Lastest changes to algorithm + adding airframes to work with Ubuntu 20.04

This commit is contained in:
cesar 2022-09-14 14:19:12 -03:00
parent 5b224e599d
commit 937fd75fee
28 changed files with 436 additions and 1070 deletions

3
.gitignore vendored
View File

@ -2,10 +2,13 @@ config/mocap_*
launch/cortex_bridge.launch
launch/debug.launch
launch/klausen_dampen.launch
launch/mocap_*
src/development_*
src/killswitch_client.py
src/land_client.py
src/MoCap_*.py
src/Mocap_*.py
src/mocap_*
src/segmented_tether.py
src/segmented_tether_fast.py
msg/Marker.msg

View File

@ -95,11 +95,11 @@ add_dependencies(pathFollow_node ${${PROJECT_NAME}EXPORTEDTARGETS} ${catkin_EXPO
#add_dependencies(mocap_offb_node ${${PROJECT_NAME}EXPORTEDTARGETS} ${catkin_EXPORTED_TARGETS})
add_executable(mocap_pathFollow_node src/mocap_path_follow.cpp)
#add_executable(mocap_pathFollow_node src/mocap_path_follow.cpp)
target_link_libraries(mocap_pathFollow_node ${catkin_LIBRARIES})
#target_link_libraries(mocap_pathFollow_node ${catkin_LIBRARIES})
add_dependencies(mocap_pathFollow_node ${${PROJECT_NAME}EXPORTEDTARGETS} ${catkin_EXPORTED_TARGETS})
#add_dependencies(mocap_pathFollow_node ${${PROJECT_NAME}EXPORTEDTARGETS} ${catkin_EXPORTED_TARGETS})
## Declare a C++ library
# add_library(${PROJECT_NAME}

View File

@ -0,0 +1,25 @@
#!/bin/sh
#
# @name Generic Quadcopter
#
# @type Quadrotor x
# @class Copter
. ${R}etc/init.d/rc.mc_defaults
param set-default MC_ROLLRATE_K 2.35
param set-default MC_ROLLRATE_D 0.0032
param set-default MC_ROLLRATE_I 0.15
param set-default MC_PITCHRATE_K 2.35
param set-default MC_PITCHRATE_D 0.0032
param set-default MC_PITCHRATE_I 0.15
param set-default MPC_Z_VEL_MAX_UP 1.0
param set EKF2_AID_MASK 1
param set EKF2_HGT_MODE 0
param set SYS_FAILURE_EN 0
set MIXER quad_x
set PWM_OUT 1234

View File

@ -0,0 +1,26 @@
#!/bin/sh
#
# @name Generic Quadcopter
#
# @type Quadrotor x
# @class Copter
. ${R}etc/init.d/rc.mc_defaults
param set MC_ROLLRATE_K 2.35
param set MC_ROLLRATE_D 0.0030
param set MC_ROLLRATE_I 0.15
param set MC_PITCHRATE_K 2.35
param set MC_PITCHRATE_D 0.0030
param set MC_PITCHRATE_I 0.15
param set MPC_Z_VEL_MAX_UP 0.5
param set MPC_TKO_SPEED 1.0
param set EKF2_AID_MASK 1
param set EKF2_HGT_MODE 0
param set SYS_FAILURE_EN 0
set MIXER quad_x
set PWM_OUT 1234

View File

@ -16,11 +16,6 @@ param set-default MC_PITCHRATE_D 0.0060
param set-default MC_PITCHRATE_I 0.35
param set-default MPC_Z_P 0.70
#param load spiri_param/Vehicle_230_Parameters.params
#param set-default MC_PITCHRATE_P 0.0889
#param set-default MC_ROLLRATE_P 0.0957
param set-default CA_AIRFRAME 0
param set-default CA_ROTOR_COUNT 4
@ -45,8 +40,7 @@ param set-default COM_RCL_EXCEPT 4
param set-default MPC_Z_VEL_MAX_UP 1.0
param set-default COM_RCL_EXCEPT 4
param set-default NAV_RCL_ACT 1
param set-default COM_RCL_EXCEPT 4 # Ignores no RC failsafe (not needed for simulations)
set MIXER quad_x
set PWM_OUT 1234

View File

@ -1,14 +0,0 @@
# Ros param when using Klausen Ctrl
wait_time: 30
#drone_mass: 0.614 # weight with new battery
drone_mass: 0.602 # weight with old battery
#drone_mass: 1.437 # spiri weight
#pload_mass: 0.15 # Pload mass with 100g weight
pload_mass: 0.10 # Pload mass with 50g weight
#pload_mass: 0.05 # Pload mass with just basket
#pload_mass: 0.25
use_ctrl: false

View File

@ -1,6 +0,0 @@
# Ros param when not using Klausen Ctrl
waypoints: {x: 0.0, y: -0.25, z: 1.5}
square_x: [0.5,1,1,1,0.5,0,0]
square_y: [0,0,0.5,1,1,1,0.5]
hover_throttle: 0.46 # with 500g
hover_throttle: 0.51 # with 250g???

View File

@ -0,0 +1,14 @@
# Ros param when using Klausen Ctrl
wait_time: 30 # parameter which can be set to run desired tests at a desired time
#drone_mass: 0.614 # weight with new battery
drone_mass: 0.602
pload_mass: 0.1 # mass of payload. Needs to be changed in spiri_with_tether file as well
#pload_mass: 0.15 # Pload mass with 100g weight
pload_mass: 0.10 # Pload mass with 50g weight
#pload_mass: 0.05 # Pload mass with just basket
#pload_mass: 0.25
use_ctrl: false # starts PX4 without attitude controller
waypoints: {x: 0.0, y: 0.0, z: 5.0} # takeoff waypoints
# sets waypoints to run a square test
square_x: [0.5,1,1,1,0.5,0,0]
square_y: [0,0,0.5,1,1,1,0.5]

View File

@ -0,0 +1,27 @@
# Ros param when using Klausen Ctrl
wait_time: 30 # parameter which can be set to run desired tests at a desired time
# DRONE MASSES
#drone_mass: 0.614 # weight with new battery
drone_mass: 0.602
#PLOAD MASSES
#pload_mass: 0.15 # Pload mass with 100g weight
pload_mass: 0.10 # Pload mass with 50g weight
#pload_mass: 0.05 # Pload mass with just basket
#pload_mass: 0.25
# CTRL PARAMETER - should be false to start always
use_ctrl: false # starts PX4 without attitude controller
waypoints: {x: 0.0, y: 0.0, z: 1.75} # takeoff waypoints
# sets waypoints to run a square test
square_x: [0.5,1,1,1,0.5,0,0]
square_y: [0,0,0.5,1,1,1,0.5]
# HOVER THROTTLE - Changes depending on mass of pload and drone
# hover_throttle: 0.32 # Hover throttle with pload 0.15 kg
hover_throttle: 0.28 # Hover throttle with pload 0.10 kg
# hover_throttle: 0.22 # Hover throttle with no pload
#hover_throttle: 0.26 # Hover throttle with pload 0.05 kg

View File

@ -1,7 +0,0 @@
# Ros param when not using Klausen Ctrl
wait_time: 40
drone_mass: 0.5841
#drone_mass: 1.437
pload_mass: 0.10

9
config/spiri_params.yaml Normal file
View File

@ -0,0 +1,9 @@
# Set useful ROS parameters for simulation
wait_time: 30 # parameter which can be set to run desired tests at a desired time
drone_mass: 1.437 # mass of drone
pload_mass: 0.25 # mass of payload
use_ctrl: false # starts PX4 without attitude controller - needs to be set to false to takeoff
waypoints: {x: 0.0, y: 0.0, z: 5.0} # takeoff waypoints
# sets waypoints to run a square test
square_x: [0.5,1,1,1,0.5,0,0]
square_y: [0,0,0.5,1,1,1,0.5]

