Jetpack/kernel/nvidia/drivers/misc/nvs/nvs_sysfs.c

1894 lines
48 KiB
C

/* Copyright (c) 2016-2018, NVIDIA CORPORATION. All rights reserved.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
/* The NVS = NVidia Sensor framework */
/* This NVS kernel driver has a test mechanism for sending specific data up the
* SW stack by writing the requested data value to the ch sysfs attribute.
* That data will be sent anytime there would normally be new data from the
* device.
* The feature is disabled whenever the device is disabled. It remains
* disabled until the ch sysfs attribute is written to again.
*/
/* The NVS HAL will use the scale and offset sysfs attributes to modify the
* data using the following formula: (data * scale) + offset
* A scale value of 0 disables scale.
* A scale value of 1 puts the NVS HAL into calibration mode where the scale
* and offset are read everytime the data is read to allow realtime calibration
* of the scale and offset values to be used in the device tree parameters.
* Keep in mind the data is buffered but the NVS HAL will display the data and
* scale/offset parameters in the log.
*/
/* This module automatically handles on-change sensors by testing for allowed
* report rate and whether data has changed. This allows sensors that are
* on-change in name only that normally stream data to behave as on-change.
*/
/* This module automatically handles one-shot sensors by disabling the sensor
* after an event.
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/of.h>
#include <linux/string.h>
#include "nvs_sysfs.h"
#define NVS_SYSFS_DRIVER_VERSION (3)
static const char * const nvs_snsr_names[] = {
[0] = "generic_sensor",
[SENSOR_TYPE_ACCELEROMETER] = "accelerometer",
[SENSOR_TYPE_MAGNETIC_FIELD] = "magnetic_field",
[SENSOR_TYPE_ORIENTATION] = "orientation",
[SENSOR_TYPE_GYROSCOPE] = "gyroscope",
[SENSOR_TYPE_LIGHT] = "light",
[SENSOR_TYPE_PRESSURE] = "pressure",
[SENSOR_TYPE_TEMPERATURE] = "temperature",
[SENSOR_TYPE_PROXIMITY] = "proximity",
[SENSOR_TYPE_GRAVITY] = "gravity",
[SENSOR_TYPE_LINEAR_ACCELERATION] = "linear_acceleration",
[SENSOR_TYPE_ROTATION_VECTOR] = "rotation_vector",
[SENSOR_TYPE_RELATIVE_HUMIDITY] = "relative_humidity",
[SENSOR_TYPE_AMBIENT_TEMPERATURE] = "ambient_temperature",
[SENSOR_TYPE_MAGNETIC_FIELD_UNCALIBRATED] =
"magnetic_field_uncalibrated",
[SENSOR_TYPE_GAME_ROTATION_VECTOR] = "game_rotation_vector",
[SENSOR_TYPE_GYROSCOPE_UNCALIBRATED] = "gyroscope_uncalibrated",
[SENSOR_TYPE_SIGNIFICANT_MOTION] = "significant_motion",
[SENSOR_TYPE_STEP_DETECTOR] = "step_detector",
[SENSOR_TYPE_STEP_COUNTER] = "step_counter",
[SENSOR_TYPE_GEOMAGNETIC_ROTATION_VECTOR] =
"geomagnetic_rotation_vector",
[SENSOR_TYPE_HEART_RATE] = "heart_rate",
[SENSOR_TYPE_TILT_DETECTOR] = "tilt_detector",
[SENSOR_TYPE_WAKE_GESTURE] = "wake_gesture",
[SENSOR_TYPE_GLANCE_GESTURE] = "glance_gesture",
[SENSOR_TYPE_PICK_UP_GESTURE] = "pick_up_gesture",
[SENSOR_TYPE_WRIST_TILT_GESTURE] = "wrist_tilt_gesture",
[SENSOR_TYPE_DEVICE_ORIENTATION] = "device_orientation",
[SENSOR_TYPE_POSE_6DOF] = "pose_6dof",
[SENSOR_TYPE_STATIONARY_DETECT] = "stationary_detect",
[SENSOR_TYPE_MOTION_DETECT] = "motion_detect",
[SENSOR_TYPE_HEART_BEAT] = "heart_beat",
[SENSOR_TYPE_DYNAMIC_SENSOR_META] = "dynamic_sensor_meta",
[SENSOR_TYPE_ADDITIONAL_INFO] = "additional_info",
};
enum NVS_DBG {
NVS_INFO_DATA = 0,
NVS_INFO_VER,
NVS_INFO_ERRS,
NVS_INFO_RESET,
NVS_INFO_REGS,
NVS_INFO_CFG,
NVS_INFO_DBG,
NVS_INFO_DBG_DATA,
NVS_INFO_DBG_BUF,
NVS_INFO_DBG_IRQ,
NVS_INFO_LIMIT_MAX,
NVS_INFO_DBG_KEY = 0x131071D,
};
static inline struct nvs_state *dev_to_nvs_state(struct device *dev)
{
return dev_get_drvdata(dev);
}
void nvs_mutex_lock(void *handle)
{
struct nvs_state *st = (struct nvs_state *)handle;
if (st)
mutex_lock(&st->mutex);
}
void nvs_mutex_unlock(void *handle)
{
struct nvs_state *st = (struct nvs_state *)handle;
if (st)
