hardware/nvidia-spiri/platform/t18x | ||
kernel | ||
README.md |
Leopard Imaging LI-M021C-MIPI Stereo-Optic Cameras
Kernel Changes
The source code we have modified or added and is pertinent to these cameras is in the following files:
- controls-utility.sh
- hardware/nvidia/platform/t18x/common/kernel-dts/t18x-common-platforms/tegra186-tx2-spiri-camera-base.dtsi
- hardware/nvidia/platform/t18x/common/kernel-dts/t18x-common-platforms/tegra186-tx2-spiri-camera.dtsi
- hardware/nvidia/platform/t18x/quill/kernel-dts/Makefile
- hardware/nvidia/platform/t18x/quill/kernel-dts/tegra186-tx2-spiri-USB3.dts
- hardware/nvidia/platform/t18x/quill/kernel-dts/tegra186-tx2-spiri-base.dts
- hardware/nvidia/platform/t18x/quill/kernel-dts/tegra186-tx2-spiri-mPCIe.dts
- hardware/nvidia/platform/t18x/quill/kernel-dts/tegra186-tx2-spiri-revF+.dts
- nvidia/drivers/media/i2c/mt9m021.c
- nvidia/drivers/media/i2c/mt9m021_mode_tbls.h
- nvidia/drivers/media/platform/tegra/camera/camera_common.c
- nvidia/drivers/media/platform/tegra/camera/tegracam_ctrls.c
- nvidia/include/media/camera_common.h
- nvidia/include/media/tegra-v4l2-camera.h
All these modifications and additions are part of the Spiri Mu kernel, and are represented by symbolic links from this repository into https://git.spirirobotics.com/Spiri/mu_kernel_sources, with the exception of the controls-utility.sh script, which is transferred in the spiri_scripts folder of the rootfs.
Features
- V4L2 Kernel Driver Version 2.0 supported on L4T32.2.1
- V4l2 controls
- test pattern
- individual gains
- vertical/horizontal flip
- flash control
- LibArgus and nvarguscamerasrc
- Resolution supported: 1280x720 @ 60fps
- Gain, exposure, and framerate controls
- Camera synchronization
Capture Tests
Frame-rate Tests
- Set the framerate to 60fps and the driver will configure the sensor:
gst-launch-1.0 nvarguscamerasrc sensor-id=0 aelock=true awblock=true ! 'video/x-raw(memory:NVMM), width=(int)1280, height=(int)720, format=(string)NV12,framerate=(fraction)60/1' ! fakesink
- Set the framerate to 45fps and the driver will configure the sensor:
gst-launch-1.0 nvarguscamerasrc sensor-id=0 aelock=true awblock=true ! 'video/x-raw(memory:NVMM), width=(int)1280, height=(int)720, format=(string)NV12,framerate=(fraction)45/1' ! fakesink
UDP Streaming Test
Sender Endpoint
gst-launch-1.0 nvarguscamerasrc ! 'video/x-raw(memory:NVMM), width=(int)1280, height=(int)720, format=(string)NV12,framerate=(fraction)30/1' ! omxh264enc control-rate=2 bitrate=8000000 ! 'video/x-h264, stream-format=(string)byte-stream' ! h264parse ! rtph264pay mtu=1400 ! udpsink host=$HOST_IP port=5000 sync=false async=false
Receiver Endpoint
gst-launch-1.0 udpsrc port=5000 ! "application/x-rtp,media=(string)video,payload=(int)96,clock-rate=(int)90000,encoding-name=(string)H264" ! rtph264depay ! queue ! avdec_h264 ! xvimagesink sync=true async=false
Set Controls Test
Run a pipeline, then set gain and exposure controls using v4l2-ctl:
v4l2-ctl -d /dev/video1 -c exposure=14000
v4l2-ctl -d /dev/video1 -c gain=100
Dual Synchronized Capture Test
First run the master pipeline and then the slave pipeline:
Master Pipeline
gst-launch-1.0 nvarguscamerasrc sensor-id=0 aelock=true awblock=true ! 'video/x-raw(memory:NVMM), width=(int)1280, height=(int)720, format=(string)NV12,framerate=(fraction)60/1' ! fakesink
Slave Pipeline
gst-launch-1.0 nvarguscamerasrc sensor-id=1 aelock=true awblock=true ! 'video/x-raw(memory:NVMM), width=(int)1280, height=(int)720, format=(string)NV12,framerate=(fraction)60/1' ! fakesink
It is not recommended to start both streams at the same time, because nvarguscamerasrc will fail if no buffers arrive on a defined timeout.
V4l2 Capture Test
Master
v4l2-ctl -d /dev/video0 --set-fmt-video=width=1280,height=720,pixelformat=RG12 --set-ctrl bypass_mode=0 --stream-mmap
Slave
v4l2-ctl -d /dev/video01 --set-fmt-video=width=1280,height=720,pixelformat=RG12 --set-ctrl bypass_mode=0 --stream-mmap