788' Inexact Rounded
|
|
|
|
subx532 subtract '123456789' 0.6 -> '123456788' Inexact Rounded
|
|
|
|
subx533 subtract '123456789' 0.9 -> '123456788' Inexact Rounded
|
|
|
|
subx534 subtract '123456789' 0.99999 -> '123456788' Inexact Rounded
|
|
|
|
subx535 subtract '123456789' 0.999999999 -> '123456788' Inexact Rounded
|
|
|
|
subx536 subtract '123456789' 1 -> '123456788'
|
|
|
|
subx537 subtract '123456789' 1.00000001 -> '123456788' Inexact Rounded
|
|
|
|
subx538 subtract '123456789' 1.00001 -> '123456788' Inexact Rounded
|
|
|
|
subx539 subtract '123456789' 1.1 -> '123456788' Inexact Rounded
|
|
|
|
-- critical few with even bottom digit...
|
|
|
|
subx540 subtract '123456788' 0.499999999 -> '123456788' Inexact Rounded
|
|
|
|
subx541 subtract '123456788' 0.5 -> '123456788' Inexact Rounded
|
|
|
|
subx542 subtract '123456788' 0.500000001 -> '123456787' Inexact Rounded
|
|
|
|
|
|
|
|
rounding: down
|
|
|
|
subx550 subtract '123456789' 0 -> '123456789'
|
|
|
|
subx551 subtract '123456789' 0.000000001 -> '123456788' Inexact Rounded
|
|
|
|
subx552 subtract '123456789' 0.000001 -> '123456788' Inexact Rounded
|
|
|
|
subx553 subtract '123456789' 0.1 -> '123456788' Inexact Rounded
|
|
|
|
subx554 subtract '123456789' 0.4 -> '123456788' Inexact Rounded
|
|
|
|
subx555 subtract '123456789' 0.49 -> '123456788' Inexact Rounded
|
|
|
|
subx556 subtract '123456789' 0.499999 -> '123456788' Inexact Rounded
|
|
|
|
subx557 subtract '123456789' 0.499999999 -> '123456788' Inexact Rounded
|
|
|
|
subx558 subtract '123456789' 0.5 -> '123456788' Inexact Rounded
|
|
|
|
subx559 subtract '123456789' 0.500000001 -> '123456788' Inexact Rounded
|
|
|
|
subx560 subtract '123456789' 0.500001 -> '123456788' Inexact Rounded
|
|
|
|
subx561 subtract '123456789' 0.51 -> '123456788' Inexact Rounded
|
|
|
|
subx562 subtract '123456789' 0.6 -> '123456788' Inexact Rounded
|
|
|
|
subx563 subtract '123456789' 0.9 -> '123456788' Inexact Rounded
|
|
|
|
subx564 subtract '123456789' 0.99999 -> '123456788' Inexact Rounded
|
|
|
|
subx565 subtract '123456789' 0.999999999 -> '123456788' Inexact Rounded
|
|
|
|
subx566 subtract '123456789' 1 -> '123456788'
|
|
|
|
subx567 subtract '123456789' 1.00000001 -> '123456787' Inexact Rounded
|
|
|
|
subx568 subtract '123456789' 1.00001 -> '123456787' Inexact Rounded
|
|
|
|
subx569 subtract '123456789' 1.1 -> '123456787' Inexact Rounded
|
|
|
|
|
|
|
|
-- symmetry...