mutex_unlock(&st->mutex);
}
static ssize_t nvs_dbg_cfg(struct nvs_state *st, char *buf)
{
unsigned int i;
ssize_t t;
t = snprintf(buf, PAGE_SIZE, "name=%s\n", st->cfg->name);
t += snprintf(buf + t, PAGE_SIZE - t, "snsr_id=%d\n",
st->cfg->snsr_id);
t += snprintf(buf + t, PAGE_SIZE - t, "timestamp_sz=%d\n",
st->cfg->timestamp_sz);
t += snprintf(buf + t, PAGE_SIZE - t, "snsr_data_n=%d\n",
st->cfg->snsr_data_n);
t += snprintf(buf + t, PAGE_SIZE - t, "kbuf_sz=%d\n",
st->cfg->kbuf_sz);
t += snprintf(buf + t, PAGE_SIZE - t, "ch_n=%u\n", st->cfg->ch_n);
t += snprintf(buf + t, PAGE_SIZE - t, "ch_sz=%d\n", st->cfg->ch_sz);
t += snprintf(buf + t, PAGE_SIZE - t, "ch_inf=%p\n", st->cfg->ch_inf);
t += snprintf(buf + t, PAGE_SIZE - t, "delay_us_min=%u\n",
st->cfg->delay_us_min);
t += snprintf(buf + t, PAGE_SIZE - t, "delay_us_max=%u\n",
st->cfg->delay_us_max);
t += snprintf(buf + t, PAGE_SIZE - t, "uuid: ");
for (i = 0; i < 16; i++)
t += snprintf(buf + t, PAGE_SIZE - t, "%02x ",
st->cfg->uuid[i]);
t += snprintf(buf + t, PAGE_SIZE - t, "\nmatrix: ");
for (i = 0; i < 9; i++)
t += snprintf(buf + t, PAGE_SIZE - t, "%hhd ",
st->cfg->matrix[i]);
t += snprintf(buf + t, PAGE_SIZE - t, "\nuncal_lo=%d\n",
st->cfg->uncal_lo);
t += snprintf(buf + t, PAGE_SIZE - t, "uncal_hi=%d\n",
st->cfg->uncal_hi);
t += snprintf(buf + t, PAGE_SIZE - t, "cal_lo=%d\n", st->cfg->cal_lo);
t += snprintf(buf + t, PAGE_SIZE - t, "cal_hi=%d\n", st->cfg->cal_hi);
t += snprintf(buf + t, PAGE_SIZE - t, "thresh_lo=%d\n",
st->cfg->thresh_lo);
t += snprintf(buf + t, PAGE_SIZE - t, "thresh_hi=%d\n",
st->cfg->thresh_hi);
t += snprintf(buf + t, PAGE_SIZE - t, "report_n=%d\n",
st->cfg->report_n);
t += snprintf(buf + t, PAGE_SIZE - t, "float_significance=%s\n",
nvs_float_significances[st->cfg->float_significance]);
return t;
}
/* dummy enable function to support client's NULL function pointer */
static int nvs_fn_dev_enable(void *client, int snsr_id, int enable)
{
return 0;
}
static int nvs_disable(struct nvs_state *st)
{
int ret;
ret = st->fn_dev->enable(st->client, st->cfg->snsr_id, 0);
if (!ret) {
st->enabled = 0;
st->dbg_data_lock = 0;
}
return ret;
}
static ssize_t nvs_ch2buf(struct nvs_state *st, unsigned int ch,
char *buf, size_t buf_n, ssize_t t, bool dbg)
{
unsigned int i;
unsigned int n;
s64 val;
n = st->buf_ch[ch].byte_n;
if (n) {
if (n <= sizeof(val)) {
val = 0;
memcpy(&val, &st->buf[st->buf_ch[ch].buf_i], n);
if (st->buf_ch[ch].sign) {
i = sizeof(val) - n;
if (i) {
i *= 8;
val <<= i;
val >>= i;
}
if (dbg)
t += snprintf(buf + t, buf_n - t,
"%lld (0x", val);
else
return snprintf(buf + t, buf_n - t,
"%lld\n", val);
} else {
if (dbg)
t += snprintf(buf + t, buf_n - t,
"%llu (0x", val);
else
return snprintf(buf + t, buf_n - t,
"%llu\n", (u64)val);
}
} else {
if (dbg)
t += snprintf(buf + t, buf_n - t, "? (0x");
else
t += snprintf(buf + t, buf_n - t, "(0x");
}
for (i = n - 1; i > 0; i--)
t += snprintf(buf + t, buf_n - t, "%02X",
st->buf[st->buf_ch[ch].buf_i + i]);
if (dbg)
t += snprintf(buf + t, buf_n - t, "%02X) ",
st->buf[st->buf_ch[ch].buf_i]);
else
t += snprintf(buf + t, buf_n - t, "%02X\n",
st->buf[st->buf_ch[ch].buf_i]);
return t;
}
return 0;
}
static ssize_t nvs_dbg_data(struct nvs_state *st, char *buf, size_t buf_n)
{
ssize_t t;
unsigned int ch;
unsigned int n = st->ch_n - 1;
t = snprintf(buf, PAGE_SIZE, "%s: ", st->cfg->name);
for (ch = 0; ch < n; ch++) {
if (!(st->enabled & (1 << ch))) {
t += snprintf(buf + t, buf_n - t, "disabled ");
continue;
}
t += nvs_ch2buf(st, ch, buf, buf_n, t, true);
}
t += snprintf(buf + t, buf_n - t, "ts=%lld ts_diff=%lld\n",
st->ts, st->ts_diff);
return t;
}
static int nvs_buf_push(struct nvs_state *st, unsigned char *data, s64 ts)
{
bool push = true;
char char_buf[128];
unsigned int i;
unsigned int n;
unsigned int ret_n = 0;
int ret = 0;
n = st->ch_n - 1; /* - timestamp channel */
/* It's possible to have events without data (n == 0).