View File

@ -0,0 +1,54 @@
<?xml version="1.0"?>
<launch>
<!-- MAVROS posix SITL environment launch script -->
<!-- launches MAVROS, PX4 SITL, Gazebo environment, and spawns vehicle -->
<!-- vehicle pose -->
<arg name="x" default="0"/>
<arg name="y" default="0"/>
<arg name="z" default="0"/>
<arg name="R" default="0"/>
<arg name="P" default="0"/>
<arg name="Y" default="0"/>
<!-- vehicle model and world -->
<arg name="est" default="ekf2"/>
<arg name="vehicle" default="spiri_mocap"/>
<arg name="world" default="$(find mavlink_sitl_gazebo)/worlds/citadel_hill_world.world"/>
<arg name="sdf" default="$(find mavlink_sitl_gazebo)/models/$(arg vehicle)/$(arg vehicle).sdf"/>
<!-- gazebo configs -->
<arg name="gui" default="false"/>
<arg name="debug" default="false"/>
<arg name="verbose" default="false"/>
<arg name="paused" default="false"/>
<arg name="respawn_gazebo" default="false"/>
<!-- MAVROS configs -->
<arg name="fcu_url" default="udp://:14540@localhost:14557"/>
<arg name="respawn_mavros" default="false"/>
<!-- PX4 configs -->
<arg name="interactive" default="true"/>
<!-- PX4 SITL and Gazebo -->
<include file="$(find px4)/launch/posix_sitl.launch">
<arg name="x" value="$(arg x)"/>
<arg name="y" value="$(arg y)"/>
<arg name="z" value="$(arg z)"/>
<arg name="R" value="$(arg R)"/>
<arg name="P" value="$(arg P)"/>
<arg name="Y" value="$(arg Y)"/>
<arg name="world" value="$(arg world)"/>
<arg name="vehicle" value="$(arg vehicle)"/>
<arg name="sdf" value="$(arg sdf)"/>
<arg name="gui" value="$(arg gui)"/>
<arg name="interactive" value="$(arg interactive)"/>
<arg name="debug" value="$(arg debug)"/>
<arg name="verbose" value="$(arg verbose)"/>
<arg name="paused" value="$(arg paused)"/>
<arg name="respawn_gazebo" value="$(arg respawn_gazebo)"/>
</include>
<!-- MAVROS -->
<include file="$(find mavros)/launch/px4.launch">
<!-- GCS link is provided by SITL -->
<arg name="gcs_url" value=""/>
<arg name="fcu_url" value="$(arg fcu_url)"/>
<arg name="respawn_mavros" value="$(arg respawn_mavros)"/>
</include>
</launch>

View File

@ -0,0 +1,54 @@
<?xml version="1.0"?>
<launch>
<!-- MAVROS posix SITL environment launch script -->
<!-- launches MAVROS, PX4 SITL, Gazebo environment, and spawns vehicle -->
<!-- vehicle pose -->
<arg name="x" default="0"/>
<arg name="y" default="0"/>
<arg name="z" default="0"/>
<arg name="R" default="0"/>
<arg name="P" default="0"/>
<arg name="Y" default="0"/>
<!-- vehicle model and world -->
<arg name="est" default="ekf2"/>
<arg name="vehicle" default="spiri_with_tether"/>
<arg name="world" default="$(find mavlink_sitl_gazebo)/worlds/citadel_hill_world.world"/>
<arg name="sdf" default="$(find mavlink_sitl_gazebo)/models/$(arg vehicle)/$(arg vehicle).sdf"/>
<!-- gazebo configs -->
<arg name="gui" default="false"/>
<arg name="debug" default="false"/>
<arg name="verbose" default="false"/>
<arg name="paused" default="false"/>
<arg name="respawn_gazebo" default="false"/>
<!-- MAVROS configs -->
<arg name="fcu_url" default="udp://:14540@localhost:14557"/>
<arg name="respawn_mavros" default="false"/>
<!-- PX4 configs -->
<arg name="interactive" default="true"/>
<!-- PX4 SITL and Gazebo -->
<include file="$(find px4)/launch/posix_sitl.launch">
<arg name="x" value="$(arg x)"/>
<arg name="y" value="$(arg y)"/>
<arg name="z" value="$(arg z)"/>
<arg name="R" value="$(arg R)"/>
<arg name="P" value="$(arg P)"/>
<arg name="Y" value="$(arg Y)"/>
<arg name="world" value="$(arg world)"/>
<arg name="vehicle" value="$(arg vehicle)"/>
<arg name="sdf" value="$(arg sdf)"/>
<arg name="gui" value="$(arg gui)"/>
<arg name="interactive" value="$(arg interactive)"/>
<arg name="debug" value="$(arg debug)"/>
<arg name="verbose" value="$(arg verbose)"/>
<arg name="paused" value="$(arg paused)"/>
<arg name="respawn_gazebo" value="$(arg respawn_gazebo)"/>
</include>
<!-- MAVROS -->
<include file="$(find oscillation_ctrl)/launch/px4.launch">
<!-- GCS link is provided by SITL -->
<arg name="gcs_url" value=""/>
<arg name="fcu_url" value="$(arg fcu_url)"/>
<arg name="respawn_mavros" value="$(arg respawn_mavros)"/>
</include>
</launch>

View File

@ -14,13 +14,8 @@ Launch file to use klausen oscillaton damping ctrl in Gazebo
<arg name="gcs_url" default="udp-b://127.0.0.1:14555@14550" />
<arg name="connection_type" default="wifi"/>
<group ns="mocap">
<rosparam file="$(find oscillation_ctrl)/config/mocap_config.yaml" />
</group>
<group ns="status">
<rosparam file="$(find oscillation_ctrl)/config/Ctrl_param.yaml" />
<rosparam file="$(find oscillation_ctrl)/config/mocapLab_params.yaml" />
<param name="test_type" value="$(arg test)"/>
</group>

View File

@ -3,12 +3,10 @@
Launch file to use klausen oscillaton damping ctrl in Gazebo
/-->
<launch>
<arg name="model" default="headless_spiri_mocap"/>
<arg name="ctrl" default="yes"/>
<group ns="sim"> <!--> should be mocap but will use gazebo since it is still sim <-->
<rosparam file="$(find oscillation_ctrl)/config/gazebo_config.yaml"/>
</group>
<group ns="status">
<rosparam file="$(find oscillation_ctrl)/config/mocapGazebo_params.yaml" />
</group>
<arg name="model" default="headless_spiri"/>
<node
pkg="oscillation_ctrl"
type="MoCap_Localization_fake.py"
@ -21,51 +19,42 @@ Launch file to use klausen oscillaton damping ctrl in Gazebo
type="wpoint_tracker.py"
name="waypoints_server"
/>
<group if="$(eval ctrl == 'no')">
<group ns="status">
<rosparam file="$(find oscillation_ctrl)/config/noCtrl_param.yaml" />
</group>
<node
pkg="oscillation_ctrl"
type="offb_node"
name="offb_node"
launch-prefix="xterm -e"
/>
</group>
<!-- RUNS WITH CRTL -->
<group if="$(eval ctrl =='yes')">
<group ns="status">
<rosparam file="$(find oscillation_ctrl)/config/Ctrl_param.yaml" />
</group>
<!-- CREATES DESIRED TRAJECTORY/ REFERENCE SIGNAL -->
<node
pkg="oscillation_ctrl"
type="ref_signalGen.py"
name="refSignal_node"
/>
<!-- DETERMINES DESIRED ATTITUDE AND THRUST BASED ON REF. SIG. -->
<node
pkg="oscillation_ctrl"
type="klausen_control.py"
name="klausenCtrl_node"
launch-prefix="xterm -e"
/>
<!-- PUBLISHES DESIRED COMMANDS -->
<node
pkg="oscillation_ctrl"
type="mocap_pathFollow_node"
name="mocap_pathFollow_node"
launch-prefix="xterm -e"
/>
<!-- RUNS TEST -->
<node
pkg="oscillation_ctrl"
type="mocap_runTest.py"
name="mocap_Test"
launch-prefix="xterm -e"
/>
</group>
<!-- CREATES DESIRED TRAJECTORY/ REFERENCE SIGNAL -->
<node
pkg="oscillation_ctrl"
type="ref_signalGen.py"
name="refSignal_node"
/>
<!-- DETERMINES DESIRED ATTITUDE AND THRUST BASED ON REF. SIG. -->
<node
pkg="oscillation_ctrl"
type="klausen_control.py"
name="klausenCtrl_node"
launch-prefix="xterm -e"
/>
<!-- PUBLISHES DESIRED COMMANDS -->
<node
pkg="oscillation_ctrl"
type="mocap_pathFollow_node"
name="mocap_pathFollow_node"
launch-prefix="xterm -e"
/>
<!-- RUNS TEST -->
<node
pkg="oscillation_ctrl"
type="mocap_runTest.py"
name="mocap_Test"
launch-prefix="xterm -e"
/>
<!-- SETS PLOAD MASS -->
<node
pkg="oscillation_ctrl"
type="set_ploadmass.py"
name="set_ploadmass"
output="screen"
/>
<!-- PX4 LAUNCH -->
<include file="$(find px4)/launch/$(arg model).launch"/>
<include file="$(find oscillation_ctrl)/launch/$(arg model)_mocap.launch">
</include>
</launch>

