forked from cesar.alejandro/oscillation_ctrl
Controller now uses MAVROS for localization
This commit is contained in:
parent
08bcb9fbc9
commit
ee7ec83869
|
@ -25,13 +25,12 @@ Launch file to use klausen oscillaton damping ctrl in Gazebo
|
|||
pkg="oscillation_ctrl"
|
||||
type="LinkState.py"
|
||||
name="linkStates_node"
|
||||
launch-prefix="xterm -fa 'Monospace' -fs 18 -e"
|
||||
launch-prefix="xterm -e"
|
||||
/>
|
||||
<node
|
||||
pkg="oscillation_ctrl"
|
||||
type="wpoint_tracker.py"
|
||||
name="waypoints_server"
|
||||
launch-prefix="xterm -e"
|
||||
/>
|
||||
<node
|
||||
pkg="oscillation_ctrl"
|
||||
|
@ -52,11 +51,13 @@ Launch file to use klausen oscillaton damping ctrl in Gazebo
|
|||
launch-prefix="xterm -e"
|
||||
/>
|
||||
|
||||
<node
|
||||
pkg="oscillation_ctrl"
|
||||
type="perform_test.py"
|
||||
name="test_node"
|
||||
/>
|
||||
<group if="$(eval test != 'none')">
|
||||
<node
|
||||
pkg="oscillation_ctrl"
|
||||
type="perform_test.py"
|
||||
name="test_node"
|
||||
/>
|
||||
</group>
|
||||
<node pkg="geometric_controller" type="geometric_controller_node" name="geometric_controller" output="screen">
|
||||
<param name="mav_name" type="string" value="$(arg mav_name)" />
|
||||
<!--remap from="command/bodyrate_command" to="/mavros/setpoint_raw/attitude"/-->
|
||||
|
|
|
@ -19,7 +19,6 @@ class Main:
|
|||
|
||||
# rate(s)
|
||||
rate = 60 # rate for the publisher method, specified in Hz -- 20 Hz
|
||||
|
||||
self.dt = 1.0/rate
|
||||
|
||||
rospy.sleep(5) # Sleep for 1 sec. Need to give time to Gazebo to ru
|
||||
|
@ -41,21 +40,18 @@ class Main:
|
|||
# Will be set to true when test should start
|
||||
self.bool = False
|
||||
|
||||
# Vehicle is spawned with yaw offset for convenience, need to deal with that
|
||||
self.yaw_offset = 0.0
|
||||
|
||||
# variables for message gen
|
||||
self.status = tethered_status()
|
||||
self.drone_id = 'spiri_with_tether::spiri::base'
|
||||
self.pload_id = 'spiri_with_tether::mass::payload'
|
||||
self.status = tethered_status()
|
||||
self.drone_id = 'spiri_with_tether::spiri::base'
|
||||
self.pload_id = 'spiri_with_tether::mass::payload'
|
||||
self.loadAngles = LoadAngles()
|
||||
|
||||
# initialize variables
|
||||
self.tetherL = 0.0 # Tether length
|
||||
self.has_run = 0 # Boolean to keep track of first run instance
|
||||
self.phibuf = 0.0 # Need buffers to determine their rates
|
||||
self.tetherL = 0.0 # Tether length
|
||||
self.has_run = 0 # Boolean to keep track of first run instance
|
||||
self.phibuf = 0.0 # Need buffers to determine their rates
|
||||
self.thetabuf = 0.0 #
|
||||
self.pload = True # Check if payload exists
|
||||
self.pload = True # Check if payload exists
|
||||
|
||||
# Max dot values to prevent 'blowup'
|
||||
self.phidot_max = 3.0
|
||||
|
@ -74,6 +70,7 @@ class Main:
|
|||
|
||||
self.pub_timer = rospy.Timer(rospy.Duration(1.0/rate), self.link_state)
|
||||
self.path_timer = rospy.Timer(rospy.Duration(40.0/rate), self.path_follow)
|
||||
self.gui_timer = rospy.Timer(rospy.Duration(1/10.0), self.user_feedback)
|
||||
|
||||
def cutoff(self,value,ceiling):
|
||||
"""
|
||||
|
@ -102,9 +99,9 @@ class Main:
|
|||
eul[2] = Yaw
|
||||
"""
|
||||
eul = euler_from_quaternion([orientation.x,
|
||||
orientation.y,
|
||||
orientation.z,
|
||||
orientation.w])
|
||||
orientation.y,
|
||||
orientation.z,
|
||||
orientation.w])
|
||||
return eul
|
||||
|
||||
# Get link states (drone and pload) and determine angle between them
|
||||
|
@ -123,7 +120,7 @@ class Main:
|
|||
drone_P = get_P(self.drone_id,reference)
|
||||
|
||||
# Get orientation of drone in euler angles to determine yaw offset
|
||||
drone_Eul = self.euler_array(drone_P.link_state.pose.orientation)
|
||||
self.drone_Eul = self.euler_array(drone_P.link_state.pose.orientation)
|
||||
|
||||
# Check if payload is part of simulation
|
||||
if not drone_P.success:
|
||||
|
@ -136,7 +133,7 @@ class Main:
|
|||
if not self.has_run == 1:
|
||||
if self.pload == True:
|
||||
# Determine yaw offset
|
||||
self.yaw_offset = drone_Eul[2]