* In this case, just the timestamp is sent.
*/
if (n && data) {
if (st->on_change)
/* on-change needs data change for push */
push = false;
for (i = 0; i < n; i++) {
if (!(st->enabled & (1 << i)))
continue;
if (st->on_change) {
/* wasted cycles when st->first_push
* but saved cycles in the long run.
*/
ret = memcmp(&st->buf[st->buf_ch[i].buf_i],
&data[st->buf_ch[i].buf_i],
st->buf_ch[i].byte_n);
if (ret)
/* data changed */
push = true;
}
if (!(st->dbg_data_lock & (1 << i)))
memcpy(&st->buf[st->buf_ch[i].buf_i],
&data[st->buf_ch[i].buf_i],
st->buf_ch[i].byte_n);
ret_n += st->buf_ch[i].byte_n;
}
}
if (st->first_push || !data)
/* first push || pushing just timestamp */
push = true;
if (ts) {
st->ts_diff = ts - st->ts;
if (st->ts_diff < 0)
dev_err(st->dev, "%s %s ts_diff=%lld\n",
__func__, st->cfg->name, st->ts_diff);
else if (st->on_change && (st->ts_diff <
(s64)st->us_period * 1000)) {
/* data rate faster than requested */
if (!st->first_push)
push = false;
}
} else {
st->flush = false;
if (*st->fn_dev->sts & (NVS_STS_SPEW_MSG | NVS_STS_SPEW_DATA))
dev_info(st->dev, "%s %s FLUSH\n",
__func__, st->cfg->name);
}
memcpy(&st->buf[st->buf_ch[n].buf_i], &ts,
st->buf_ch[n].byte_n);
if (push) {
ret = st->kif_fn->push(st);
if (!ret) {
if (ts) {
st->first_push = false;
st->ts = ts; /* log ts push */
if (st->one_shot)
/* disable one-shot after event */
nvs_disable(st);
}
if (*st->fn_dev->sts & NVS_STS_SPEW_BUF) {
n = st->buf_ch[n].buf_i + st->buf_ch[n].byte_n;
for (i = 0; i < n; i++)
dev_info(st->dev, "%s buf[%u]=%02X\n",
st->cfg->name, i, st->buf[i]);
dev_info(st->dev, "%s ts=%lld diff=%lld\n",
st->cfg->name, ts, st->ts_diff);
}
}
}
if ((*st->fn_dev->sts & NVS_STS_SPEW_DATA) && ts) {
nvs_dbg_data(st, char_buf, sizeof(char_buf));
dev_info(st->dev, "%s", char_buf);
}
if (!ret)
/* return pushed byte count from data if no error.
* external entity can use as offset to next data set.
*/
ret = ret_n;
return ret;
}
int nvs_handler(void *handle, void *buffer, s64 ts)
{
struct nvs_state *st = (struct nvs_state *)handle;
unsigned char *buf = buffer;
int ret = 0;
if (st)
ret = nvs_buf_push(st, buf, ts);
return ret;
}
static void nvs_report_mode(struct nvs_state *st)
{
/* Currently this is called once during initialization. However, there
* may be mechanisms where this is allowed to change at runtime, hence
* this function above nvs_attr_store for st->cfg->flags.