|
|
|
|
rounding: half_up
|
|
|
|
subx600 subtract 0 '123456789' -> '-123456789'
|
|
|
|
subx601 subtract 0.000000001 '123456789' -> '-123456789' Inexact Rounded
|
|
|
|
subx602 subtract 0.000001 '123456789' -> '-123456789' Inexact Rounded
|
|
|
|
subx603 subtract 0.1 '123456789' -> '-123456789' Inexact Rounded
|
|
|
|
subx604 subtract 0.4 '123456789' -> '-123456789' Inexact Rounded
|
|
|
|
subx605 subtract 0.49 '123456789' -> '-123456789' Inexact Rounded
|
|
|
|
subx606 subtract 0.499999 '123456789' -> '-123456789' Inexact Rounded
|
|
|
|
subx607 subtract 0.499999999 '123456789' -> '-123456789' Inexact Rounded
|
|
|
|
subx608 subtract 0.5 '123456789' -> '-123456789' Inexact Rounded
|
|
|
|
subx609 subtract 0.500000001 '123456789' -> '-123456788' Inexact Rounded
|
|
|
|
subx610 subtract 0.500001 '123456789' -> '-123456788' Inexact Rounded
|
|
|
|
subx611 subtract 0.51 '123456789' -> '-123456788' Inexact Rounded
|
|
|
|
subx612 subtract 0.6 '123456789' -> '-123456788' Inexact Rounded
|
|
|
|
subx613 subtract 0.9 '123456789' -> '-123456788' Inexact Rounded
|
|
|
|
subx614 subtract 0.99999 '123456789' -> '-123456788' Inexact Rounded
|
|
|
|
subx615 subtract 0.999999999 '123456789' -> '-123456788' Inexact Rounded
|
|
|
|
subx616 subtract 1 '123456789' -> '-123456788'
|
|
|
|
subx617 subtract 1.000000001 '123456789' -> '-123456788' Inexact Rounded
|
|
|
|
subx618 subtract 1.00001 '123456789' -> '-123456788' Inexact Rounded
|
|
|
|
subx619 subtract 1.1 '123456789' -> '-123456788' Inexact Rounded
|
|
|
|
|
|
|
|
rounding: half_even
|
|
|
|
subx620 subtract 0 '123456789' -> '-123456789'
|
|
|
|
subx621 subtract 0.000000001 '123456789' -> '-123456789' Inexact Rounded
|
|
|
|
subx622 subtract 0.000001 '123456789' -> '-123456789' Inexact Rounded
|
|
|
|
subx623 subtract 0.1 '123456789' -> '-123456789' Inexact Rounded
|
|
|
|
subx624 subtract 0.4 '123456789' -> '-123456789' Inexact Rounded
|
|
|
|
subx625 subtract 0.49 '123456789' -> '-123456789' Inexact Rounded
|
|
|
|
subx626 subtract 0.499999 '123456789' -> '-123456789' Inexact Rounded
|
|
|
|
subx627 subtract 0.499999999 '123456789' -> '-123456789' Inexact Rounded
|
|
|
|
subx628 subtract 0.5 '123456789' -> '-123456788' Inexact Rounded
|
|
|
|
subx629 subtract 0.500000001 '123456789' -> '-123456788' Inexact Rounded
|
|
|
|
subx630 subtract 0.500001 '123456789' -> '-123456788' Inexact Rounded
|
|
|
|
subx631 subtract 0.51 '123456789' -> '-123456788' Inexact Rounded
|
|
|
|
subx632 subtract 0.6 '123456789' -> '-123456788' Inexact Rounded
|
|
|
|
subx633 subtract 0.9 '123456789' -> '-123456788' Inexact Rounded
|
|
|
|
subx634 subtract 0.99999 '123456789' -> '-123456788' Inexact Rounded
|
|
|
|
subx635 subtract 0.999999999 '123456789' -> '-123456788' Inexact Rounded
|
|
|
|
subx636 subtract 1 '123456789' -> '-123456788'
|
|
|
|
subx637 subtract 1.00000001 '123456789' -> '-123456788' Inexact Rounded
|
|
|
|
subx638 subtract 1.00001 '123456789' -> '-123456788' Inexact Rounded
|
|
|
|
subx639 subtract 1.1 '123456789' -> '-123456788' Inexact Rounded
|
|
|
|
-- critical few with even bottom digit...