View File

@ -1,65 +0,0 @@
<?xml version="1.0"?>
<launch>
<arg name='test' default="none"/>
<arg name="mav_name" default="spiri"/>
<arg name="command_input" default="1" />
<arg name="log_output" default="screen" />
<arg name="fcu_protocol" default="v2.0" />
<arg name="respawn_mavros" default="false" />
<arg name="gazebo_gui" default="false" />
<arg name="fcu_url" default="udp://:14549@192.168.1.91:14554"/>
<arg name="gcs_url" default="udp-b://127.0.0.1:14555@14550" />
<arg name="connection_type" default="wifi"/>
<group ns="mocap">
<rosparam file="$(find oscillation_ctrl)/config/mocap_config.yaml" />
</group>
<group ns="status">
<rosparam file="$(find oscillation_ctrl)/config/noCtrl_param.yaml" />
<param name="test_type" value="$(arg test)"/>
</group>
<group if="$(eval connection_type == 'ethernet')">
<param name="local_ip" value="192.168.1.175"/>
</group>
<group if="$(eval connection_type == 'wifi')">
<param name="local_ip" value="192.168.1.135"/>
</group>
<node
pkg="oscillation_ctrl"
type="mocap_offb_node"
name="mocap_offb_node"
launch-prefix="xterm -e"
/>
<node
pkg="oscillation_ctrl"
type="wpoint_tracker.py"
name="waypoints_server"
/>
<group if="$(eval test != 'none')">
<node
pkg="oscillation_ctrl"
type="perform_test.py"
name="test_node"
launch-prefix="xterm -e"
/>
</group>
<node
pkg="oscillation_ctrl"
type="Mocap_Bridge.py"
name="localize_node"
launch-prefix="xterm -e"
/>
<!-- Cortex bridge launch -->
<include file="$(find cortex_bridge)/launch/cortex_bridge.launch">
<!--param name="local_ip" value="$(param local_ip)" /-->
</include>
<!-- MAVROS launch -->
<include file="$(find mavros)/launch/px4.launch">
<arg name="pluginlists_yaml" value="$(find oscillation_ctrl)/config/px4_pluginlists.yaml" />
<arg name="config_yaml" value="$(find oscillation_ctrl)/config/px4_config.yaml" />
<arg name="fcu_protocol" value="$(arg fcu_protocol)" />
<arg name="fcu_url" value="$(arg fcu_url)" />
<arg name="gcs_url" value="$(arg gcs_url)" />
</include>
</launch>

View File

@ -5,11 +5,9 @@ Launch file to use klausen oscillaton damping ctrl in Gazebo
<launch>
<arg name="model" default="headless_spiri_with_tether"/>
<arg name="test" default="none"/>
<group ns="sim">
<rosparam file="$(find oscillation_ctrl)/config/gazebo_config.yaml" />
</group>
<group ns="status">
<rosparam file="$(find oscillation_ctrl)/config/Ctrl_param.yaml" />
<rosparam file="$(find oscillation_ctrl)/config/spiri_params.yaml" />
<param name="test_type" value="$(arg test)"/>
</group>
@ -37,7 +35,6 @@ Launch file to use klausen oscillaton damping ctrl in Gazebo
pkg="oscillation_ctrl"
type="klausen_control.py"
name="klausenCtrl_node"
launch-prefix="xterm -e"
/>
<!-- PUBLISHES DESIRED COMMANDS -->
<node

View File

@ -9,7 +9,6 @@ import time
import math
from tf.transformations import *
from oscillation_ctrl.msg import TetheredStatus, LoadAngles
from geometry_msgs.msg import Pose
from gazebo_msgs.srv import GetLinkState
from std_msgs.msg import Bool
@ -53,10 +52,6 @@ class Main:
self.thetabuf = 0.0 #
self.pload = True # Check if payload exists
# Max dot values to prevent 'blowup'
self.phidot_max = 3.0
self.thetadot_max = 3.0
# service(s)
self.service1 = '/gazebo/get_link_state'
@ -71,25 +66,6 @@ class Main:
self.pub_timer = rospy.Timer(rospy.Duration(1.0/rate), self.link_state)
self.path_timer = rospy.Timer(rospy.Duration(40.0/rate), self.path_follow)
self.gui_timer = rospy.Timer(rospy.Duration(1/10.0), self.user_feedback)
def cutoff(self,value,ceiling):
"""
Takes in value and returns ceiling
if value > ceiling. Otherwise, it returns
value back
"""
# initilize sign
sign = 1
# check if value is negative
if value < 0.0:
sign = -1
# Cutoff value at ceiling
if (value > ceiling or value < -ceiling):
output = sign*ceiling
else:
output = value
return output
def euler_array(self,orientation):
"""
@ -171,7 +147,6 @@ class Main:
# Determine thetadot
self.loadAngles.thetadot = (self.loadAngles.theta - self.thetabuf)/self.dt
self.loadAngles.thetadot = self.cutoff(self.loadAngles.thetadot,self.thetadot_max)
self.thetabuf = self.loadAngles.theta
# Determine phi (roll)
@ -184,7 +159,6 @@ class Main:
# Determine phidot
self.loadAngles.phidot = (self.loadAngles.phi - self.phibuf)/self.dt
self.loadAngles.phidot = self.cutoff(self.loadAngles.phidot,self.phidot_max)
self.phibuf = self.loadAngles.phi # Update buffer
else: # Otherwise, vars = 0
@ -204,17 +178,18 @@ class Main:
rospy.loginfo("Get Link State call failed: {0}".format(e))
def user_feedback(self,gui_timer):
# Print and save results
#print "\n"
print ("\n")
rospy.loginfo("")
print"Roll: "+str(round(self.drone_Eul[0]*180/3.14,2))
print"Pitch: " +str(round(self.drone_Eul[1]*180/3.14,2))
print"Yaw: " +str(round(self.drone_Eul[2]*180/3.14,2))
print "drone pos.x: " + str(round(self.drone_Px,2))
print "drone pos.y: " + str(round(self.drone_Py,2))
print "drone pos.z: " + str(round(self.drone_Pz,2))
print "phi: " + str(round(self.loadAngles.phi*180/3.14,3))
print "theta: " + str(round(self.loadAngles.theta*180/3.14,3))
print("Drone pos.x: " + str(round(self.drone_Px,2)))
print("Drone pos.y: " + str(round(self.drone_Py,2)))
print("Drone pos.z: " + str(round(self.drone_Pz,2)))
print("Roll: "+str(round(self.drone_Eul[0]*180/3.14,2)))
print("Pitch: " +str(round(self.drone_Eul[1]*180/3.14,2)))
print("Yaw: " +str(round(self.drone_Eul[2]*180/3.14,2)))
if self.pload:
print("Tether length: " + str(round(self.tetherL,2)))
print("Theta: " + str(round(self.loadAngles.theta*180/3.14,2)))
print("Phi: " + str(round(self.loadAngles.phi*180/3.14,2)))
def path_follow(self,path_timer):
now = rospy.get_time()