*/
st->on_change = false;
st->one_shot = false;
st->special = false;
switch (st->cfg->flags & REPORTING_MODE_MASK) {
case SENSOR_FLAG_ON_CHANGE_MODE:
st->on_change = true;
break;
case SENSOR_FLAG_ONE_SHOT_MODE:
st->one_shot = true;
break;
case SENSOR_FLAG_SPECIAL_REPORTING_MODE:
st->special = true;
break;
}
}
static ssize_t nvs_attr_ret(struct nvs_state *st, char *buf,
int ival, int fval)
{
if (st->cfg->float_significance == NVS_FLOAT_NANO) {
if (fval < 0)
return snprintf(buf, PAGE_SIZE,
"-%d.%09u\n", ival, -fval);
return snprintf(buf, PAGE_SIZE, "%d.%09u\n", ival, fval);
}
if (fval < 0)
return snprintf(buf, PAGE_SIZE, "-%d.%06u\n", ival, -fval);
return snprintf(buf, PAGE_SIZE, "%d.%06u\n", ival, fval);
}
static int nvs_attr_float(struct nvs_state *st, const char *buf,
int *ival, int *fval)
{
bool neg = false;
bool i_part = true;
int i = 0;
int f = 0;
int fs;
if (st->cfg->float_significance == NVS_FLOAT_NANO)
fs = NVS_FLOAT_SIGNIFICANCE_NANO;
else
fs = NVS_FLOAT_SIGNIFICANCE_MICRO;
if (buf[0] == '-') {
neg = true;
buf++;
} else if (buf[0] == '+') {
buf++;
}
while (*buf) {
if ('0' <= *buf && *buf <= '9') {
if (i_part) {
i = i * 10 + *buf - '0';
} else {
f += fs * (*buf - '0');
fs /= 10;
}
} else if (*buf == '\n') {
if (*(buf + 1) == '\0')
break;
else
return -EINVAL;
} else if (*buf == '.' && i_part) {
i_part = false;
} else {
return -EINVAL;
}
buf++;
}
if (neg) {
if (i)
i = -i;
else
f = -f;
}
*ival = i;
*fval = f;
return 0;
}
static ssize_t nvs_attr_ch_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct nvs_state *st = dev_to_nvs_state(dev);
struct nvs_dev_attr *nda = to_nvs_dev_attr(attr);
return nvs_ch2buf(st, nda->channel, buf, PAGE_SIZE, 0, false);
}
static ssize_t nvs_attr_ch_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct nvs_state *st = dev_to_nvs_state(dev);
struct nvs_dev_attr *nda = to_nvs_dev_attr(attr);
unsigned int ch = nda->channel;
int ret;
u64 val;
if (kstrtou64(buf, 0, &val))
return -EINVAL;
mutex_lock(&st->mutex);
if (st->shutdown || st->suspend || (*st->fn_dev->sts &
(NVS_STS_SHUTDOWN | NVS_STS_SUSPEND))) {
ret = -EPERM;
} else {
/* writing to ch is a debug feature allowing a sticky data
* value to be pushed up and the same value pushed until the
* device is turned off.
*/
memcpy(&st->buf[st->buf_ch[ch].buf_i], &val,
st->buf_ch[ch].byte_n);
st->dbg_data_lock |= (1 << ch);
ret = nvs_buf_push(st, st->buf, nvs_timestamp());
if (ret > 0)
ret = 0;
}
mutex_unlock(&st->mutex);
if (ret < 0)
return ret;
return count;
}
static ssize_t nvs_attr_enable_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct nvs_state *st = dev_to_nvs_state(dev);
ssize_t ret = -EINVAL;
if (st->fn_dev->enable != nvs_fn_dev_enable) {
mutex_lock(&st->mutex);
ret = snprintf(buf, PAGE_SIZE, "%X\n",
st->fn_dev->enable(st->client,
st->cfg->snsr_id, -1));
mutex_unlock(&st->mutex);
}
return ret;
}
static ssize_t nvs_attr_enable_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct nvs_state *st = dev_to_nvs_state(dev);
unsigned int enable;
int ret = 0;
if (kstrtouint(buf, 0, &enable))
return -EINVAL;
mutex_lock(&st->mutex);
if (st->shutdown || st->suspend || (*st->fn_dev->sts &
(NVS_STS_SHUTDOWN | NVS_STS_SUSPEND))) {
ret = -EPERM;
} else {
if (enable) {
st->first_push = true;
ret = st->fn_dev->enable(st->client, st->cfg->snsr_id,
enable);
} else {
ret = nvs_disable(st);
}
}
if (*st->fn_dev->sts & NVS_STS_SPEW_MSG)
dev_info(st->dev, "%s %s %X->%X ret=%d",
st->cfg->name, __func__, st->enabled, enable, ret);
if (!ret)
st->enabled = enable;
mutex_unlock(&st->mutex);
if (ret < 0)
return ret;
return count;
}
static ssize_t nvs_attr_fmec_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nvs_state *st = dev_to_nvs_state(dev);
return snprintf(buf, PAGE_SIZE, "%u\n", st->cfg->fifo_max_evnt_cnt);
}
static ssize_t nvs_attr_frec_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nvs_state *st = dev_to_nvs_state(dev);
return snprintf(buf, PAGE_SIZE, "%u\n", st->cfg->fifo_rsrv_evnt_cnt);