|
||||
self.yaw_offset = self.drone_Eul[2]
|
||||
|
||||
|
||||
# Get tether length based off initial displacement
|
||||
|
@ -155,25 +152,9 @@ class Main:
|
|||
|
||||
# Need to detemine their location to get angle of deflection
|
||||
# Drone
|
||||
drone_Px = drone_P.link_state.pose.position.x
|
||||
drone_Py = drone_P.link_state.pose.position.y
|
||||
drone_Pz = drone_P.link_state.pose.position.z
|
||||
|
||||
# Get drone orientation
|
||||
#drone_q = [drone_P.link_state.pose.orientation.x,drone_P.link_state.pose.orientation.y,
|
||||
# drone_P.link_state.pose.orientation.z,drone_P.link_state.pose.orientation.w]
|
||||
|
||||
# offset orientation by yaw offset
|
||||
#q_offset = quaternion_from_euler(0,0,-self.yaw_offset)
|
||||
#drone_q = quaternion_multiply(drone_q,q_offset)
|
||||
|
||||
#drone_P.link_state.pose.orientation.x = drone_q[0]
|
||||
#drone_P.link_state.pose.orientation.y = drone_q[1]
|
||||
#drone_P.link_state.pose.orientation.z = drone_q[2]
|
||||
#drone_P.link_state.pose.orientation.w = drone_q[3]
|
||||
|
||||
# Get euler angles again for feedback to user
|
||||
#drone_Eul = self.euler_array(drone_P.link_state.pose.orientation)
|
||||
self.drone_Px = drone_P.link_state.pose.position.x
|
||||
self.drone_Py = drone_P.link_state.pose.position.y
|
||||
self.drone_Pz = drone_P.link_state.pose.position.z
|
||||
|
||||
if self.pload == True: # If there is payload, determine the variables
|
||||
# Pload
|
||||
|
@ -181,7 +162,7 @@ class Main:
|
|||
pload_Py = pload_P.link_state.pose.position.y
|
||||
|
||||
# Determine theta (pitch)
|
||||
x_sep = pload_Px - drone_Px
|
||||
x_sep = pload_Px - self.drone_Px
|
||||
|
||||
if math.fabs(x_sep) >= self.tetherL or x_sep == 0:
|
||||
self.loadAngles.theta = 0
|
||||
|
@ -194,12 +175,12 @@ class Main:
|
|||
self.thetabuf = self.loadAngles.theta
|
||||
|
||||
# Determine phi (roll)
|
||||
y_sep = pload_Py - drone_Py
|
||||
y_sep = pload_Py - self.drone_Py
|
||||
|
||||
if math.fabs(y_sep) >= self.tetherL or y_sep == 0:
|
||||
self.loadAngles.phi = 0
|
||||
else:
|
||||
self.loadAngles.phi = math.asin(y_sep/self.tetherL)
|
||||
self.loadAngles.phi = -math.asin(y_sep/self.tetherL)
|
||||
|
||||
# Determine phidot
|
||||
self.loadAngles.phidot = (self.loadAngles.phi - self.phibuf)/self.dt
|
||||
|
@ -209,16 +190,6 @@ class Main:
|
|||
else: # Otherwise, vars = 0
|
||||
x_sep = self.loadAngles.phi = self.loadAngles.phidot = self.loadAngles.theta = self.thetadot = 0
|
||||
|
||||
# Print and save results
|
||||
print "\n"
|
||||
rospy.loginfo("")
|
||||
print"Roll: "+str(round(drone_Eul[0]*180/3.14,2)),"\nPitch: "+str(round(drone_Eul[1]*180/3.14,2)),"\nYaw: "+str(round(drone_Eul[2]*180/3.14,2))
|
||||
print "drone pos.x: " + str(round(drone_Px,2))
|
||||
print "drone pos.y: " + str(round(drone_Py,2))
|
||||
print "drone pos.z: " + str(round(drone_Pz,2))
|
||||
print "phi: " + str(round(self.loadAngles.phi*180/3.14,3))
|
||||
print "theta: " + str(round(self.loadAngles.theta*180/3.14,3))
|
||||
|
||||
# Populate message
|
||||
self.status.header.stamp = rospy.Time.now()
|
||||
self.status.drone_pos = drone_P.link_state.pose
|
||||
|
@ -232,6 +203,17 @@ class Main:
|
|||
except rospy.ServiceException as e:
|
||||
rospy.loginfo("Get Link State call failed: {0}".format(e))
|
||||
|
||||
def user_feedback(self,gui_timer):
|
||||
# Print and save results
|
||||
print "\n"
|
||||
rospy.loginfo("")
|
||||
print"Roll: "+str(round(self.drone_Eul[0]*180/3.14,2)),"\nPitch: "+str(round(self.drone_Eul[1]*180/3.14,2)),"\nYaw: "+str(round(self.drone_Eul[2]*180/3.14,2))
|
||||
print "drone pos.x: " + str(round(self.drone_Px,2))
|
||||
print "drone pos.y: " + str(round(self.drone_Py,2))
|
||||
print "drone pos.z: " + str(round(self.drone_Pz,2))
|
||||
print "phi: " + str(round(self.loadAngles.phi*180/3.14,3))
|
||||
print "theta: " + str(round(self.loadAngles.theta*180/3.14,3))
|
||||
|
||||
def path_follow(self,path_timer):
|
||||
now = rospy.get_time()
|
||||
if now - self.tstart < self.wait:
|
||||
|
@ -240,7 +222,6 @@ class Main:
|
|||
self.bool = True
|
||||
self.pub_wd.publish(self.bool)
|
||||
|
||||
|
||||
if __name__=="__main__":
|
||||
|
||||
# Initiate ROS node
|
||||
|
@ -250,5 +231,4 @@ if __name__=="__main__":
|
|||
rospy.spin() # loop until shutdown signal
|
||||
|
||||
except rospy.ROSInterruptException:
|
||||
pass
|
||||
|
||||
pass
|
|
@ -12,44 +12,44 @@ import numpy as np
|
|||
import time
|
||||
import math
|
||||
|
||||
from tf.transformations import *
|
||||
from scipy.integrate import odeint
|
||||
from oscillation_ctrl.msg import tethered_status, RefSignal, LoadAngles
|
||||
from controller_msgs.msg import FlatTarget
|
||||
from geometry_msgs.msg import Point, Pose
|
||||
from geometry_msgs.msg import TwistStamped, Vector3, Vector3Stamped, PoseStamped, Quaternion
|
||||
from gazebo_msgs.srv import GetLinkState
|
||||
from sensor_msgs.msg import Imu
|
||||
from pymavlink import mavutil
|
||||
from tf.transformations import *
|
||||
from scipy.integrate import odeint
|
||||
from oscillation_ctrl.msg import tethered_status, RefSignal, LoadAngles
|
||||
from controller_msgs.msg import FlatTarget
|
||||
from geometry_msgs.msg import Point, Pose
|
||||
from geometry_msgs.msg import TwistStamped, Vector3, Vector3Stamped, PoseStamped, Quaternion
|
||||
from gazebo_msgs.srv import GetLinkState
|
||||
from sensor_msgs.msg import Imu
|
||||
from pymavlink import mavutil
|
||||
|
||||
class Main:
|
||||
|
||||
def __init__(self):
|
||||
|
||||
# rate(s)
|
||||
rate = 200 # rate for the publisher method, specified in Hz -- 20 Hz
|
||||
rate = 200 # rate for the publisher method, specified in Hz -- 20 Hz
|
||||
|
||||
# initialize variables
|
||||
|
||||
# time variables
|
||||
self.dt = 1.0/rate
|
||||
self.tmax = self.dt
|
||||
self.n = self.tmax/self.dt + 1
|
||||
self.t = np.linspace(0, self.tmax, self.n) # Time array
|
||||
self.tstart = rospy.get_time() # Keep track of the start time
|
||||
self.dt = 1.0/rate
|
||||
self.tmax = self.dt
|
||||
self.n = self.tmax/self.dt + 1
|
||||
self.t = np.linspace(0, self.tmax, self.n) # Time array
|
||||
self.tstart = rospy.get_time() # Keep track of the start time
|
||||
while self.tstart == 0.0: # Need to make sure get_rostime works
|
||||
self.tstart = rospy.get_time()
|
||||
|
||||
# Msgs types
|
||||
self.vel_data = TwistStamped() # This is needed to get drone vel from gps
|
||||
self.imu_data = Imu() # Needed for to get drone acc from IMU
|
||||
self.path_pos = np.zeros([3,1])
|
||||
self.path_vel = np.zeros([3,1])
|
||||
self.path_acc = np.zeros([3,1])
|
||||
self.dr_pos = Pose()
|
||||
self.quaternion = PoseStamped()
|
||||
self.vel_data = TwistStamped() # This is needed to get drone vel from gps
|
||||
self.imu_data = Imu() # Needed for to get drone acc from IMU
|
||||
self.path_pos = np.zeros([3,1])
|
||||
self.path_vel = np.zeros([3,1])
|
||||
self.path_acc = np.zeros([3,1])
|
||||
self.dr_pos = Pose()
|
||||
self.quaternion = PoseStamped() # used to send quaternion attitude commands
|
||||
self.load_angles = LoadAngles()
|
||||
self.EulerAng = [0,0,0] # Will find the euler angles, and then convert to q
|
||||
self.EulerAng = [0,0,0] # Will find the euler angles, and then convert to q
|
||||
|
||||
# Drone var
|
||||
self.has_run = 0 # Bool to keep track of first run instance
|
||||
|
@ -78,12 +78,12 @@ class Main:
|
|||
self.K2 = np.identity(5)
|
||||
|
||||
# Values which require updates. *_p = prior
|
||||
self.z1_p = np.zeros([3,1])
|
||||
self.a45_0 = np.zeros(2)
|
||||
self.alpha = np.zeros([5,1])
|
||||
self.z1_p = np.zeros([3,1])
|
||||
self.a45_0 = np.zeros(2)
|
||||
self.alpha = np.zeros([5,1])
|
||||
self.alphadot = np.zeros([5,1])
|
||||
self.a45 = self.alpha[3:5]
|
||||
self.a45dot = np.array([[0],[0]])
|
||||
self.a45 = self.alpha[3:5]
|
||||
self.a45dot = np.array([[0],[0]])
|
||||
|
||||
# Error terms
|
||||
self.z1 = np.zeros([3,1]) # dr_pos - ref_sig_pos
|
||||
|
@ -91,10 +91,10 @@ class Main:
|
|||
|
||||
# Constants
|
||||
self.drone_m = 1.437
|
||||
self.pl_m = 0.5
|
||||
self.tot_m = self.drone_m + self.pl_m