|
|
|
|
subx640 subtract 0.499999999 '123456788' -> '-123456788' Inexact Rounded
|
|
|
|
subx641 subtract 0.5 '123456788' -> '-123456788' Inexact Rounded
|
|
|
|
subx642 subtract 0.500000001 '123456788' -> '-123456787' Inexact Rounded
|
|
|
|
|
|
|
|
rounding: down
|
|
|
|
subx650 subtract 0 '123456789' -> '-123456789'
|
|
|
|
subx651 subtract 0.000000001 '123456789' -> '-123456788' Inexact Rounded
|
|
|
|
subx652 subtract 0.000001 '123456789' -> '-123456788' Inexact Rounded
|
|
|
|
subx653 subtract 0.1 '123456789' -> '-123456788' Inexact Rounded
|
|
|
|
subx654 subtract 0.4 '123456789' -> '-123456788' Inexact Rounded
|
|
|
|
subx655 subtract 0.49 '123456789' -> '-123456788' Inexact Rounded
|
|
|
|
subx656 subtract 0.499999 '123456789' -> '-123456788' Inexact Rounded
|
|
|
|
subx657 subtract 0.499999999 '123456789' -> '-123456788' Inexact Rounded
|
|
|
|
subx658 subtract 0.5 '123456789' -> '-123456788' Inexact Rounded
|
|
|
|
subx659 subtract 0.500000001 '123456789' -> '-123456788' Inexact Rounded
|
|
|
|
subx660 subtract 0.500001 '123456789' -> '-123456788' Inexact Rounded
|
|
|
|
subx661 subtract 0.51 '123456789' -> '-123456788' Inexact Rounded
|
|
|
|
subx662 subtract 0.6 '123456789' -> '-123456788' Inexact Rounded
|
|
|
|
subx663 subtract 0.9 '123456789' -> '-123456788' Inexact Rounded
|
|
|
|
subx664 subtract 0.99999 '123456789' -> '-123456788' Inexact Rounded
|
|
|
|
subx665 subtract 0.999999999 '123456789' -> '-123456788' Inexact Rounded
|
|
|
|
subx666 subtract 1 '123456789' -> '-123456788'
|
|
|
|
subx667 subtract 1.00000001 '123456789' -> '-123456787' Inexact Rounded
|
|
|
|
subx668 subtract 1.00001 '123456789' -> '-123456787' Inexact Rounded
|
|
|
|
subx669 subtract 1.1 '123456789' -> '-123456787' Inexact Rounded
|
|
|
|
|
|
|
|
|
|
|
|
-- lots of leading zeros in intermediate result, and showing effects of
|
|
|
|
-- input rounding would have affected the following
|
|
|
|
precision: 9
|
|
|
|
rounding: half_up
|
|
|
|
subx670 subtract '123456789' '123456788.1' -> 0.9
|
|
|
|
subx671 subtract '123456789' '123456788.9' -> 0.1
|
|
|
|
subx672 subtract '123456789' '123456789.1' -> -0.1
|
|
|
|
subx673 subtract '123456789' '123456789.5' -> -0.5
|
|
|
|
subx674 subtract '123456789' '123456789.9' -> -0.9
|
|
|
|
|
|
|
|
rounding: half_even
|
|
|
|
subx680 subtract '123456789' '123456788.1' -> 0.9
|
|
|
|
subx681 subtract '123456789' '123456788.9' -> 0.1
|
|
|
|
subx682 subtract '123456789' '123456789.1' -> -0.1
|
|
|
|
subx683 subtract '123456789' '123456789.5' -> -0.5
|
|
|
|
subx684 subtract '123456789' '123456789.9' -> -0.9
|
|
|
|
|
|
|
|
subx685 subtract '123456788' '123456787.1' -> 0.9
|
|
|
|
subx686 subtract '123456788' '123456787.9' -> 0.1
|
|
|
|
subx687 subtract '123456788' '123456788.1' -> -0.1
|
|
|
|
subx688 subtract '123456788' '123456788.5' -> -0.5
|
|
|
|
subx689 subtract '123456788' '123456788.9' -> -0.9
|
|
|
|
|
|
|
|