}
static ssize_t nvs_attr_flags_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nvs_state *st = dev_to_nvs_state(dev);
return snprintf(buf, PAGE_SIZE, "%u\n", st->cfg->flags);
}
static ssize_t nvs_attr_flags_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct nvs_state *st = dev_to_nvs_state(dev);
unsigned int flags_old;
unsigned int flags_new;
if (kstrtoint(buf, 0, &flags_new))
return -EINVAL;
flags_old = st->cfg->flags;
st->cfg->flags &= SENSOR_FLAG_READONLY_MASK;
flags_new &= ~SENSOR_FLAG_READONLY_MASK;
st->cfg->flags |= flags_new;
if (*st->fn_dev->sts & NVS_STS_SPEW_MSG)
dev_info(st->dev, "%s %s %u->%u\n",
st->cfg->name, __func__, flags_old, st->cfg->flags);
return count;
}
static ssize_t nvs_attr_flush_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nvs_state *st = dev_to_nvs_state(dev);
return snprintf(buf, PAGE_SIZE, "%x\n", st->flush);
}
static ssize_t nvs_attr_flush_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct nvs_state *st = dev_to_nvs_state(dev);
int ret = 1;
mutex_lock(&st->mutex);
if (st->shutdown || st->suspend || (*st->fn_dev->sts &
(NVS_STS_SHUTDOWN | NVS_STS_SUSPEND))) {
ret = -EPERM;
} else {
st->flush = true;
if (st->fn_dev->flush)
ret = st->fn_dev->flush(st->client, st->cfg->snsr_id);
}
if (*st->fn_dev->sts & NVS_STS_SPEW_MSG)
dev_info(st->dev, "%s %s ret=%d\n",
st->cfg->name, __func__, ret);
if (ret > 0)
nvs_buf_push(st, NULL, 0);
mutex_unlock(&st->mutex);
if (ret < 0)
return ret;
return count;
}
static ssize_t nvs_attr_matrix_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct nvs_state *st = dev_to_nvs_state(dev);
ssize_t t = 0;
unsigned int i;
for (i = 0; i < 8; i++)
t += snprintf(buf + t, PAGE_SIZE - t, "%hhd,",
st->cfg->matrix[i]);
t += snprintf(buf + t, PAGE_SIZE - t, "%hhd\n",
st->cfg->matrix[i]);
return t;
}
static ssize_t nvs_attr_matrix_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct nvs_state *st = dev_to_nvs_state(dev);
s8 matrix[9];
char *str;
unsigned int i;
int ret;
for (i = 0; i < sizeof(matrix); i++) {
str = strsep((char **)&buf, " \0");
if (str) {
ret = kstrtos8(str, 10, &matrix[i]);
if (ret)
break;
if (matrix[i] < -1 || matrix[i] > 1) {
ret = -EINVAL;
break;
}
} else {
ret = -EINVAL;
break;
}
}
if (i == sizeof(matrix))
memcpy(st->cfg->matrix, matrix, sizeof(st->cfg->matrix));
if (ret < 0)
return ret;
return count;
}
static ssize_t nvs_attr_milliamp_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct nvs_state *st = dev_to_nvs_state(dev);
return snprintf(buf, PAGE_SIZE, "%d.%06u\n",
st->cfg->milliamp.ival, st->cfg->milliamp.fval);
}
static ssize_t nvs_attr_name_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nvs_state *st = dev_to_nvs_state(dev);
return snprintf(buf, PAGE_SIZE, "%s\n", st->cfg->name);
}
static const char NVS_DBG_KEY[] = {
0x54, 0x65, 0x61, 0x67, 0x61, 0x6E, 0x26, 0x52, 0x69, 0x69, 0x73, 0x00
};
static ssize_t nvs_attr_nvs_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nvs_state *st = dev_to_nvs_state(dev);
enum NVS_DBG dbg;
unsigned int i;
int ret = -EINVAL;
dbg = st->dbg;
st->dbg = NVS_INFO_DATA;
switch (dbg) {
case NVS_INFO_DATA:
return nvs_dbg_data(st, buf, PAGE_SIZE);
case NVS_INFO_VER:
return snprintf(buf, PAGE_SIZE,
"sysfs_version=%u driver_version=%u\n",
NVS_SYSFS_DRIVER_VERSION,
st->kif_fn->driver_version);
case NVS_INFO_ERRS:
i = *st->fn_dev->errs;
*st->fn_dev->errs = 0;
return snprintf(buf, PAGE_SIZE, "error count=%u\n", i);
case NVS_INFO_RESET:
if (st->fn_dev->reset) {
mutex_lock(&st->mutex);
ret = st->fn_dev->reset(st->client, st->cfg->snsr_id);
mutex_unlock(&st->mutex);
}
if (ret)
return snprintf(buf, PAGE_SIZE, "reset ERR\n");
else
return snprintf(buf, PAGE_SIZE, "reset done\n");
case NVS_INFO_REGS:
if (st->fn_dev->regs)
return st->fn_dev->regs(st->client,
st->cfg->snsr_id, buf);
break;
case NVS_INFO_CFG:
return nvs_dbg_cfg(st, buf);
case NVS_INFO_DBG_KEY:
return snprintf(buf, PAGE_SIZE, "%s\n", NVS_DBG_KEY);