|
||||
self.tune = 1 # Tuning parameter
|
||||
self.dist = np.array([0,0,0,0.01,0.01]) # Wind disturbance
|
||||
self.pl_m = 0.5
|
||||
self.tot_m = self.drone_m + self.pl_m
|
||||
self.tune = 1 # Tuning parameter
|
||||
self.dist = np.array([0,0,0,0.01,0.01]) # Wind disturbance
|
||||
|
||||
# --------------------------------------------------------------------------------#
|
||||
# SUBSCRIBERS
|
||||
|
@ -102,6 +102,8 @@ class Main:
|
|||
# Topic, msg type, and class callback method
|
||||
rospy.Subscriber('/status/load_angles', LoadAngles, self.loadAngles_cb)
|
||||
rospy.Subscriber('/reference/path', FlatTarget, self.refsig_cb)
|
||||
#rospy.Subscriber('/status/twoBody_status', tethered_status, self.dronePos_cb)
|
||||
rospy.Subscriber('/mavros/local_position/pose', PoseStamped, self.dronePos_cb)
|
||||
rospy.Subscriber('/mavros/local_position/velocity_body', TwistStamped, self.droneVel_cb)
|
||||
rospy.Subscriber('/mavros/imu/data', Imu, self.droneAcc_cb)
|
||||
|
||||
|
@ -133,9 +135,10 @@ class Main:
|
|||
|
||||
|
||||
# Callback drone pose
|
||||
def dronePos_cb(self,msg): ### NEED to add mavros/local_pos.. sub
|
||||
def dronePos_cb(self,msg):
|
||||
try:
|
||||
self.dr_pos = msg.pose
|
||||
#self.dr_pos = msg.drone_pos
|
||||
|
||||
except ValueError:
|
||||
pass
|
||||
|
@ -143,7 +146,7 @@ class Main:
|
|||
# Callback for drone velocity ####### IS THIS ON? ##########
|
||||
def droneVel_cb(self,msg):
|
||||
try:
|
||||
self.dr_vel = np.array([[msg.twist.linear.x],[msg.twist.linear.y],[msg.twist.linear.z]])
|
||||
self.dr_vel = np.array([[msg.twist.linear.x],[msg.twist.linear.y],[msg.twist.linear.z]])
|
||||
self.dr_angVel = np.array([[msg.twist.angular.x],[msg.twist.angular.y],[msg.twist.angular.z]])
|
||||
|
||||
except ValueError or TypeError:
|
||||
|
@ -162,7 +165,7 @@ class Main:
|
|||
try:
|
||||
self.path_pos = np.array([[msg.position.x],[msg.position.y],[msg.position.z]])
|
||||
self.path_vel = np.array([[msg.velocity.x],[msg.velocity.y],[msg.velocity.z]])
|
||||
self.path_acc = np.array([[msg.acceleration.x],[msg.acceleration.y],[msg.acceleration.z + 9.81]]) #TODO
|
||||
self.path_acc = np.array([[msg.acceleration.x],[msg.acceleration.y],[msg.acceleration.z + 9.81]]) #TODO
|
||||
|
||||
except ValueError:
|
||||
pass
|
||||
|
@ -190,15 +193,15 @@ class Main:
|
|||
|
||||
def control(self):
|
||||
# Populate position vector and gamma (g). g is state space vector: [px,py,pz,theta,phi]
|
||||
p = np.array([[self.dr_pos.position.x],[self.dr_pos.position.y],[self.dr_pos.position.z]])
|
||||
g = np.array([[self.dr_pos.position.x],[self.dr_pos.position.y],[self.dr_pos.position.z],[self.load_angles.theta],[self.load_angles.phi]])
|
||||
p = np.array([[self.dr_pos.position.x],[self.dr_pos.position.y],[self.dr_pos.position.z]])
|
||||
g = np.array([[self.dr_pos.position.x],[self.dr_pos.position.y],[self.dr_pos.position.z],[self.load_angles.theta],[self.load_angles.phi]])
|
||||
|
||||
# State some variables for shorthand
|
||||
L = self.tetherL
|
||||
L = self.tetherL
|
||||
c_theta = math.cos(self.load_angles.theta)
|
||||
c_phi = math.cos(self.load_angles.phi)
|
||||
s_theta = math.sin(self.load_angles.theta)
|
||||
s_phi = math.sin(self.load_angles.phi)
|
||||
s_phi = math.sin(self.load_angles.phi)
|
||||
|
||||
# Check for tether
|
||||
if L <= 0.01:
|
||||
|
@ -211,24 +214,16 @@ class Main:
|
|||
|
||||
# Control matrices - this may be better in _init_
|
||||
M = [[self.tot_m, 0, 0, 0, L*self.pl_m*c_theta],
|
||||
|
||||
[0, self.tot_m, 0, -L*self.pl_m*c_phi*c_theta, L*self.pl_m*s_phi*s_theta],
|
||||
|
||||
[0, 0, self.tot_m, -L*self.pl_m*c_theta*s_phi, -L*self.pl_m*c_phi*s_theta],
|
||||
|
||||
[0, -L*self.pl_m*c_phi*c_theta,-L*self.pl_m*c_theta*s_phi, (L**2)*self.pl_m*c_theta**2 + 0.01*s_theta**2, 0],
|
||||
|
||||
[L*self.pl_m*c_theta, L*self.pl_m*s_phi*s_theta, -L*self.pl_m*c_phi*s_theta, 0, L**2*self.pl_m]]
|
||||
[0, self.tot_m, 0, -L*self.pl_m*c_phi*c_theta, L*self.pl_m*s_phi*s_theta],
|
||||
[0, 0, self.tot_m, -L*self.pl_m*c_theta*s_phi, -L*self.pl_m*c_phi*s_theta],