View File

@ -1,183 +0,0 @@
#!/usr/bin/env python2.7
### Cesar Rodriguez Feb 2022
### Script to determine payload and drone state using mocap
import rospy, tf
import rosservice
import time
import math
from tf.transformations import *
from oscillation_ctrl.msg import tethered_status
from geometry_msgs.msg import PoseStamped, Point
from std_msgs.msg import Bool
class Main:
def __init__(self):
# rate(s)
rate = 120 # rate for the publisher method, specified in Hz -- 20 Hz
# Variables needed for testing start
self.tstart = rospy.get_time() # Keep track of the start time
while self.tstart == 0.0: # Need to make sure get_rostime works
self.tstart = rospy.get_time()
### -*-*-*- Do not need this unless a test is being ran -*-*-*- ###
# How long should we wait before before starting test
#self.param_exists = False
#while self.param_exists == False:
# if rospy.has_param('sim/wait'):
# self.wait = rospy.get_param('sim/wait') # wait time
# self.param_exists = True
# elif rospy.get_time() - self.tstart >= 3.0:
# break
# Will be set to true when test should start
#self.bool = False
### -*-*-*- END -*-*-*- ###
# initialize variables
self.drone_pose = PoseStamped()
self.buff_pose = PoseStamped()
self.eul = [0.0,0.0,0.0]
# Max dot values to prevent 'blowup'
self.phidot_max = 3.0
self.thetadot_max = 3.0
# variables for message gen
# service(s)
# need service list to check if models have spawned
# wait for service to exist
# publisher(s)
### Since there is no tether, we can publish directly to mavros
self.pose_pub = rospy.Publisher('/mavros/vision_pose/pose', PoseStamped, queue_size=1)
self.pub_timer = rospy.Timer(rospy.Duration(1.0/rate), self.publisher)
# subscriber(s)
rospy.Subscriber('/cortex/body_pose', PoseStamped, self.bodyPose_cb)
def cutoff(self,value,ceiling):
"""
Takes in value and returns ceiling
if value > ceiling. Otherwise, it returns
value back
"""
# initilize sign
sign = 1
# check if value is negative
if value < 0.0:
sign = -1
# Cutoff value at ceiling
if (value > ceiling or value < -ceiling):
output = sign*ceiling
else:
output = value
return output
def euler_array(self):
"""
Takes in pose msg object and outputs array of euler angs:
eul[0] = Roll
eul[1] = Pitch
eul[2] = Yaw
"""
self.eul = euler_from_quaternion([self.drone_pose.pose.orientation.x,
self.drone_pose.pose.orientation.y,
self.drone_pose.pose.orientation.z,
self.drone_pose.pose.orientation.w])
self.q = quaternion_from_euler(self.eul[0],self.eul[1],self.eul[2])
offset_yaw = math.pi/2
q_offset = quaternion_from_euler(0,0,-offset_yaw)
self.q = quaternion_multiply(self.q,q_offset)
self.eul = euler_from_quaternion([self.q[0],self.q[1],self.q[2],self.q[3]])
self.drone_pose.pose.orientation.x = self.q[0]
self.drone_pose.pose.orientation.y = self.q[1]
self.drone_pose.pose.orientation.z = self.q[2]
self.drone_pose.pose.orientation.w = self.q[3]
def FRD_Transform(self):
'''
Transforms mocap reading to proper coordinate frame
'''
# self.drone_pose = self.buff_pose
self.drone_pose.header.frame_id = "/map"
# self.drone_pose.pose.position.x = 0
# self.drone_pose.pose.position.y = 0
# self.drone_pose.pose.position.z = 0.5
#Keep the w same and change x, y, and z as above.
# self.drone_pose.pose.orientation.x = 0
# self.drone_pose.pose.orientation.y = 0
# self.drone_pose.pose.orientation.z = 0
# self.drone_pose.pose.orientation.w = 1
self.euler_array() # get euler angles of orientation for user
# self.drone_pose.pose.position.x = self.buff_pose.pose.position.y
# self.drone_pose.pose.position.y = self.buff_pose.pose.position.x
# self.drone_pose.pose.position.z = -self.buff_pose.pose.position.z
# Keep the w same and change x, y, and z as above.
# self.drone_pose.pose.orientation.x = self.buff_pose.pose.orientation.y
# self.drone_pose.pose.orientation.y = self.buff_pose.pose.orientation.x
# self.drone_pose.pose.orientation.z = -self.buff_pose.pose.orientation.z
# self.drone_pose.pose.orientation.w = self.buff_pose.pose.orientation.w
# def path_follow(self,path_timer):
# now = rospy.get_time()
# if now - self.tstart < self.wait:
# self.bool = False
# else:
# self.bool = True
# self.pub_wd.publish(self.bool)
def bodyPose_cb(self,msg):
try:
self.drone_pose = msg
except ValueError:
pass
def publisher(self,pub_timer):
self.FRD_Transform()
self.pose_pub.publish(self.drone_pose)
print "\n"
rospy.loginfo("")
print "drone pos.x: " + str(round(self.drone_pose.pose.position.x,2))
print "drone pos.y: " + str(round(self.drone_pose.pose.position.y,2))
print "drone pos.z: " + str(round(self.drone_pose.pose.position.z,2))
print "Roll: " + str(round(self.eul[0]*180/3.14,2))
print "Pitch: " + str(round(self.eul[1]*180/3.14,2))
print "Yaw: " + str(round(self.eul[2]*180/3.14,2))
if __name__=="__main__":
# Initiate ROS node
rospy.init_node('MoCap_node',anonymous=False)
try:
Main() # create class object
rospy.spin() # loop until shutdown signal
except rospy.ROSInterruptException:
pass

View File

@ -1,4 +1,4 @@
#!/usr/bin/env python2.7
#!/usr/bin/env python
### Cesar Rodriguez Aug 2021
### Trajectory controller
@ -96,12 +96,10 @@ class Main:
self.z2 = np.zeros([5,1]) # [vx;vy;vz;thetadot;phidot] - alpha
# Tuning gains
self.K1 = np.identity(3)#*0.1
# self.K1 = np.array([[2,-1,0],[-1,2,-1],[0,-1,2]])
self.tune_array = np.array([1,1,1,0.1,0.1]).reshape(5,1)
self.K2 = np.identity(5)#*self.tune_array
self.tune = 0.1 #1 # Tuning parameter
self.dist = np.array([0,0,0,0.1,0.1]) # Wind disturbance # np.array([0,0,0,0.01,0.01])
self.K1 = np.identity(3)
self.K2 = np.identity(5)
self.tune = 0.1 # Tuning parameter
self.dist = np.array([0,0,0,0.1,0.1]) # Wind disturbance
# Gain terms
self.Kp = np.identity(3) + np.dot(self.K2[:3,:3],self.K1) + self.tune*np.identity(3)
self.Kd = self.tot_m*self.K1 + self.tune*self.K2[:3,:3]
@ -109,10 +107,8 @@ class Main:
# PD Thrust Controller terms
# gains for thrust PD Controller
#self.Kp = 3.0
#self.Kd = 3
self.Kp_thrust = 1.5 #3.0 #1.5
self.Kd_thrust = 1.0 #3.0 # 1.0
self.Kp_thrust = 1.5
self.Kd_thrust = 1.0
self.R = np.empty([3,3]) # rotation matrix
self.e3 = np.array([[0],[0],[1]])
# Get scaling thrust factor, kf
@ -125,7 +121,6 @@ class Main:
# Topic, msg type, and class callback method
rospy.Subscriber('/status/load_angles', LoadAngles, self.loadAngles_cb)
rospy.Subscriber('/reference/path', RefSignal, self.refsig_cb)
# rospy.Subscriber('/status/twoBody_status', TetheredStatus, self.dronePos_cb)
rospy.Subscriber('/mavros/local_position/pose', PoseStamped, self.dronePos_cb)
rospy.Subscriber('/mavros/local_position/velocity_body', TwistStamped, self.droneVel_cb)
rospy.Subscriber('/mavros/imu/data', Imu, self.droneAcc_cb)
@ -187,13 +182,20 @@ class Main:
return [drone_m, pl_m]
def get_kf(self):
if rospy.has_param('mocap/hover_throttle'):
hover_throttle = rospy.get_param('mocap/hover_throttle')
if rospy.has_param('status/hover_throttle'):
hover_throttle = rospy.get_param('status/hover_throttle')
else:
hover_throttle = (self.tot_m*9.81 + 9.57)/34.84 # linear scaling depending on dependent on mass
kf = hover_throttle/(self.tot_m*9.81)
return kf
# Check if vehicle has tether
def tether_check(self):
if self.tether == True:
rospy.loginfo_once('TETHER LENGTH: %.2f', self.tetherL)
else:
rospy.loginfo_once('NO TETHER DETECTED')
# --------------------------------------------------------------------------------#
# CALLBACK FUNCTIONS
# --------------------------------------------------------------------------------#
@ -243,13 +245,6 @@ class Main:
except ValueError:
pass
# Check if vehicle has tether
def tether_check(self):
if self.tether == True:
rospy.loginfo_once('TETHER LENGTH: %.2f', self.tetherL)
else:
rospy.loginfo_once('NO TETHER DETECTED')
def waypoints_srv_cb(self):
if '/status/waypoint_tracker' in self.service_list:
rospy.wait_for_service('/status/waypoint_tracker')
@ -358,17 +353,9 @@ class Main:
# determine Rotation Matrix
self.R_e3 = np.array([[self.R.T[2][0]],[self.R.T[2][1]],[self.R.T[2][2]]])
# test which one is better:
# thrust_vector = (9.81*self.tot_m*self.e3 + self.Kp_thrust*self.error + self.Kd_thrust*self.error_vel - self.tot_m*self.path_acc)*self.kf
# thrust = thrust_vector[0]*self.R_e3[0] + thrust_vector[1]*self.R_e3[1] + thrust_vector[2]*self.R_e3[2]
### OR:
thrust_vector = (9.81*self.tot_m + self.Kp_thrust*self.error[2] + self.Kd_thrust*self.error_vel[2] - self.tot_m*self.path_acc[2])*self.kf
# thrust = thrust_vector/(math.cos(self.EulerAng[0]*self.EulerAng[1])) #####
thrust = thrust_vector/(math.cos(self.EulerPose[0])*math.cos(self.EulerPose[1]))
# if given Fd...?
# thrust = self.kf*Fd/(math.cos(self.EulerPose[0])*math.cos(self.EulerPose[1]))
# Value needs to be between 0 - 1.0
self.att_targ.thrust = max(0.0,min(thrust,1.0))
@ -458,16 +445,11 @@ class Main:
dr_orientation = [self.dr_pos.orientation.x, self.dr_pos.orientation.y, self.dr_pos.orientation.z, self.dr_pos.orientation.w]
dr_orientation_inv = quaternion_inverse(dr_orientation)
# fix_force = self.path_acc
# fix_force = fix_force[:3].reshape(3,1)
# fix_force[0] = self.path_acc[1]
# fix_force[1] = self.path_acc[0]
# Desired body-oriented forces
# shouldnt it be tot_m*path_acc?
Fd = B + G[:3] + self.tot_m*self.dr_acc - np.dot(self.Kd,z1_dot) - np.dot(self.Kp,self.z1) - np.dot(self.Ki,0.5*self.dt*(self.z1 - self.z1_p))
# Fd = B + G[:3] + self.tot_m*fix_force - np.dot(self.Kd,z1_dot) - np.dot(self.Kp,self.z1) - np.dot(self.Ki,0.5*self.dt*(self.z1 - self.z1_p))
# Update self.z1_p for "integration"
# Update self.z1_p for integration
self.z1_p = self.z1
# Covert Fd into drone frame
@ -479,11 +461,9 @@ class Main:
self.EulerAng[1] = math.atan(Fd_tf[0]/(self.drone_m*9.81)) # Pitch
self.EulerAng[0] = math.atan(-Fd_tf[1]*math.cos(self.EulerAng[1])/(self.drone_m*9.81)) # Roll
# rospy.loginfo('Fd before transform: %.2f, %.2f, %.2f' % Fd[0],Fd[1],Fd[2])
q = quaternion_from_euler(self.EulerAng[0],self.EulerAng[1],self.EulerAng[2])
self.user_fback(Fd,Fd_tf)
self.user_feedback(Fd,Fd_tf)
# Populate msg variable
# Attitude control
@ -495,7 +475,7 @@ class Main:
self.att_targ.orientation.z = q[2]
self.att_targ.orientation.w = q[3]
def user_fback(self,F_noTransform, F_Transform):
def user_feedback(self,F_noTransform, F_Transform):
print('\n')
rospy.loginfo('thrust: %.6f' % self.att_targ.thrust)
rospy.loginfo('roll: %.2f pitch: %.2f',self.EulerAng[0]*180/3.14,self.EulerAng[1]*180/3.14)