case NVS_INFO_DBG:
return snprintf(buf, PAGE_SIZE, "DBG spew=%x\n",
!!(*st->fn_dev->sts & NVS_STS_SPEW_MSG));
case NVS_INFO_DBG_DATA:
return snprintf(buf, PAGE_SIZE, "DATA spew=%x\n",
!!(*st->fn_dev->sts & NVS_STS_SPEW_DATA));
case NVS_INFO_DBG_BUF:
return snprintf(buf, PAGE_SIZE, "BUF spew=%x\n",
!!(*st->fn_dev->sts & NVS_STS_SPEW_BUF));
case NVS_INFO_DBG_IRQ:
return snprintf(buf, PAGE_SIZE, "IRQ spew=%x\n",
!!(*st->fn_dev->sts & NVS_STS_SPEW_IRQ));
default:
if (dbg < NVS_INFO_LIMIT_MAX)
break;
if (st->fn_dev->nvs_read)
ret = st->fn_dev->nvs_read(st->client,
st->cfg->snsr_id, buf);
break;
}
return ret;
}
static ssize_t nvs_attr_nvs_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct nvs_state *st = dev_to_nvs_state(dev);
unsigned int dbg;
int ret;
ret = kstrtouint(buf, 0, &dbg);
if (ret)
return -EINVAL;
st->dbg = dbg;
switch (dbg) {
case NVS_INFO_DATA:
*st->fn_dev->sts &= ~NVS_STS_SPEW_MSK;
break;
case NVS_INFO_DBG:
*st->fn_dev->sts ^= NVS_STS_SPEW_MSG;
break;
case NVS_INFO_DBG_DATA:
*st->fn_dev->sts ^= NVS_STS_SPEW_DATA;
break;
case NVS_INFO_DBG_BUF:
*st->fn_dev->sts ^= NVS_STS_SPEW_BUF;
break;
case NVS_INFO_DBG_IRQ:
*st->fn_dev->sts ^= NVS_STS_SPEW_IRQ;
break;
case NVS_INFO_DBG_KEY:
break;
default:
if (dbg < NVS_INFO_LIMIT_MAX)
break;
if (st->fn_dev->nvs_write) {
st->dbg = NVS_INFO_LIMIT_MAX;
dbg -= NVS_INFO_LIMIT_MAX;
ret = st->fn_dev->nvs_write(st->client,
st->cfg->snsr_id, dbg);
if (ret < 0)
return ret;
} else if (!st->fn_dev->nvs_read) {
st->dbg = NVS_INFO_DATA;
return -EINVAL;
}
break;
}
return count;
}
static ssize_t nvs_attr_offset_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct nvs_state *st = dev_to_nvs_state(dev);
struct nvs_dev_attr *nda = to_nvs_dev_attr(attr);
unsigned int ch = nda->channel;
int ival;
int fval;
if (ch < NVS_CHANNEL_N_MAX) {
ival = st->cfg->offsets[ch].ival;
fval = st->cfg->offsets[ch].fval;
} else {
ival = st->cfg->offset.ival;
fval = st->cfg->offset.fval;
}
return nvs_attr_ret(st, buf, ival, fval);
}
static ssize_t nvs_attr_offset_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct nvs_state *st = dev_to_nvs_state(dev);
struct nvs_dev_attr *nda = to_nvs_dev_attr(attr);
unsigned int ch = nda->channel;
int ival;
int fval;
int ret = 1;
if (nvs_attr_float(st, buf, &ival, &fval))
return -EINVAL;
mutex_lock(&st->mutex);
if (st->shutdown || st->suspend || (*st->fn_dev->sts &
(NVS_STS_SHUTDOWN | NVS_STS_SUSPEND))) {
ret = -EPERM;
} else if (ch < st->cfg->ch_n_max) {
if (st->fn_dev->offset)
ret = st->fn_dev->offset(st->client, st->cfg->snsr_id,
ch, ival);
if (*st->fn_dev->sts & NVS_STS_SPEW_MSG)
dev_info(st->dev, "%s %s ch=%u %d:%d->%d:%d ret=%d\n",
st->cfg->name, __func__, ch,
st->cfg->offsets[ch].ival,
st->cfg->offsets[ch].fval, ival, fval, ret);
if (ret > 0) {
st->cfg->offsets[ch].ival = ival;
st->cfg->offsets[ch].fval = fval;
}
} else {
if (st->fn_dev->offset)
ret = st->fn_dev->offset(st->client, st->cfg->snsr_id,
-1, ival);
if (*st->fn_dev->sts & NVS_STS_SPEW_MSG)
dev_info(st->dev, "%s %s %d:%d->%d:%d ret=%d\n",
st->cfg->name, __func__, st->cfg->offset.ival,
st->cfg->offset.fval, ival, fval, ret);
if (ret > 0) {
st->cfg->offset.ival = ival;
st->cfg->offset.fval = fval;
}
}
mutex_unlock(&st->mutex);
if (ret < 0)
return ret;
return count;
}
static ssize_t nvs_attr_part_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nvs_state *st = dev_to_nvs_state(dev);
return snprintf(buf, PAGE_SIZE, "%s %s\n",
st->cfg->part, st->cfg->name);
}
static ssize_t nvs_attr_range_max_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct nvs_state *st = dev_to_nvs_state(dev);
int ival = st->cfg->max_range.ival;
int fval = st->cfg->max_range.fval;
return nvs_attr_ret(st, buf, ival, fval);
}
static ssize_t nvs_attr_range_max_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct nvs_state *st = dev_to_nvs_state(dev);
int ival;
int fval;
int ret = 1;
if (nvs_attr_float(st, buf, &ival, &fval))
return -EINVAL;