|
||||
[0, -L*self.pl_m*c_phi*c_theta,-L*self.pl_m*c_theta*s_phi, (L**2)*self.pl_m*c_theta**2 + 0.01*s_theta**2, 0],
|
||||
[L*self.pl_m*c_theta, L*self.pl_m*s_phi*s_theta, -L*self.pl_m*c_phi*s_theta, 0, L**2*self.pl_m]]
|
||||
|
||||
C = [[0,0,0,0,-L*self.load_angles.thetadot*self.pl_m*s_theta],
|
||||
|
||||
[0,0,0,L*self.pl_m*(self.load_angles.phidot*c_theta*s_phi + self.load_angles.thetadot*c_phi*s_theta), L*self.pl_m*(self.load_angles.phidot*c_phi*s_theta + self.load_angles.thetadot*c_theta*s_phi)],
|
||||
|
||||
[0,0,0,-L*self.pl_m*(self.load_angles.phidot*c_phi*c_theta - self.load_angles.thetadot*s_phi*s_theta),-L*self.pl_m*(self.load_angles.thetadot*c_phi*c_theta - self.load_angles.phidot*s_phi*s_theta)],
|
||||
|
||||
[0,0,0,-0.5*(L**2)*self.pl_m*self.load_angles.thetadot*math.sin(2*self.load_angles.theta) + 0.5*0.01*self.load_angles.thetadot*math.sin(2*self.load_angles.theta), -0.5*(L**2)*self.pl_m*self.load_angles.phidot*math.sin(2*self.load_angles.theta)],
|
||||
|
||||
[0,0,0,0.5*(L**2)*self.pl_m*self.load_angles.phidot*math.sin(2*self.load_angles.theta),0]]
|
||||
[0,0,0,L*self.pl_m*(self.load_angles.phidot*c_theta*s_phi + self.load_angles.thetadot*c_phi*s_theta), L*self.pl_m*(self.load_angles.phidot*c_phi*s_theta + self.load_angles.thetadot*c_theta*s_phi)],
|
||||
[0,0,0,-L*self.pl_m*(self.load_angles.phidot*c_phi*c_theta - self.load_angles.thetadot*s_phi*s_theta),-L*self.pl_m*(self.load_angles.thetadot*c_phi*c_theta - self.load_angles.phidot*s_phi*s_theta)],
|
||||
[0,0,0,-0.5*(L**2)*self.pl_m*self.load_angles.thetadot*math.sin(2*self.load_angles.theta) + 0.5*0.01*self.load_angles.thetadot*math.sin(2*self.load_angles.theta), -0.5*(L**2)*self.pl_m*self.load_angles.phidot*math.sin(2*self.load_angles.theta)],
|
||||
[0,0,0,0.5*(L**2)*self.pl_m*self.load_angles.phidot*math.sin(2*self.load_angles.theta),0]]
|
||||
|
||||
G = [[0],[0],[-9.81*self.tot_m],[L*9.81*self.pl_m*c_theta*s_phi],[L*9.81*self.pl_m*c_phi*s_theta]]
|
||||
|
||||
|
@ -271,7 +266,7 @@ class Main:
|
|||
self.a45dot = np.array([[self.a45dot[0]],[self.a45dot[1]]])
|
||||
|
||||
else: # if no tether, alpha_4:5 = 0
|
||||
self.a45 = np.array([[0],[0]])
|
||||
self.a45 = np.array([[0],[0]])
|
||||
self.a45dot = np.array([[0],[0]])
|
||||
|
||||
# Determine a_1:3
|
||||
|
@ -290,20 +285,21 @@ class Main:
|
|||
Ki = self.tune*self.K1
|
||||
|
||||
# Desired body-oriented forces
|
||||
# shouldnt it be tot_m*path_acc?
|
||||
Fd = B + G[:3] + self.tot_m*self.dr_acc - np.dot(Kd,z1_dot) - np.dot(Kp,self.z1) - np.dot(Ki,self.dt*(self.z1 - self.z1_p))
|
||||
|
||||
|
||||
# Update self.z1_p for "integration"
|
||||
self.z1_p = self.z1
|
||||
|
||||
# Covert Fd into drone frame
|
||||
dr_orientation = [self.dr_pos.orientation.x, self.dr_pos.orientation.y, self.dr_pos.orientation.z, self.dr_pos.orientation.w]
|
||||
dr_orientation = [self.dr_pos.orientation.x, self.dr_pos.orientation.y, self.dr_pos.orientation.z, self.dr_pos.orientation.w]
|
||||
dr_orientation_inv = quaternion_inverse(dr_orientation)
|
||||
|
||||
|
||||
Fd_tf = quaternion_multiply(dr_orientation,quaternion_multiply([Fd[0],Fd[1],Fd[2],0],dr_orientation_inv)) # Real part of Fd needs = 0
|
||||
|
||||
# Convert forces to attiude *EulerAng[2] = yaw = 0
|
||||
self.EulerAng[1] = math.atan(-Fd_tf[0]/(self.drone_m*9.81)) # Pitch -- maybe
|
||||
self.EulerAng[0] = math.atan(Fd_tf[1]*math.cos(self.EulerAng[1])/(self.drone_m*9.81)) # Roll -- maybe
|
||||
self.EulerAng[1] = math.atan(Fd_tf[0]/(self.drone_m*9.81)) # Pitch
|
||||
self.EulerAng[0] = math.atan(-Fd_tf[1]*math.cos(self.EulerAng[1])/(self.drone_m*9.81)) # Roll
|
||||
|
||||
# Convert Euler angles to quaternions
|
||||
q = quaternion_from_euler(self.EulerAng[0],self.EulerAng[1],self.EulerAng[2])
|
||||
|
|
|
@ -229,7 +229,7 @@ int main(int argc, char **argv)
|
|||
attitude.thrust = thrust.thrust;
|
||||
|
||||
// Determine which messages to send
|
||||
if(ros::Time::now() - tkoff_req > ros::Duration(22.0) && takeoff){
|
||||