View File

@ -1,194 +0,0 @@
/**
* @file offb_node.cpp
* @brief Offboard control example node, written with MAVROS version 0.19.x, PX4 Pro Flight
* Stack and tested in Gazebo SITL
*/
#include <ros/ros.h>
#include <std_msgs/Bool.h>
#include <sensor_msgs/NavSatFix.h>
#include <geometry_msgs/PoseStamped.h>
#include <geometry_msgs/Quaternion.h>
#include <mavros_msgs/CommandBool.h>
#include <mavros_msgs/SetMode.h>
#include <mavros_msgs/State.h>
#include <mavros_msgs/CommandTOL.h>
#include <mavros_msgs/AttitudeTarget.h>
#include <mavros_msgs/Thrust.h>
#include <mavros_msgs/VFR_HUD.h>
#include <oscillation_ctrl/WaypointTrack.h>
#include <tf2/LinearMath/Quaternion.h>
#include <iostream>
/********* CALLBACK FUNCTIONS **********************/
// Initiate variables
mavros_msgs::State current_state;
geometry_msgs::PoseStamped desPose;
// Callback function which will save the current state of the autopilot.
// Allows to check connection, arming, and Offboard tags*/
void state_cb(const mavros_msgs::State::ConstPtr& msg){
current_state = *msg;
}
// Cb to recieve pose information
// Initiate variables
geometry_msgs::PoseStamped pose;
geometry_msgs::Quaternion q_init;
geometry_msgs::PoseStamped mavPose;
bool pose_read = false;
double current_altitude;
void mavPose_cb(const geometry_msgs::PoseStamped::ConstPtr& msg){
mavPose = *msg;
current_altitude = mavPose.pose.position.z;
while(pose_read == false){
q_init = mavPose.pose.orientation;
if(q_init.x == 0.0 && q_init.w == 0.0){
ROS_INFO("Waiting...");
} else {
mavPose.pose.orientation.x = q_init.x;
mavPose.pose.orientation.y = q_init.y;
mavPose.pose.orientation.z = q_init.z;
mavPose.pose.orientation.w = q_init.w;
pose_read = true;
}
}
}
std_msgs::Bool connection_status;
// bool connection_status
// Determine if we are still receiving info from mocap and land if not
void connection_cb(const std_msgs::Bool::ConstPtr& msg){
connection_status = *msg;
}
int main(int argc, char **argv)
{
ros::init(argc, argv, "offb_node");
ros::NodeHandle nh;
/********************** SUBSCRIBERS **********************/
// Get current state
ros::Subscriber state_sub = nh.subscribe<mavros_msgs::State>
("mavros/state", 10, state_cb);
// Pose subscriber
ros::Subscriber mavPose_sub = nh.subscribe<geometry_msgs::PoseStamped>
("mavros/local_position/pose",10,mavPose_cb);
ros::Subscriber connection_sub = nh.subscribe<std_msgs::Bool>
("/status/comms",10,connection_cb);
// Waypoint Subscriber
/*
ros::Subscriber waypoint_sub = nh.subscribe<geometry_msgs::PoseStamped>
("/reference/waypoints",10,waypoints_cb);
*/
/********************** PUBLISHERS **********************/
// Initiate publisher to publish commanded local position
ros::Publisher local_pos_pub = nh.advertise<geometry_msgs::PoseStamped>
("mavros/setpoint_position/local", 10);
// Publish desired attitude
ros::Publisher thrust_pub = nh.advertise<mavros_msgs::Thrust>
("mavros/setpoint_attitude/thrust", 10);
// Publish attitude commands
ros::Publisher att_pub = nh.advertise<geometry_msgs::PoseStamped>
("/mavros/setpoint_attitude/attitude",10);
// Service Clients
ros::ServiceClient arming_client = nh.serviceClient<mavros_msgs::CommandBool>
("mavros/cmd/arming");
ros::ServiceClient set_mode_client = nh.serviceClient<mavros_msgs::SetMode>
("mavros/set_mode");
ros::ServiceClient takeoff_cl = nh.serviceClient<mavros_msgs::CommandTOL>
("mavros/cmd/takeoff");
ros::ServiceClient waypoint_cl = nh.serviceClient<oscillation_ctrl::WaypointTrack>
("status/waypoint_tracker");
//the setpoint publishing rate MUST be faster than 2Hz... PX4 timeout = 500 ms
ros::Rate rate(20.0);
// wait for FCU connection
while(ros::ok() && !current_state.connected){
ros::spinOnce();
rate.sleep();
}
// Retrieve desired waypoints
oscillation_ctrl::WaypointTrack wpoint_srv;
wpoint_srv.request.query = false;
if (waypoint_cl.call(wpoint_srv))
{
ROS_INFO("Waypoints received");
}
// populate desired waypoints
pose.pose.position.x = wpoint_srv.response.xd.x;
pose.pose.position.y = wpoint_srv.response.xd.y;
pose.pose.position.z = wpoint_srv.response.xd.z;
//send a few setpoints before starting
for(int i = 100; ros::ok() && i > 0; --i){
local_pos_pub.publish(pose);
ros::spinOnce();
rate.sleep();
}
mavros_msgs::SetMode offb_set_mode;
offb_set_mode.request.custom_mode = "OFFBOARD";
mavros_msgs::CommandBool arm_cmd;
arm_cmd.request.value = true;
ros::Time last_request = ros::Time::now();
while(ros::ok()){
if(current_state.mode != "OFFBOARD" &&
(ros::Time::now() - last_request > ros::Duration(7.0))){
if( set_mode_client.call(offb_set_mode) &&
offb_set_mode.response.mode_sent){
ROS_INFO("OFFBOARD");
}
last_request = ros::Time::now();
} else {
if( !current_state.armed &&
(ros::Time::now() - last_request > ros::Duration(3.0))){
if(arming_client.call(arm_cmd) &&
arm_cmd.response.success){
ROS_INFO("ARMED");
}
last_request = ros::Time::now();
}
}
// Update desired waypoints
waypoint_cl.call(wpoint_srv);
pose.pose.position.x = wpoint_srv.response.xd.x;
pose.pose.position.y = wpoint_srv.response.xd.y;
pose.pose.position.z = wpoint_srv.response.xd.z;
// User info
ROS_INFO("Current Altitude: %.2f",mavPose.pose.position.z);
ROS_INFO("Desired Altitude: %.2f",pose.pose.position.z);
ROS_INFO("---------------------------");
// Check if we are still connected. Otherwise drone should be booted from offboard mode
if(connection_status.data) {
local_pos_pub.publish(pose);
}
else {
ROS_INFO("Connection lost: landing drone...");
}
ros::spinOnce();
rate.sleep();
}
return 0;
}