mutex_lock(&st->mutex);
if (st->shutdown || st->suspend || (*st->fn_dev->sts &
(NVS_STS_SHUTDOWN | NVS_STS_SUSPEND)))
ret = -EPERM;
else if (st->fn_dev->max_range)
ret = st->fn_dev->max_range(st->client, st->cfg->snsr_id,
ival);
if (*st->fn_dev->sts & NVS_STS_SPEW_MSG)
dev_info(st->dev, "%s %s %d:%d->%d:%d ret=%d\n",
st->cfg->name, __func__, st->cfg->max_range.ival,
st->cfg->max_range.fval, ival, fval, ret);
if (ret > 0) {
st->cfg->max_range.ival = ival;
st->cfg->max_range.fval = fval;
}
mutex_unlock(&st->mutex);
if (ret < 0)
return ret;
return count;
}
static ssize_t nvs_attr_resolution_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct nvs_state *st = dev_to_nvs_state(dev);
int ival = st->cfg->resolution.ival;
int fval = st->cfg->resolution.fval;
return nvs_attr_ret(st, buf, ival, fval);
}
static ssize_t nvs_attr_resolution_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct nvs_state *st = dev_to_nvs_state(dev);
int ival;
int fval;
int ret = 1;
if (nvs_attr_float(st, buf, &ival, &fval))
return -EINVAL;
mutex_lock(&st->mutex);
if (st->shutdown || st->suspend || (*st->fn_dev->sts &
(NVS_STS_SHUTDOWN | NVS_STS_SUSPEND)))
ret = -EPERM;
else if (st->fn_dev->resolution)
ret = st->fn_dev->resolution(st->client, st->cfg->snsr_id,
ival);
if (*st->fn_dev->sts & NVS_STS_SPEW_MSG)
dev_info(st->dev, "%s %s %d:%d->%d:%d ret=%d\n",
st->cfg->name, __func__, st->cfg->resolution.ival,
st->cfg->resolution.fval, ival, fval, ret);
if (ret > 0) {
st->cfg->resolution.ival = ival;
st->cfg->resolution.fval = fval;
}
mutex_unlock(&st->mutex);
if (ret < 0)
return ret;
return count;
}
static ssize_t nvs_attr_scale_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct nvs_state *st = dev_to_nvs_state(dev);
struct nvs_dev_attr *nda = to_nvs_dev_attr(attr);
unsigned int ch = nda->channel;
int ival;
int fval;
if (ch < NVS_CHANNEL_N_MAX) {
ival = st->cfg->scales[ch].ival;
fval = st->cfg->scales[ch].fval;
} else {
ival = st->cfg->scale.ival;
fval = st->cfg->scale.fval;
}
return nvs_attr_ret(st, buf, ival, fval);
}
static ssize_t nvs_attr_scale_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct nvs_state *st = dev_to_nvs_state(dev);
struct nvs_dev_attr *nda = to_nvs_dev_attr(attr);
unsigned int ch = nda->channel;
int ival;
int fval;
int ret = 1;
if (nvs_attr_float(st, buf, &ival, &fval))
return -EINVAL;
mutex_lock(&st->mutex);
if (st->shutdown || st->suspend || (*st->fn_dev->sts &
(NVS_STS_SHUTDOWN | NVS_STS_SUSPEND))) {
ret = -EPERM;
} else if (ch < st->cfg->ch_n_max) {
if (st->fn_dev->scale)
ret = st->fn_dev->scale(st->client, st->cfg->snsr_id,
ch, ival);
if (*st->fn_dev->sts & NVS_STS_SPEW_MSG)
dev_info(st->dev, "%s %s ch=%u %d:%d->%d:%d ret=%d\n",
st->cfg->name, __func__, ch,
st->cfg->scales[ch].ival,
st->cfg->scales[ch].fval, ival, fval, ret);
if (ret > 0) {
st->cfg->scales[ch].ival = ival;
st->cfg->scales[ch].fval = fval;
}
} else {
if (st->fn_dev->scale)
ret = st->fn_dev->scale(st->client, st->cfg->snsr_id,
-1, ival);
if (*st->fn_dev->sts & NVS_STS_SPEW_MSG)
dev_info(st->dev, "%s %s %d:%d->%d:%d ret=%d\n",
st->cfg->name, __func__, st->cfg->scale.ival,
st->cfg->scale.fval, ival, fval, ret);
if (ret > 0) {
st->cfg->scale.ival = ival;
st->cfg->scale.fval = fval;
}
}
mutex_unlock(&st->mutex);
if (ret < 0)
return ret;
return count;
}
static ssize_t nvs_attr_self_test_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct nvs_state *st = dev_to_nvs_state(dev);
ssize_t ret = -EINVAL;
mutex_lock(&st->mutex);
if (st->shutdown || st->suspend || (*st->fn_dev->sts &
(NVS_STS_SHUTDOWN | NVS_STS_SUSPEND)))
ret = -EPERM;
else if (st->fn_dev->self_test)
ret = st->fn_dev->self_test(st->client, st->cfg->snsr_id, buf);
mutex_unlock(&st->mutex);
return ret;
}
static ssize_t nvs_attr_thresh_hi_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct nvs_state *st = dev_to_nvs_state(dev);
return snprintf(buf, PAGE_SIZE, "%d\n", st->cfg->thresh_hi);
}