rounding: down
|
|
|
|
subx690 subtract '123456789' '123456788.1' -> 0.9
|
|
|
|
subx691 subtract '123456789' '123456788.9' -> 0.1
|
|
|
|
subx692 subtract '123456789' '123456789.1' -> -0.1
|
|
|
|
subx693 subtract '123456789' '123456789.5' -> -0.5
|
|
|
|
subx694 subtract '123456789' '123456789.9' -> -0.9
|
|
|
|
|
|
|
|
-- input preparation tests
|
|
|
|
rounding: half_up
|
|
|
|
precision: 3
|
|
|
|
|
|
|
|
subx700 subtract '12345678900000' -9999999999999 -> '2.23E+13' Inexact Rounded
|
|
|
|
subx701 subtract '9999999999999' -12345678900000 -> '2.23E+13' Inexact Rounded
|
|
|
|
subx702 subtract '12E+3' '-3456' -> '1.55E+4' Inexact Rounded
|
|
|
|
subx703 subtract '12E+3' '-3446' -> '1.54E+4' Inexact Rounded
|
|
|
|
subx704 subtract '12E+3' '-3454' -> '1.55E+4' Inexact Rounded
|
|
|
|
subx705 subtract '12E+3' '-3444' -> '1.54E+4' Inexact Rounded
|
|
|
|
|
|
|
|
subx706 subtract '3456' '-12E+3' -> '1.55E+4' Inexact Rounded
|
|
|
|
subx707 subtract '3446' '-12E+3' -> '1.54E+4' Inexact Rounded
|
|
|
|
subx708 subtract '3454' '-12E+3' -> '1.55E+4' Inexact Rounded
|
|
|
|
subx709 subtract '3444' '-12E+3' -> '1.54E+4' Inexact Rounded
|
|
|
|
|
|
|
|
-- overflow and underflow tests [subnormals now possible]
|
|
|
|
maxexponent: 999999999
|
|
|
|
minexponent: -999999999
|
|
|
|
precision: 9
|
|
|
|
rounding: down
|
|
|
|
subx710 subtract 1E+999999999 -9E+999999999 -> 9.99999999E+999999999 Overflow Inexact Rounded
|
|
|
|
subx711 subtract 9E+999999999 -1E+999999999 -> 9.99999999E+999999999 Overflow Inexact Rounded
|
|
|
|
rounding: half_up
|
|
|
|
subx712 subtract 1E+999999999 -9E+999999999 -> Infinity Overflow Inexact Rounded
|
|
|
|
subx713 subtract 9E+999999999 -1E+999999999 -> Infinity Overflow Inexact Rounded
|
|
|
|
subx714 subtract -1.1E-999999999 -1E-999999999 -> -1E-1000000000 Subnormal
|
|
|
|
subx715 subtract 1E-999999999 +1.1e-999999999 -> -1E-1000000000 Subnormal
|
|
|
|
subx716 subtract -1E+999999999 +9E+999999999 -> -Infinity Overflow Inexact Rounded
|
|
|
|
subx717 subtract -9E+999999999 +1E+999999999 -> -Infinity Overflow Inexact Rounded
|
|
|
|
subx718 subtract +1.1E-999999999 +1E-999999999 -> 1E-1000000000 Subnormal
|
|
|
|
subx719 subtract -1E-999999999 -1.1e-999999999 -> 1E-1000000000 Subnormal
|
|
|
|
|
|
|
|
precision: 3
|
|
|
|
subx720 subtract 1 9.999E+999999999 -> -Infinity Inexact Overflow Rounded
|
|
|
|
subx721 subtract 1 -9.999E+999999999 -> Infinity Inexact Overflow Rounded
|
|
|
|
subx722 subtract 9.999E+999999999 1 -> Infinity Inexact Overflow Rounded
|
|
|
|
subx723 subtract -9.999E+999999999 1 -> -Infinity Inexact Overflow Rounded
|
|
|
|
subx724 subtract 1 9.999E+999999999 -> -Infinity Inexact Overflow Rounded
|
|
|
|
subx725 subtract 1 -9.999E+999999999 -> Infinity Inexact Overflow Rounded
|
|
|
|
subx726 subtract 9.999E+999999999 1 -> Infinity Inexact Overflow Rounded
|
|
|
|
subx727 subtract -9.999E+999999999 1 -> -Infinity Inexact Overflow Rounded