if(ros::Time::now() - tkoff_req > ros::Duration(30.0) && takeoff){
|
||||
attitude.orientation = q_des;
|
||||
attitude.header.stamp = ros::Time::now();
|
||||
att_targ.publish(attitude);
|
||||
|
|
|
@ -32,8 +32,6 @@ class Main:
|
|||
self.tstart = rospy.get_time()
|
||||
|
||||
self.dt = 1.0/rate
|
||||
# self.dt = 0.5
|
||||
# self.tmax = 100
|
||||
self.tmax = self.dt
|
||||
self.n = self.tmax/self.dt + 1
|
||||
self.t = np.linspace(0, self.tmax, self.n) # Time array
|
||||
|
@ -68,12 +66,13 @@ class Main:
|
|||
# Topic, msg type, and class callback method
|
||||
rospy.Subscriber('/status/load_angles', LoadAngles, self.loadAngles_cb)
|
||||
rospy.Subscriber('/mavros/local_position/pose', PoseStamped, self.dronePos_cb)
|
||||
#rospy.Subscriber('/status/twoBody_status', tethered_status, self.dronePos_cb)
|
||||
rospy.Subscriber('/mavros/local_position/velocity_body', TwistStamped, self.droneVel_cb)
|
||||
rospy.Subscriber('/mavros/imu/data', Imu, self.droneAcc_cb)
|
||||
rospy.Subscriber('/mavros/state', State, self.state_cb)
|
||||
|
||||
# --------------------------------------------------------------------------------#
|
||||
# PUBLISHERS
|
||||
# PUBLISHERS
|
||||
# --------------------------------------------------------------------------------#
|
||||
# Publish desired path to compute attitudes
|
||||
self.pub_path = rospy.Publisher('/reference/path',FlatTarget,queue_size = 10)
|
||||
|
@ -84,7 +83,7 @@ class Main:
|
|||
self.pub_tim = rospy.Timer(rospy.Duration(1.0/rate), self.publisher)
|
||||
|
||||
# --------------------------------------------------------------------------------#
|
||||
# FEEDBACK AND INPUT SHAPING
|
||||
# FEEDBACK AND INPUT SHAPING
|
||||
# --------------------------------------------------------------------------------#
|
||||
|
||||
# Smooth path variables
|
||||
|
@ -92,36 +91,29 @@ class Main:
|
|||
self.EPS_I = np.zeros(9) # Epsilon shapefilter
|
||||
|
||||
# Constants for smooth path generation
|
||||
self.w_tune = 3.13 # 3.13 works well? #########################################################################
|
||||
self.w_tune = 3.5 # 3.13 works well? #########################################################################
|
||||
self.epsilon = 0.7 # Damping ratio
|
||||
|
||||
# need exception if we do not have tether:
|
||||
if self.tetherL == 0.0:
|
||||
self.wn = self.w_tune
|
||||
else:
|
||||
self.wn = math.sqrt(9.81/self.tetherL)
|
||||
self.wn = math.sqrt(9.81/self.tetherL)
|
||||
|
||||
self.wd = self.wn*math.sqrt(1 - self.epsilon**2)
|
||||
self.k4 = 4*self.epsilon*self.w_tune
|
||||
self.k3 = ((2 + 4*self.epsilon**2)*self.w_tune**2)/self.k4
|
||||
self.k2 = (4*self.epsilon*self.w_tune**3)/(self.k4*self.k3)
|
||||
self.k1 = (self.w_tune**4)/(self.k2*self.k3*self.k4)
|
||||
self.wd = self.wn*math.sqrt(1 - self.epsilon**2)
|
||||
self.k4 = 4*self.epsilon*self.w_tune
|
||||
self.k3 = ((2 + 4*self.epsilon**2)*self.w_tune**2)/self.k4
|
||||
self.k2 = (4*self.epsilon*self.w_tune**3)/(self.k4*self.k3)
|
||||
self.k1 = (self.w_tune**4)/(self.k2*self.k3*self.k4)
|
||||
|
||||
# For saturation:
|
||||
self.jmax = [3, 3, 1]
|
||||
self.amax = [1.5, 1.5, 1]
|
||||
self.vmax = [3, 3, 1]
|
||||
self.max = [0, 3, 1.5, 3] #[0, 3, 1.5, 3]
|
||||
self.jmax = [3, 3, 1]
|
||||
self.amax = [1.5, 1.5, 1]
|
||||
self.vmax = [3, 3, 1]
|
||||
self.max = [0, 3, 1.5, 3] #[0, 3, 1.5, 3]
|
||||
# create the array: [vmax; amax; jmax]
|
||||
self.max_array = np.array([[self.vmax],[self.amax],[self.jmax]]).T
|
||||
|
||||
# Desired position array
|
||||
#if rospy.has_param('sim/waypoints'):
|
||||
# self.xd = rospy.get_param('sim/waypoints') # waypoints
|
||||
#elif rospy.get_time() - self.tstart >= 3.0:
|
||||
# self.xd = np.array([[0],[0],[5.0]]) # make our own if there are no waypoints
|
||||
|
||||
#self.xd = Point()
|
||||
|
||||
self.get_xd = rospy.ServiceProxy('/status/waypoint_tracker',WaypointTrack)
|
||||
self.empty_point = Point() # Needed to query waypoint_server
|
||||
|
||||
|
@ -137,11 +129,11 @@ class Main:
|
|||
self.td = 2*self.Gd*math.pi/self.wd
|
||||
|