View File

@ -20,13 +20,23 @@ class Main:
self.get_xd = rospy.ServiceProxy('/status/waypoint_tracker',WaypointTrack)
# Set up desired waypoints for test
self.xd = Point()
self.xd.x = 0.0
self.xd.y = 2.0
self.xd.z = 1.5
self.xd1 = Point()
self.xd1.x = 0.0
self.xd1.y = -0.5
self.xd1.z = 1.75
self.xd2 = Point()
self.xd2.x = 0.0
self.xd2.y = 2.0
self.xd2.z = 1.75
# Determine if we want to run test with or without controller
################# CHANGE THIS TO CHANGE TYPE Of TEST ###############################
self.change_mode = True # True = Change to oscillation damping mode after wait time
self.multiple_setpoins = True # True - will send multiple setpoints
#####################################################################################
if self.change_mode: self.loginfo_string = 'Attitude mode in...'
else: self.loginfo_string = 'Staying in Position mode.'
@ -49,6 +59,7 @@ class Main:
""" Waits desired amount before setting UAV to appropriate mode, and then sets up desired waypoints"""
run_test = False
use_ctrl = False
waypoint_sent = False
while not run_test:
time_left = self.wait_time - (rospy.get_time() - self.tstart)
if not rospy.get_time() - self.tstart > self.wait_time:
@ -58,14 +69,20 @@ class Main:
self.t_param = rospy.get_time()
use_ctrl = True
if use_ctrl:
time_until_test = 7.0 - rospy.get_time() + self.t_param
if not time_until_test <= 0.0:
rospy.loginfo('In %.2f\nSending waypoints: x = %.2f y = %.2f z = %.2f',time_until_test,self.xd.x,self.xd.y,self.xd.z)
else:
self.set_waypoint(self.xd)
time_until_test1 = 25.0 - rospy.get_time() + self.t_param
time_until_test2 = 30.0 - rospy.get_time() + self.t_param
if time_until_test1 >= 0.0 and not waypoint_sent:
rospy.loginfo('In %.2f\nSending waypoints: x = %.2f y = %.2f z = %.2f',time_until_test1,self.xd1.x,self.xd1.y,self.xd1.z)
elif not waypoint_sent and time_until_test1 < 0.0:
waypoint_sent = True
self.set_waypoint(self.xd1)
if time_until_test2 >= 0.0 and waypoint_sent:
rospy.loginfo('In %.2f\nSending waypoints: x = %.2f y = %.2f z = %.2f',time_until_test2,self.xd2.x,self.xd2.y,self.xd2.z)
elif waypoint_sent and time_until_test2 < 0.0:
self.set_waypoint(self.xd2)
run_test = True
break
def set_waypoint(self,xd):
""" Set waypoints for oscillation controller """

View File

@ -1,185 +0,0 @@
/**
* @file offb_node.cpp
* @brief Offboard control example node, written with MAVROS version 0.19.x, PX4 Pro Flight
* Stack and tested in Gazebo SITL
*/
#include <ros/ros.h>
#include <sensor_msgs/NavSatFix.h>
#include <geometry_msgs/PoseStamped.h>
#include <geometry_msgs/Quaternion.h>
#include <mavros_msgs/CommandBool.h>
#include <mavros_msgs/SetMode.h>
#include <mavros_msgs/State.h>
#include <mavros_msgs/CommandTOL.h>
#include <mavros_msgs/AttitudeTarget.h>
#include <mavros_msgs/Thrust.h>
#include <mavros_msgs/VFR_HUD.h>
#include <oscillation_ctrl/WaypointTrack.h>
#include <tf2/LinearMath/Quaternion.h>
#include <iostream>
/********* CALLBACK FUNCTIONS **********************/
// Initiate variables
mavros_msgs::State current_state;
geometry_msgs::PoseStamped desPose;
// Callback function which will save the current state of the autopilot.
// Allows to check connection, arming, and Offboard tags*/
void state_cb(const mavros_msgs::State::ConstPtr& msg){
current_state = *msg;
}
// Cb to recieve pose information
// Initiate variables
geometry_msgs::PoseStamped pose;
geometry_msgs::Quaternion q_init;
geometry_msgs::PoseStamped mavPose;
bool pose_read = false;
double current_altitude;
void mavPose_cb(const geometry_msgs::PoseStamped::ConstPtr& msg){
mavPose = *msg;
current_altitude = mavPose.pose.position.z;
while(pose_read == false){
q_init = mavPose.pose.orientation;
if(q_init.x == 0.0 && q_init.w == 0.0){
ROS_INFO("Waiting...");
} else {
pose_read = true;
// pose.pose.orientation.x = q_init.x;
// pose.pose.orientation.y = q_init.y;
// pose.pose.orientation.z = q_init.z;
// pose.pose.orientation.w = q_init.w;
}
}
}
int main(int argc, char **argv)
{
ros::init(argc, argv, "offb_node");
ros::NodeHandle nh;
/********************** SUBSCRIBERS **********************/
// Get current state
ros::Subscriber state_sub = nh.subscribe<mavros_msgs::State>
("mavros/state", 10, state_cb);
// Pose subscriber
ros::Subscriber mavPose_sub = nh.subscribe<geometry_msgs::PoseStamped>
("mavros/local_position/pose",10,mavPose_cb);
// Waypoint Subscriber
/*
ros::Subscriber waypoint_sub = nh.subscribe<geometry_msgs::PoseStamped>
("/reference/waypoints",10,waypoints_cb);
*/
ros::ServiceClient waypoint_cl = nh.serviceClient<oscillation_ctrl::WaypointTrack>
("status/waypoint_tracker");
/********************** PUBLISHERS **********************/
// Initiate publisher to publish commanded local position
ros::Publisher local_pos_pub = nh.advertise<geometry_msgs::PoseStamped>
("mavros/setpoint_position/local", 10);
// Publish desired attitude
ros::Publisher thrust_pub = nh.advertise<mavros_msgs::Thrust>
("mavros/setpoint_attitude/thrust", 10);
// Publish attitude commands
ros::Publisher att_pub = nh.advertise<geometry_msgs::PoseStamped>
("/mavros/setpoint_attitude/attitude",10);
// Service Clients
ros::ServiceClient arming_client = nh.serviceClient<mavros_msgs::CommandBool>
("mavros/cmd/arming");
ros::ServiceClient set_mode_client = nh.serviceClient<mavros_msgs::SetMode>
("mavros/set_mode");
ros::ServiceClient takeoff_cl = nh.serviceClient<mavros_msgs::CommandTOL>
("mavros/cmd/takeoff");
//the setpoint publishing rate MUST be faster than 2Hz... PX4 timeout = 500 ms
ros::Rate rate(20.0);
// wait for FCU connection
while(ros::ok() && !current_state.connected){
ros::spinOnce();
rate.sleep();
}
// Retrieve desired waypoints
oscillation_ctrl::WaypointTrack wpoint_srv;
wpoint_srv.request.query = false;
if (waypoint_cl.call(wpoint_srv))
{
ROS_INFO("Waypoints received");
}
// populate desired waypoints
pose.pose.position.x = wpoint_srv.response.xd.x;
pose.pose.position.y = wpoint_srv.response.xd.y;
pose.pose.position.z = wpoint_srv.response.xd.z;
/*/ Populate pose msg
pose.pose.orientation.x = q_init.x;
pose.pose.orientation.y = q_init.y;
pose.pose.orientation.z = q_init.z;
pose.pose.orientation.w = q_init.w;
*/
//send a few setpoints before starting
for(int i = 100; ros::ok() && i > 0; --i){
local_pos_pub.publish(pose);
ros::spinOnce();
rate.sleep();
}
mavros_msgs::SetMode offb_set_mode;
offb_set_mode.request.custom_mode = "OFFBOARD";
mavros_msgs::CommandBool arm_cmd;
arm_cmd.request.value = true;
ros::Time last_request = ros::Time::now();
while(ros::ok()){
if(current_state.mode != "OFFBOARD" &&
(ros::Time::now() - last_request > ros::Duration(5.0))){
if( set_mode_client.call(offb_set_mode) &&
offb_set_mode.response.mode_sent){
ROS_INFO("Offboard enabled");
}
last_request = ros::Time::now();
} else {
if( !current_state.armed &&
(ros::Time::now() - last_request > ros::Duration(3.0))){
if(arming_client.call(arm_cmd) &&
arm_cmd.response.success){
ROS_INFO("Vehicle armed");
}
last_request = ros::Time::now();
}
}
// check if waypoints have changed desired waypoints
waypoint_cl.call(wpoint_srv);
pose.pose.position.x = wpoint_srv.response.xd.x;
pose.pose.position.y = wpoint_srv.response.xd.y;
pose.pose.position.z = wpoint_srv.response.xd.z;
// User info
ROS_INFO("Current Altitude: %.2f",mavPose.pose.position.z);
ROS_INFO("Desired Altitude: %.2f",pose.pose.position.z);
ROS_INFO("---------------------------");
local_pos_pub.publish(pose);
ros::spinOnce();
rate.sleep();
}
return 0;
}