|
|
|
|
|
|
|
|
-- [more below]
|
|
|
|
|
|
|
|
-- long operand checks
|
|
|
|
maxexponent: 999
|
|
|
|
minexponent: -999
|
|
|
|
precision: 9
|
|
|
|
sub731 subtract 12345678000 0 -> 1.23456780E+10 Rounded
|
|
|
|
sub732 subtract 0 12345678000 -> -1.23456780E+10 Rounded
|
|
|
|
sub733 subtract 1234567800 0 -> 1.23456780E+9 Rounded
|
|
|
|
sub734 subtract 0 1234567800 -> -1.23456780E+9 Rounded
|
|
|
|
sub735 subtract 1234567890 0 -> 1.23456789E+9 Rounded
|
|
|
|
sub736 subtract 0 1234567890 -> -1.23456789E+9 Rounded
|
|
|
|
sub737 subtract 1234567891 0 -> 1.23456789E+9 Inexact Rounded
|
|
|
|
sub738 subtract 0 1234567891 -> -1.23456789E+9 Inexact Rounded
|
|
|
|
sub739 subtract 12345678901 0 -> 1.23456789E+10 Inexact Rounded
|
|
|
|
sub740 subtract 0 12345678901 -> -1.23456789E+10 Inexact Rounded
|
|
|
|
sub741 subtract 1234567896 0 -> 1.23456790E+9 Inexact Rounded
|
|
|
|
sub742 subtract 0 1234567896 -> -1.23456790E+9 Inexact Rounded
|
|
|
|
|
|
|
|
precision: 15
|
|
|
|
sub751 subtract 12345678000 0 -> 12345678000
|
|
|
|
sub752 subtract 0 12345678000 -> -12345678000
|
|
|
|
sub753 subtract 1234567800 0 -> 1234567800
|
|
|
|
sub754 subtract 0 1234567800 -> -1234567800
|
|
|
|
sub755 subtract 1234567890 0 -> 1234567890
|
|
|
|
sub756 subtract 0 1234567890 -> -1234567890
|
|
|
|
sub757 subtract 1234567891 0 -> 1234567891
|
|
|
|
sub758 subtract 0 1234567891 -> -1234567891
|
|
|
|
sub759 subtract 12345678901 0 -> 12345678901
|
|
|
|
sub760 subtract 0 12345678901 -> -12345678901
|
|
|
|
sub761 subtract 1234567896 0 -> 1234567896
|
|
|
|
sub762 subtract 0 1234567896 -> -1234567896
|
|
|
|
|
|
|
|
-- Specials
|
|
|
|
subx780 subtract -Inf Inf -> -Infinity
|
|
|
|
subx781 subtract -Inf 1000 -> -Infinity
|
|
|
|
subx782 subtract -Inf 1 -> -Infinity
|
|
|
|
subx783 subtract -Inf -0 -> -Infinity
|
|
|
|
subx784 subtract -Inf -1 -> -Infinity
|
|
|
|
subx785 subtract -Inf -1000 -> -Infinity
|
|
|
|
subx787 subtract -1000 Inf -> -Infinity
|
|
|
|
subx788 subtract -Inf Inf -> -Infinity
|
|
|
|
subx789 subtract -1 Inf -> -Infinity
|
|
|
|
subx790 subtract 0 Inf -> -Infinity
|
|
|
|
subx791 subtract 1 Inf -> -Infinity
|
|
|
|
subx792 subtract 1000 Inf -> -Infinity
|
|
|
|
|
|
|
|
subx800 subtract Inf Inf -> NaN Invalid_operation
|
|
|
|
subx801 subtract Inf 1000 -> Infinity
|
|
|
|
subx802 subtract Inf 1 -> Infinity
|
|
|
|
subx803 subtract Inf 0 -> Infinity
|
|
|
|
subx804 subtract Inf -0 -> Infinity
|
|
|
|
subx805 subtract Inf -1 -> Infinity
|
|
|
|
subx806 subtract Inf -1000 -> Infinity
|
|
|
|
subx807 subtract Inf -Inf -> Infinity
|
|
|
|
subx808 subtract -1000 -Inf -> Infinity
|
|
|
|
subx809 subtract -Inf -Inf -> NaN Invalid_operation
|
|
|
|
subx810 subtract -1 -Inf -> Infinity
|
|
|
|
subx811 subtract -0 -Inf -> Infinity
|
|
|
|
subx812 subtract 0 -Inf -> Infinity
|
|
|
|
subx813 subtract 1 -Inf -> Infinity
|
|
|