||||
# Constants for shape filter/ Input shaping
|
||||
self.t1 = 0
|
||||
self.t2 = math.pi/self.wd
|
||||
self.K = math.exp(-self.epsilon*math.pi/math.sqrt(1 - self.epsilon**2))
|
||||
self.A1 = 1/(1 + self.K)
|
||||
self.A2 = self.A1*self.K
|
||||
self.t1 = 0
|
||||
self.t2 = math.pi/self.wd
|
||||
self.K = math.exp(-self.epsilon*math.pi/math.sqrt(1 - self.epsilon**2))
|
||||
self.A1 = 1/(1 + self.K)
|
||||
self.A2 = self.A1*self.K
|
||||
|
||||
# Need to determine how large of any array needs to be stored to use delayed functions
|
||||
self.SF_delay_x = np.zeros([4,int(round(self.t2/self.dt))]) # Shapefilter delay; 4 - p,v,a,j
|
||||
|
@ -160,11 +152,11 @@ class Main:
|
|||
self.FB_idx = 0
|
||||
|
||||
# Constants for sigmoid
|
||||
self.at = 3 # acceleration theshold
|
||||
self.pc = 0.7 # From Klausen 2017
|
||||
self.sk = len(self.SF_delay_x[0]) # from Klausen 2017
|
||||
self.ak = np.zeros(len(self.SF_delay_x[0]))
|
||||
self.s_gain = 0.0 # Gain found from sigmoid
|
||||
self.at = 3 # acceleration theshold
|
||||
self.pc = 0.7 # From Klausen 2017
|
||||
self.sk = len(self.SF_delay_x[0]) # from Klausen 2017
|
||||
self.ak = np.zeros(len(self.SF_delay_x[0]))
|
||||
self.s_gain = 0.0 # Gain found from sigmoid
|
||||
# --------------------------------------------------------------------------------#
|
||||
# CALLBACK FUNCTIONS
|
||||
# --------------------------------------------------------------------------------#
|
||||
|
@ -198,9 +190,10 @@ class Main:
|
|||
pass
|
||||
|
||||
# Callback drone pose
|
||||
def dronePos_cb(self,msg): ### NEED to add mavros/local_pos.. sub
|
||||
def dronePos_cb(self,msg):
|
||||
try:
|
||||
self.dr_pos = msg.pose
|
||||
#self.dr_pos = msg.drone_pos
|
||||
|
||||
except ValueError:
|
||||
pass
|
||||
|
@ -229,17 +222,17 @@ class Main:
|
|||
except ValueError:
|
||||
pass
|
||||
|
||||
#################################################################
|
||||
#TODO Will need to add a function that gets a message from #
|
||||
# a node which lets refsignal_gen.py know there has been a #
|
||||
# change in xd and therefore runs waypoints_srv_cb again #
|
||||
#################################################################
|
||||
######################################################################
|
||||
#TODO Will need to add a function that gets a message from #
|
||||
# a node which lets refsignal_gen.py know there has been a #
|
||||
# change in xd and therefore runs waypoints_srv_cb again #
|
||||
######################################################################
|
||||
|
||||
# --------------------------------------------------------------------------------#
|
||||
# ALGORITHM
|
||||
# ALGORITHM
|
||||
# --------------------------------------------------------------------------------#
|
||||
# --------------------------------------------------------------------------------#
|
||||
# TRAJECTORY GENERATION BASED ON WAYPONTS xd
|
||||
# TRAJECTORY GENERATION BASED ON WAYPONTS xd
|
||||
# --------------------------------------------------------------------------------#
|
||||
def statespace(self,y,t,xd):
|
||||
# Update initial conditions #
|
||||
|
@ -290,7 +283,7 @@ class Main:
|
|||
elif cmd == 2: # Feedback
|
||||
if self.FB_idx < len(self.theta_fb):
|
||||
# First, fill up the delay array
|
||||
self.theta_fb[self.FB_idx] = self.load_angles.theta
|
||||
self.theta_fb[self.FB_idx] = self.load_angles.theta
|
||||
self.theta_vel_fb[self.FB_idx] = self.load_angles.thetadot
|
||||
self.theta_acc_fb[self.FB_idx] = self.load_angles.thetadot - self.theta_vel_fb[self.FB_idx-1]
|
||||
|
||||
|
@ -300,19 +293,19 @@ class Main:
|
|||
|
||||
else:
|
||||
# once array is filled, need to shift values w/ latest value at end
|
||||
self.theta_fb[:] = np.roll(self.theta_fb[:],-1)
|
||||
self.theta_fb[:] = np.roll(self.theta_fb[:],-1)
|
||||
self.theta_vel_fb[:] = np.roll(self.theta_vel_fb[:],-1)
|
||||
self.theta_acc_fb[:] = np.roll(self.theta_acc_fb[:],-1)
|
||||
|
||||
self.phi_fb[:] = np.roll(self.phi_fb[:],-1)
|
||||