View File

@ -44,18 +44,18 @@ double current_altitude;
void mavPose_cb(const geometry_msgs::PoseStamped::ConstPtr& msg){
mavPose = *msg;
current_altitude = mavPose.pose.position.z;
while(gps_read == false){
q_init = mavPose.pose.orientation;
if(q_init.x == 0.0 && q_init.w == 0.0){
ROS_INFO("Waiting...");
} else {
buff_pose.pose.orientation.x = q_init.x;
buff_pose.pose.orientation.y = q_init.y;
buff_pose.pose.orientation.z = q_init.z;
buff_pose.pose.orientation.w = q_init.w;
gps_read = true;
}
}
// while(gps_read == false){
// q_init = mavPose.pose.orientation;
// if(q_init.x == 0.0 && q_init.w == 0.0){
// ROS_INFO("Waiting...");
// } else {
// buff_pose.pose.orientation.x = q_init.x;
// buff_pose.pose.orientation.y = q_init.y;
// buff_pose.pose.orientation.z = q_init.z;
// buff_pose.pose.orientation.w = q_init.w;
// gps_read = true;
// }
// }
}
int main(int argc, char **argv)
@ -154,58 +154,47 @@ int main(int argc, char **argv)
double alt_des = wpoint_srv.response.xd.z; // Desired height
while(ros::ok()){
if(gps_read == true){
ROS_INFO("Entered while loop");
if(current_state.mode != "OFFBOARD" && (ros::Time::now() - last_request > ros::Duration(5.0))){
if( set_mode_client.call(offb_set_mode) && offb_set_mode.response.mode_sent){
} else {
ROS_INFO("Could not enter offboard mode");
}
//last_request = ros::Time::now();
if(current_state.mode != "OFFBOARD" && (ros::Time::now() - last_request > ros::Duration(5.0))){
if( set_mode_client.call(offb_set_mode) && offb_set_mode.response.mode_sent){
} else {
if( !current_state.armed && (ros::Time::now() - last_request > ros::Duration(8.0))){
if( arming_client.call(arm_cmd) && arm_cmd.response.success){
ROS_INFO("Vehicle armed");
}
last_request = ros::Time::now();
ROS_INFO("Could not enter offboard mode");
}
} else {
if( !current_state.armed && (ros::Time::now() - last_request > ros::Duration(8.0))){
if( arming_client.call(arm_cmd) && arm_cmd.response.success){
ROS_INFO("Vehicle armed");
}
last_request = ros::Time::now();
}
if(current_state.mode == "OFFBOARD" && current_state.armed){
ROS_INFO_ONCE("Spiri is taking off");
}
}
if(current_state.mode == "OFFBOARD" && current_state.armed){
ROS_INFO_ONCE("Spiri is taking off");
}
// Check if we want to use oscillation controller
//if (ros::param::get("/use_ctrl", oscillation_damp) == true){
if (ros::param::has("/status/use_ctrl")){
ros::param::get("/status/use_ctrl", oscillation_damp);
if(oscillation_damp == true){
ROS_INFO("ATTITUDE CTRL");
att_targ.header.stamp = ros::Time::now();
// Publish attitude commands
att_targ_pub.publish(att_targ);
} else {
// Check if waypoints have changed
// For attitude controller, ref_signalGen deals with changes
// in desired waypoints, so we only check if not using controller
if (waypoint_cl.call(wpoint_srv))
{
// populate desired waypoints
buff_pose.pose.position.x = wpoint_srv.response.xd.x;
buff_pose.pose.position.y = wpoint_srv.response.xd.y;
buff_pose.pose.position.z = wpoint_srv.response.xd.z;
}
ROS_INFO("POSITION CTRL");
// Publish position setpoints
local_pos_pub.publish(buff_pose);
}
// Check if we want to use oscillation controller
if (ros::param::has("/status/use_ctrl")){
ros::param::get("/status/use_ctrl", oscillation_damp);
if(oscillation_damp == true){
ROS_INFO("ATTITUDE CTRL");
att_targ.header.stamp = ros::Time::now();
// Publish attitude commands
att_targ_pub.publish(att_targ);
} else {
ROS_INFO("POSITION CTRL");
//ROS_INFO("POSITION CTRL");
// Publish position setpoints
local_pos_pub.publish(buff_pose);
}
ROS_INFO("Des Altitude: %.2f", alt_des);
ROS_INFO("Des Altitude: %.2f", wpoint_srv.response.xd.z);
ROS_INFO("Cur Altitude: %.2f", current_altitude);
ROS_INFO("---------------------------");
ros::spinOnce();
rate_pub.sleep();
} else {
ROS_WARN("CONTROL PARAM NOT FOUND. PLEASE SET '/status/use_ctrl'");
}
ros::spinOnce();
rate_pub.sleep();
}
return 0;

View File

@ -1,4 +1,4 @@
#!/usr/bin/env python2.7
#!/usr/bin/env python
### Cesar Rodriguez July 2021
### Based off of Klausen 2017 - Smooth trajectory generation based on desired waypoints
@ -10,11 +10,10 @@ import math
import rosservice
from scipy.integrate import odeint
from oscillation_ctrl.msg import RefSignal, LoadAngles, TetheredStatus
from oscillation_ctrl.msg import RefSignal, LoadAngles
from oscillation_ctrl.srv import WaypointTrack
from geometry_msgs.msg import Pose, PoseStamped, Point, TwistStamped
from sensor_msgs.msg import Imu
from mavros_msgs.msg import State
class DesiredPoint():
def __init__(self,x,y,z):
@ -38,12 +37,11 @@ class Main:
self.tmax = self.dt # used to get desired pos, vel, and acc for next time step (tmax)
self.n = self.tmax/self.dt + 1
self.t = np.linspace(0, self.tmax, self.n) # Time array
# self.t = np.linspace(0, 1.0, 10) # Time array
# Message generation/ collection
self.vel_data = TwistStamped() # This is needed to get drone vel from gps
self.imu_data = Imu() # Needed for to get drone acc from IMU
self.ref_sig = RefSignal() # Smooth Signal
self.imu_data = Imu() # Needed for to get drone acc from IMU
self.ref_sig = RefSignal() # Smooth Signal
self.load_angles = LoadAngles()
self.has_run = 0 # Bool to keep track of first run instance
@ -58,7 +56,6 @@ class Main:
# Topic, msg type, and class callback method
rospy.Subscriber('/status/load_angles', LoadAngles, self.loadAngles_cb)
rospy.Subscriber('/mavros/local_position/pose', PoseStamped, self.dronePos_cb)
# rospy.Subscriber('/status/twoBody_status', TetheredStatus, self.dronePos_cb)
rospy.Subscriber('/mavros/local_position/velocity_body', TwistStamped, self.droneVel_cb)
rospy.Subscriber('/mavros/imu/data', Imu, self.droneAcc_cb)
@ -67,8 +64,7 @@ class Main:
# --------------------------------------------------------------------------------#
# Publish desired path to compute attitudes
self.pub_path = rospy.Publisher('/reference/path',RefSignal,queue_size = 10)
# Needed for geometric controller to compute thrust
#self.pub_ref = rospy.Publisher('/reference/flatsetpoint',FlatTarget,queue_size = 10)
self.waypointTracker_pub = rospy.Publisher('/reference/waypoints',Point,queue_size = 10) # not needed. Used for performance analysis
# timer(s), used to control method loop freq(s) as defined by the rate(s)
self.pub_tim = rospy.Timer(rospy.Duration(1.0/rate), self.publisher)
@ -82,7 +78,7 @@ class Main:
self.EPS_I = np.zeros(9) # Epsilon shapefilter
# Constants for smooth path generation
self.w_tune = 1 # also works well :) 3.13 works well? #########################################################################
self.w_tune = 1 # Increase this to increase aggresiveness of trajectory i.e. higher accelerations
self.epsilon = 0.7 # Damping ratio
# need exception if we do not have tether:
@ -330,9 +326,6 @@ class Main:
self.sigmoid() # Determine sigmoid gain
EPS_D = self.fback() # Feedback Epsilon
# for i in range(9):
# Populate EPS_F buffer with desired change based on feedback
# self.EPS_F[i] = self.EPS_I[i] + self.s_gain*EPS_D[i] #+ EPS_D[i]
self.EPS_F = self.EPS_I + self.s_gain*EPS_D
# Populate msg with epsilon_final
@ -340,22 +333,14 @@ class Main:
#self.ref_sig.type_mask = 2 # Need typemask = 2 to use correct attitude controller - Jaeyoung Lin
self.ref_sig.position.x = self.EPS_F[0]
self.ref_sig.position.y = self.EPS_F[1]
self.ref_sig.position.z = self.EPS_F[2]
self.ref_sig.velocity.x = self.EPS_F[3]
self.ref_sig.velocity.y = self.EPS_F[4]
self.ref_sig.velocity.z = self.EPS_F[5]
self.ref_sig.acceleration.x = self.EPS_F[6]
self.ref_sig.acceleration.y = self.EPS_F[7]
# Do not need to evaluate z
# self.ref_sig.position.z = self.xd.z
# self.ref_sig.velocity.z = 0.0
# self.ref_sig.acceleration.z = 0.0
self.ref_sig.position.z = self.EPS_F[2]
self.ref_sig.velocity.z = self.EPS_F[5]
self.ref_sig.acceleration.z = self.EPS_F[8]
# self.x0 = [self.dr_pos.position.x, self.x[1,1], self.x[1,2], self.x[1,3]]
# self.y0 = [self.dr_pos.position.y, self.y[1,1], self.y[1,2], self.y[1,3]]
# self.z0 = [self.dr_pos.position.z, self.z[1,1], self.z[1,2], self.z[1,3]]
self.x0 = [self.x[1,0], self.x[1,1], self.x[1,2], self.x[1,3]]
self.y0 = [self.y[1,0], self.y[1,1], self.y[1,2], self.y[1,3]]
self.z0 = [self.z[1,0], self.z[1,1], self.z[1,2], self.z[1,3]]
@ -379,7 +364,7 @@ class Main:
return EPS_D
def user_fback(self):
def user_feeback(self):
# Feedback to user
rospy.loginfo(' Var | x | y | z ')
@ -387,9 +372,7 @@ class Main:
rospy.loginfo('Vel: %.2f %.2f %.2f',self.EPS_F[3],self.EPS_F[4],self.EPS_F[5])
rospy.loginfo('Acc: %.2f %.2f %.2f',self.EPS_F[6],self.EPS_F[7],self.EPS_F[8])
rospy.loginfo('_______________________')
# rospy.loginfo_once('Tether length: %.2f',self.tetherL)
# rospy.loginfo('Theta: %.2f',self.load_angles.theta)
# rospy.loginfo('Phi: %.2f',self.load_angles.phi)
def publisher(self,pub_tim):
@ -399,8 +382,11 @@ class Main:
# Publish reference signal
self.pub_path.publish(self.ref_sig)
# Publish what the setpoints are
self.waypointTracker_pub.publish(self.xd)
# Give user feedback on published message:
self.user_fback()
self.user_feeback()
if __name__=="__main__":