|
subx814 subtract 1000 -Inf -> Infinity
|
|
|
|
subx815 subtract Inf -Inf -> Infinity
|
|
|
|
|
|
|
|
subx821 subtract NaN Inf -> NaN
|
|
|
|
subx822 subtract -NaN 1000 -> -NaN
|
|
|
|
subx823 subtract NaN 1 -> NaN
|
|
|
|
subx824 subtract NaN 0 -> NaN
|
|
|
|
subx825 subtract NaN -0 -> NaN
|
|
|
|
subx826 subtract NaN -1 -> NaN
|
|
|
|
subx827 subtract NaN -1000 -> NaN
|
|
|
|
subx828 subtract NaN -Inf -> NaN
|
|
|
|
subx829 subtract -NaN NaN -> -NaN
|
|
|
|
subx830 subtract -Inf NaN -> NaN
|
|
|
|
subx831 subtract -1000 NaN -> NaN
|
|
|
|
subx832 subtract -1 NaN -> NaN
|
|
|
|
subx833 subtract -0 NaN -> NaN
|
|
|
|
subx834 subtract 0 NaN -> NaN
|
|
|
|
subx835 subtract 1 NaN -> NaN
|
|
|
|
subx836 subtract 1000 -NaN -> -NaN
|
|
|
|
subx837 subtract Inf NaN -> NaN
|
|
|
|
|
|
|
|
subx841 subtract sNaN Inf -> NaN Invalid_operation
|
|
|
|
subx842 subtract -sNaN 1000 -> -NaN Invalid_operation
|
|
|
|
subx843 subtract sNaN 1 -> NaN Invalid_operation
|
|
|
|
subx844 subtract sNaN 0 -> NaN Invalid_operation
|
|
|
|
subx845 subtract sNaN -0 -> NaN Invalid_operation
|
|
|
|
subx846 subtract sNaN -1 -> NaN Invalid_operation
|
|
|
|
subx847 subtract sNaN -1000 -> NaN Invalid_operation
|
|
|
|
subx848 subtract sNaN NaN -> NaN Invalid_operation
|
|
|
|
subx849 subtract sNaN sNaN -> NaN Invalid_operation
|
|
|
|
subx850 subtract NaN sNaN -> NaN Invalid_operation
|
|
|
|
subx851 subtract -Inf -sNaN -> -NaN Invalid_operation
|
|
|
|
subx852 subtract -1000 sNaN -> NaN Invalid_operation
|
|
|
|
subx853 subtract -1 sNaN -> NaN Invalid_operation
|
|
|
|
subx854 subtract -0 sNaN -> NaN Invalid_operation
|
|
|
|
subx855 subtract 0 sNaN -> NaN Invalid_operation
|
|
|
|
subx856 subtract 1 sNaN -> NaN Invalid_operation
|
|
|
|
subx857 subtract 1000 sNaN -> NaN Invalid_operation
|
|
|
|
subx858 subtract Inf sNaN -> NaN Invalid_operation
|
|
|
|
subx859 subtract NaN sNaN -> NaN Invalid_operation
|
|
|
|
|
|
|
|
-- propagating NaNs
|
|
|
|
subx861 subtract NaN01 -Inf -> NaN1
|
|
|
|
subx862 subtract -NaN02 -1000 -> -NaN2
|
|
|
|
subx863 subtract NaN03 1000 -> NaN3
|
|
|
|
subx864 subtract NaN04 Inf -> NaN4
|
|
|
|
subx865 subtract NaN05 NaN61 -> NaN5
|
|
|
|
subx866 subtract -Inf -NaN71 -> -NaN71
|
|
|
|
subx867 subtract -1000 NaN81 -> NaN81
|
|
|
|
subx868 subtract 1000 NaN91 -> NaN91
|
|
|
|
subx869 subtract Inf NaN101 -> NaN101
|
|
|
|
subx871 subtract sNaN011 -Inf -> NaN11 Invalid_operation
|
|
|
|
subx872 subtract sNaN012 -1000 -> NaN12 Invalid_operation
|
|
|
|
subx873 subtract -sNaN013 1000 -> -NaN13 Invalid_operation
|
|
|
|
subx874 subtract sNaN014 NaN171 -> NaN14 Invalid_operation
|
|
|
|
subx875 subtract sNaN015 sNaN181 -> NaN15 Invalid_operation
|
|
|
|
subx876 subtract NaN016 sNaN191 -> NaN191 Invalid_operation
|
|
|
|
subx877 subtract -Inf sNaN201 -> NaN201 Invalid_operation
|
|
|
|
subx878 subtract -1000 sNaN211 -> NaN211 Invalid_operation
|
|
|
|