self.phi_fb[:] = np.roll(self.phi_fb[:],-1)
|
||||
self.phi_vel_fb[:] = np.roll(self.phi_vel_fb[:],-1)
|
||||
self.phi_acc_fb[:] = np.roll(self.phi_acc_fb[:],-1)
|
||||
|
||||
self.theta_fb[len(self.theta_fb)-1] = self.load_angles.theta # change final value
|
||||
self.theta_fb[len(self.theta_fb)-1] = self.load_angles.theta # change final value
|
||||
self.theta_vel_fb[len(self.theta_fb)-1] = self.load_angles.thetadot
|
||||
self.theta_acc_fb[len(self.theta_fb)-1] = self.load_angles.thetadot - self.theta_vel_fb[len(self.theta_fb)-1]
|
||||
|
||||
self.phi_fb[len(self.phi_fb)-1] = self.load_angles.phi
|
||||
self.phi_fb[len(self.phi_fb)-1] = self.load_angles.phi
|
||||
self.phi_vel_fb[len(self.theta_fb)-1] = self.load_angles.phidot
|
||||
self.phi_acc_fb[len(self.theta_fb)-1] = self.load_angles.phidot - self.phi_vel_fb[len(self.theta_fb)-1]
|
||||
|
||||
|
@ -343,17 +336,17 @@ class Main:
|
|||
self.delay(j,shapeFil) # Determine the delay (shapefilter) array
|
||||
|
||||
if self.SF_idx < len(self.SF_delay_x[0]):
|
||||
self.EPS_I[3*j] = self.x[1,j]
|
||||
self.EPS_I[3*j] = self.x[1,j]
|
||||
self.EPS_I[3*j+1] = self.y[1,j]
|
||||
self.EPS_I[3*j+2] = self.z[1,j]
|
||||
else:
|
||||
self.EPS_I[3*j] = self.A1*self.x[1,j] + self.A2*self.SF_delay_x[j,0] # Determine convolution (x)
|
||||
self.EPS_I[3*j+1] = self.A1*self.y[1,j] + self.A2*self.SF_delay_y[j,0] # Determine convolution (y)
|
||||
self.EPS_I[3*j+2] = self.z[1,j] # No need to convolute z-dim
|
||||
self.EPS_I[3*j+2] = self.z[1,j] # No need to convolute z-dim
|
||||
|
||||
self.delay(1,feedBack) # Detemine feedback array
|
||||
|
||||
self.sigmoid() # Determine sigmoid gain
|
||||
self.sigmoid() # Determine sigmoid gain
|
||||
EPS_D = self.fback() # Feedback Epsilon
|
||||
|
||||
for i in range(9):
|
||||
|
@ -365,7 +358,8 @@ class Main:
|
|||
self.ref_sig.type_mask = 2 # Need typemask = 2 to use correct attitude controller - Jaeyoung Lin
|
||||
self.ref_sig.position.x = self.EPS_F[0]
|
||||
self.ref_sig.position.y = self.EPS_F[1]
|
||||
self.ref_sig.position.z = self.EPS_F[2]
|
||||
#self.ref_sig.position.z = self.EPS_F[2]
|
||||
self.ref_sig.position.z = 5.0
|
||||
self.ref_sig.velocity.x = self.EPS_F[3]
|
||||
self.ref_sig.velocity.y = self.EPS_F[4]
|
||||
self.ref_sig.velocity.z = self.EPS_F[5]
|
||||
|
@ -383,11 +377,11 @@ class Main:
|
|||
|
||||
def fback(self):
|
||||
|
||||
xr = self.Gd*self.tetherL*math.sin(self.theta_fb[0])
|
||||
xr = self.Gd*self.tetherL*math.sin(self.theta_fb[0])
|
||||
xdotr = self.Gd*self.tetherL*math.cos(self.theta_fb[0])*self.theta_vel_fb[0]
|
||||
xddotr = -self.Gd*self.tetherL*math.sin(self.theta_fb[0])*(self.theta_vel_fb[0]**2) + math.cos(self.theta_fb[0])*self.theta_acc_fb[0]
|
||||
|
||||
yr = -self.Gd*self.tetherL*math.sin(self.phi_fb[0])
|
||||
yr = -self.Gd*self.tetherL*math.sin(self.phi_fb[0])
|
||||
ydotr = -self.Gd*self.tetherL*math.cos(self.phi_fb[0])*self.phi_vel_fb[0]
|
||||
yddotr = self.Gd*self.tetherL*math.sin(self.phi_fb[0])*self.phi_vel_fb[0]**2 + math.cos(self.phi_fb[0])*self.phi_acc_fb[0]
|
||||
|
||||
|
@ -398,13 +392,13 @@ class Main:
|
|||
def screen_output(self):
|
||||
|
||||
# Feedback to user
|
||||
#rospy.loginfo(' Var | x | y | z ')
|
||||
#rospy.loginfo('Pos: %.2f %.2f %.2f',self.EPS_F[0],self.EPS_F[1],self.EPS_F[2])
|
||||
#rospy.loginfo('Vel: %.2f %.2f %.2f',self.EPS_F[3],self.EPS_F[4],self.EPS_F[5])
|
||||
#rospy.loginfo('Acc: %.2f %.2f %.2f',self.EPS_F[6],self.EPS_F[7],self.EPS_F[8])
|
||||
#rospy.loginfo('_______________________')
|
||||
rospy.loginfo(' Var | x | y | z ')
|
||||
rospy.loginfo('Pos: %.2f %.2f %.2f',self.EPS_F[0],self.EPS_F[1],self.EPS_F[2])
|
||||
rospy.loginfo('Vel: %.2f %.2f %.2f',self.EPS_F[3],self.EPS_F[4],self.EPS_F[5])
|
||||
rospy.loginfo('Acc: %.2f %.2f %.2f',self.EPS_F[6],self.EPS_F[7],self.EPS_F[8])
|
||||
rospy.loginfo('_______________________')
|
||||
|
||||
rospy.loginfo('xd = %.2f',self.xd.x)
|
||||
#rospy.loginfo('xd = %.2f',self.xd.x)
|
||||
|
||||
def publisher(self,pub_tim):
|
||||
|
||||
|
|
Loading…
Reference in New Issue