59
src/set_ploadmass.py Executable file
View File

@ -0,0 +1,59 @@
#!/usr/bin/env python2.7
### Cesar Rodriguez Sept 2022
### changes pload mass depending on /status/pload_mass parameter
import rospy
import rosservice
from gazebo_msgs.srv import GetLinkProperties, SetLinkProperties
class Main:
def __init__(self):
# Variables needed for testing start
# link (payload) name
self.link_name = 'spiri_with_tether::mass::payload'
# service names we will use
self.service_request = '/gazebo/get_link_properties'
self.service_call = '/gazebo/set_link_properties'
# wait for service
rospy.wait_for_service(self.service_request)
# set up service request
get_link_properties = rospy.ServiceProxy(self.service_request,GetLinkProperties)
# wait for service to set link properties
rospy.wait_for_service(self.service_call)
# set up service request
set_link_properties = rospy.ServiceProxy(self.service_call,SetLinkProperties)
# get payload properties
self.pload_properties = get_link_properties(self.link_name)
# state parameter name for where payload mass is stored
self.param_pload_mass = 'status/pload_mass'
# check if parameter exists
if rospy.has_param(self.param_pload_mass):
self.desired_mass = rospy.get_param(self.param_pload_mass) # get desired mass
try:
# set desired mass and necessary inertial properties
set_link_properties(link_name=self.link_name,mass=self.desired_mass,
ixx=self.pload_properties.ixx,iyy=self.pload_properties.iyy,izz=self.pload_properties.izz,
gravity_mode=self.pload_properties.gravity_mode)
rospy.loginfo('Set payload mass to: %.3f', self.desired_mass)
except rospy.ServiceException as e:
rospy.loginfo("Set Link State call failed: {0}".format(e))
else: rospy.logwarn('COULD NOT FIND PLOAD MASS PARAM')
if __name__=="__main__":
# Initiate ROS node
rospy.init_node('MoCap_node',anonymous=False)
try:
Main() # create class object
rospy.spin() # loop until shutdown signal
except rospy.ROSInterruptException:
pass

View File

@ -1,173 +0,0 @@
#!/usr/bin/env python2.7
### Cesar Rodriguez Sept 21
### Used to control thrust of drone
import rospy, tf
import numpy as np
from geometry_msgs.msg import PoseStamped, TwistStamped
from mavros_msgs.msg import AttitudeTarget
class PID:
def __init__(self):
# rate(s)
rate = 35.0
self.dt = 1/rate
# Variables needed for testing start
self.tstart = rospy.get_time() # Keep track of the start time
while self.tstart == 0.0: # Need to make sure get_rostime works
self.tstart = rospy.get_time()
# tuning gains
#self.Kp = 0.335
#self.Kd = 0.1
self.Kp = 2.7
self.Kd = 0.5
# drone var
self.drone_m = 1.437
self.max_a = 14.2
self.max_t = self.drone_m*self.max_a
# message variables
self.pose = PoseStamped()
self.pose_buff = PoseStamped()
self.pose_buff.pose.position.z = 2.5
self.attitude = AttitudeTarget()
self.attitude.type_mask = 1|2|4 # ignore body rate command
self.attitude.orientation.x = 0.0
self.attitude.orientation.y = 0.0
self.attitude.orientation.z = 0.0
self.attitude.orientation.w = 1.0
self.des_alt = 2.5
self.dr_vel = TwistStamped()
#self.cur_att = PoseStamped()
self.R = np.empty([3,3])
# clients
# subscribers
rospy.Subscriber('/mavros/local_position/pose',PoseStamped, self.pose_cb)
rospy.Subscriber('/mavros/local_position/velocity_local', TwistStamped, self.droneVel_cb)
# publishers
self.pub_attitude = rospy.Publisher('/command/thrust', AttitudeTarget, queue_size=10)
# publishing rate
self.pub_time = rospy.Timer(rospy.Duration(1.0/rate), self.publisher)
def pose_cb(self,msg):
self.cur_alt = msg.pose.position.z
self.pose = msg
# Callback for drone velocity
def droneVel_cb(self,msg):
try:
self.dr_vel = msg
except ValueError or TypeError:
pass
def quaternion_rotation_matrix(self):
"""
Covert a quaternion into a full three-dimensional rotation matrix.
Input
:param Q: A 4 element array representing the quaternion (q0,q1,q2,q3)
Output
:return: A 3x3 element matrix representing the full 3D rotation matrix.
This rotation matrix converts a point in the local reference
frame to a point in the global reference frame.
"""
# Extract the values from Q
q0 = self.pose.pose.orientation.w
q1 = self.pose.pose.orientation.x
q2 = self.pose.pose.orientation.y
q3 = self.pose.pose.orientation.z
# First row of the rotation matrix
r00 = 2 * (q0 * q0 + q1 * q1) - 1
r01 = 2 * (q1 * q2 - q0 * q3)
r02 = 2 * (q1 * q3 + q0 * q2)
# Second row of the rotation matrix
r10 = 2 * (q1 * q2 + q0 * q3)
r11 = 2 * (q0 * q0 + q2 * q2) - 1
r12 = 2 * (q2 * q3 - q0 * q1)
# Third row of the rotation matrix
r20 = 2 * (q1 * q3 - q0 * q2)
r21 = 2 * (q2 * q3 + q0 * q1)
r22 = 2 * (q0 * q0 + q3 * q3) - 1
# 3x3 rotation matrix
rot_matrix = np.array([[r00, r01, r02],
[r10, r11, r12],
[r20, r21, r22]])
return rot_matrix
def operation(self):
self.error = self.cur_alt - self.des_alt # error in z dir.
self.R = self.quaternion_rotation_matrix() # determine Rotation Matrix
# thrust as per Geometric Tracking Control of a Quadrotor UAV on SE(3)
# Taeyoung Lee, Melvin Leok, and N. Harris McClamroch
thrust = np.dot(9.81*self.drone_m -self.Kp*self.error -self.Kd*self.dr_vel.twist.linear.z,self.R.T[2])/self.max_t
self.attitude.thrust = thrust[2] # save thurst in z-dir
# Value needs to be between 0 - 1.0
if self.attitude.thrust >= 1.0:
self.attitude.thrust = 1.0
elif self.attitude.thrust <= 0.0:
self.attitude.thrust = 0.0
def publisher(self,pub_time):
self.operation() # determine thrust
self.attitude.header.stamp = rospy.Time.now()
self.pub_attitude.publish(self.attitude)
def user_feedback(self):
rospy.loginfo('Des: %.2f',self.des_alt)
rospy.loginfo('Error: %.2f',self.error)
rospy.loginfo('Throttle: %f\n',self.attitude.thrust)
if __name__=="__main__":
# Initiate ROS node
rospy.init_node('thrust_PID')
try:
PID() # create class object
rospy.spin() # loop until shutdown signal
except rospy.ROSInterruptException:
pass