subx879 subtract 1000 -sNaN221 -> -NaN221 Invalid_operation
|
|
|
|
subx880 subtract Inf sNaN231 -> NaN231 Invalid_operation
|
|
|
|
subx881 subtract NaN025 sNaN241 -> NaN241 Invalid_operation
|
|
|
|
|
|
|
|
-- edge case spills
|
|
|
|
subx901 subtract 2.E-3 1.002 -> -1.000
|
|
|
|
subx902 subtract 2.0E-3 1.002 -> -1.0000
|
|
|
|
subx903 subtract 2.00E-3 1.0020 -> -1.00000
|
|
|
|
subx904 subtract 2.000E-3 1.00200 -> -1.000000
|
|
|
|
subx905 subtract 2.0000E-3 1.002000 -> -1.0000000
|
|
|
|
subx906 subtract 2.00000E-3 1.0020000 -> -1.00000000
|
|
|
|
subx907 subtract 2.000000E-3 1.00200000 -> -1.000000000
|
|
|
|
subx908 subtract 2.0000000E-3 1.002000000 -> -1.0000000000
|
|
|
|
|
|
|
|
-- subnormals and underflows
|
|
|
|
precision: 3
|
|
|
|
maxexponent: 999
|
|
|
|
minexponent: -999
|
|
|
|
subx1010 subtract 0 1.00E-999 -> -1.00E-999
|
|
|
|
subx1011 subtract 0 0.1E-999 -> -1E-1000 Subnormal
|
|
|
|
subx1012 subtract 0 0.10E-999 -> -1.0E-1000 Subnormal
|
|
|
|
subx1013 subtract 0 0.100E-999 -> -1.0E-1000 Subnormal Rounded
|
|
|
|
subx1014 subtract 0 0.01E-999 -> -1E-1001 Subnormal
|
|
|
|
-- next is rounded to Emin
|
|
|
|
subx1015 subtract 0 0.999E-999 -> -1.00E-999 Inexact Rounded Subnormal Underflow
|
|
|
|
subx1016 subtract 0 0.099E-999 -> -1.0E-1000 Inexact Rounded Subnormal Underflow
|
|
|
|
subx1017 subtract 0 0.009E-999 -> -1E-1001 Inexact Rounded Subnormal Underflow
|
2007-09-13 15:13:15 -03:00
|
|
|
subx1018 subtract 0 0.001E-999 -> -0E-1001 Inexact Rounded Subnormal Underflow Clamped
|
|
|
|
subx1019 subtract 0 0.0009E-999 -> -0E-1001 Inexact Rounded Subnormal Underflow Clamped
|
|
|
|
subx1020 subtract 0 0.0001E-999 -> -0E-1001 Inexact Rounded Subnormal Underflow Clamped
|
2004-07-01 08:01:35 -03:00
|
|
|
|
|
|
|
subx1030 subtract 0 -1.00E-999 -> 1.00E-999
|
|
|
|
subx1031 subtract 0 -0.1E-999 -> 1E-1000 Subnormal
|
|
|
|
subx1032 subtract 0 -0.10E-999 -> 1.0E-1000 Subnormal
|
|
|
|
subx1033 subtract 0 -0.100E-999 -> 1.0E-1000 Subnormal Rounded
|
|
|
|
subx1034 subtract 0 -0.01E-999 -> 1E-1001 Subnormal
|
|
|
|
-- next is rounded to Emin
|
|
|
|
subx1035 subtract 0 -0.999E-999 -> 1.00E-999 Inexact Rounded Subnormal Underflow
|
|
|
|
subx1036 subtract 0 -0.099E-999 -> 1.0E-1000 Inexact Rounded Subnormal Underflow
|
|
|
|
subx1037 subtract 0 -0.009E-999 -> 1E-1001 Inexact Rounded Subnormal Underflow
|
2007-09-13 15:13:15 -03:00
|
|
|
subx1038 subtract 0 -0.001E-999 -> 0E-1001 Inexact Rounded Subnormal Underflow Clamped
|
|
|
|
subx1039 subtract 0 -0.0009E-999 -> 0E-1001 Inexact Rounded Subnormal Underflow Clamped
|
|
|
|
subx1040 subtract 0 -0.0001E-999 -> 0E-1001 Inexact Rounded Subnormal Underflow Clamped
|
2004-07-01 08:01:35 -03:00
|
|
|
|
|
|
|
-- some non-zero subnormal subtracts
|
|
|
|
-- subx1056 is a tricky case
|
|
|
|
rounding: half_up
|
|
|
|
subx1050 subtract 1.00E-999 0.1E-999 -> 9.0E-1000 Subnormal
|
|
|
|
subx1051 subtract 0.1E-999 0.1E-999 -> 0E-1000
|
|
|
|
subx1052 subtract 0.10E-999 0.1E-999 -> 0E-1001
|
|
|
|
subx1053 subtract 0.100E-999 0.1E-999 -> 0E-1001 Clamped
|
|
|
|
subx1054 subtract 0.01E-999 0.1E-999 -> -9E-1001 Subnormal
|
|
|
|
subx1055 subtract 0.999E-999 0.1E-999 -> 9.0E-1000 Inexact Rounded Subnormal Underflow
|
2007-09-13 15:13:15 -03:00
|
|
|
subx1056 subtract 0.099E-999 0.1E-999 -> -0E-1001 Inexact Rounded Subnormal Underflow Clamped
|
2004-07-01 08:01:35 -03:00
|
|
|
subx1057 subtract 0.009E-999 0.1E-999 -> -9E-1001 Inexact Rounded Subnormal Underflow
|
|
|
|
subx1058 subtract 0.001E-999 0.1E-999 -> -1.0E-1000 Inexact Rounded Subnormal Underflow
|
|
|
|
subx1059 subtract 0.0009E-999 0.1E-999 -> -1.0E-1000 Inexact Rounded Subnormal Underflow
|
|
|
|
subx1060 subtract 0.0001E-999 0.1E-999 -> -1.0E-1000 Inexact Rounded Subnormal Underflow
|
|
|
|
|
|
|
|
|
|
|
|
-- check for double-rounded subnormals
|
|
|
|
precision: 5
|
|
|
|
maxexponent: 79
|
|
|
|
minexponent: -79
|
|
|
|
subx1101 subtract 0 1.52444E-80 -> -1.524E-80 Inexact Rounded Subnormal Underflow
|
|
|
|
subx1102 subtract 0 1.52445E-80 -> -1.524E-80 Inexact Rounded Subnormal Underflow
|
|
|
|
subx1103 subtract 0 1.52446E-80 -> -1.524E-80 Inexact Rounded Subnormal Underflow
|
|
|
|
subx1104 subtract 1.52444E-80 0 -> 1.524E-80 Inexact Rounded Subnormal Underflow
|
|
|
|
subx1105 subtract 1.52445E-80 0 -> 1.524E-80 Inexact Rounded Subnormal Underflow
|
|
|
|
subx1106 subtract 1.52446E-80 0 -> 1.524E-80 Inexact Rounded Subnormal Underflow
|
|
|
|
|
2007-09-13 15:13:15 -03:00
|
|
|
subx1111 subtract 1.2345678E-80 1.2345671E-80 -> 0E-83 Inexact Rounded Subnormal Underflow Clamped
|
|
|
|
subx1112 subtract 1.2345678E-80 1.2345618E-80 -> 0E-83 Inexact Rounded Subnormal Underflow Clamped
|
|
|
|
subx1113 subtract 1.2345678E-80 1.2345178E-80 -> 0E-83 Inexact Rounded Subnormal Underflow Clamped
|
|
|
|
subx1114 subtract 1.2345678E-80 1.2341678E-80 -> 0E-83 Inexact Rounded Subnormal Underflow Clamped
|
2004-07-01 08:01:35 -03:00
|
|
|
subx1115 subtract 1.2345678E-80 1.2315678E-80 -> 3E-83 Rounded Subnormal
|
|
|
|
subx1116 subtract 1.2345678E-80 1.2145678E-80 -> 2.0E-82 Rounded Subnormal
|
|
|
|
subx1117 subtract 1.2345678E-80 1.1345678E-80 -> 1.00E-81 Rounded Subnormal
|
|
|
|
subx1118 subtract 1.2345678E-80 0.2345678E-80 -> 1.000E-80 Rounded Subnormal
|
|
|
|
|
2007-09-13 15:13:15 -03:00
|
|
|
precision: 34
|
|
|
|
rounding: half_up
|
|
|
|
maxExponent: 6144
|
|
|
|
minExponent: -6143
|
|
|
|
-- Examples from SQL proposal (Krishna Kulkarni)
|
|
|
|
subx1125 subtract 130E-2 120E-2 -> 0.10
|
|
|
|
subx1126 subtract 130E-2 12E-1 -> 0.10
|
|
|
|
subx1127 subtract 130E-2 1E0 -> 0.30
|
|
|
|
subx1128 subtract 1E2 1E4 -> -9.9E+3
|
|
|
|
|
2004-07-01 08:01:35 -03:00
|
|
|
-- Null tests
|
|
|
|
subx9990 subtract 10 # -> NaN Invalid_operation
|
|
|
|
subx9991 subtract # 10 -> NaN Invalid_operation
|