static ssize_t nvs_attr_thresh_hi_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct nvs_state *st = dev_to_nvs_state(dev);
int thresh_hi;
int ret = 1;
if (kstrtoint(buf, 0, &thresh_hi))
return -EINVAL;
mutex_lock(&st->mutex);
if (st->shutdown || st->suspend || (*st->fn_dev->sts &
(NVS_STS_SHUTDOWN | NVS_STS_SUSPEND)))
ret = -EPERM;
else if (st->fn_dev->thresh_hi)
ret = st->fn_dev->thresh_hi(st->client, st->cfg->snsr_id,
thresh_hi);
if (*st->fn_dev->sts & NVS_STS_SPEW_MSG)
dev_info(st->dev, "%s %s %d->%d ret=%d\n",
st->cfg->name, __func__,
st->cfg->thresh_hi, thresh_hi, ret);
if (ret > 0)
st->cfg->thresh_hi = thresh_hi;
mutex_unlock(&st->mutex);
if (ret < 0)
return ret;
return count;
}
static ssize_t nvs_attr_thresh_lo_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct nvs_state *st = dev_to_nvs_state(dev);
return snprintf(buf, PAGE_SIZE, "%d\n", st->cfg->thresh_lo);
}
static ssize_t nvs_attr_thresh_lo_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct nvs_state *st = dev_to_nvs_state(dev);
int thresh_lo;
int ret = 1;
if (kstrtoint(buf, 0, &thresh_lo))
return -EINVAL;
mutex_lock(&st->mutex);
if (st->shutdown || st->suspend || (*st->fn_dev->sts &
(NVS_STS_SHUTDOWN | NVS_STS_SUSPEND)))
ret = -EPERM;
else if (st->fn_dev->thresh_lo)
ret = st->fn_dev->thresh_lo(st->client, st->cfg->snsr_id,
thresh_lo);
if (*st->fn_dev->sts & NVS_STS_SPEW_MSG)
dev_info(st->dev, "%s %s %d->%d ret=%d\n",
st->cfg->name, __func__,
st->cfg->thresh_lo, thresh_lo, ret);
if (ret > 0)
st->cfg->thresh_lo = thresh_lo;
mutex_unlock(&st->mutex);
if (ret < 0)
return ret;
return count;
}
static ssize_t nvs_attr_us_period_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct nvs_state *st = dev_to_nvs_state(dev);
unsigned int period_us;
int ret;
if (st->fn_dev->enable == nvs_fn_dev_enable) {
ret = st->enabled;
} else {
ret = st->fn_dev->enable(st->client,
st->cfg->snsr_id, -1);
if (ret < 0)
return ret;
}
if (ret) {
if (st->fn_dev->batch_read) {
ret = st->fn_dev->batch_read(st->client,
st->cfg->snsr_id,
&period_us, NULL);
if (ret < 0)
return ret;
} else {
period_us = st->us_period;
}
} else {
period_us = st->cfg->delay_us_min;
}
return snprintf(buf, PAGE_SIZE, "%u\n", period_us);
}
static ssize_t nvs_attr_us_period_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct nvs_state *st = dev_to_nvs_state(dev);
unsigned int us_period;
int ret = 0;
if (kstrtouint(buf, 0, &us_period))
return -EINVAL;
mutex_lock(&st->mutex);
if (st->shutdown || st->suspend || (*st->fn_dev->sts &
(NVS_STS_SHUTDOWN | NVS_STS_SUSPEND))) {
ret = -EPERM;
} else {
if (!st->one_shot) {
if (us_period < st->cfg->delay_us_min)
us_period = st->cfg->delay_us_min;
if (st->cfg->delay_us_max && (us_period >
st->cfg->delay_us_max))
us_period = st->cfg->delay_us_max;
}
if (st->fn_dev->batch) {
ret = st->fn_dev->batch(st->client, st->cfg->snsr_id,
0, us_period, st->us_timeout);
} else {
if (st->us_timeout)
ret = -EINVAL;
}
if (*st->fn_dev->sts & NVS_STS_SPEW_MSG)
dev_info(st->dev, "%s %s %u->%u ret=%d\n",
st->cfg->name, __func__,
st->us_period, us_period, ret);
if (!ret)
st->us_period = us_period;
}
mutex_unlock(&st->mutex);
if (ret < 0)
return ret;
return count;
}
static ssize_t nvs_attr_us_timeout_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct nvs_state *st = dev_to_nvs_state(dev);
unsigned int timeout_us;
int ret;
if (st->fn_dev->enable == nvs_fn_dev_enable) {
ret = st->enabled;
} else {
ret = st->fn_dev->enable(st->client,
st->cfg->snsr_id, -1);
if (ret < 0)
return ret;
}
if (ret) {
if (st->fn_dev->batch_read) {
ret = st->fn_dev->batch_read(st->client,
st->cfg->snsr_id,
NULL, &timeout_us);
if (ret < 0)
return ret;
} else {
timeout_us = st->us_timeout;
}
} else {
timeout_us = st->cfg->delay_us_max;
}
return snprintf(buf, PAGE_SIZE, "%u\n", timeout_us);
}
static ssize_t nvs_attr_us_timeout_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct nvs_state *st = dev_to_nvs_state(dev);
unsigned int us_timeout;
if (kstrtouint(buf, 0, &us_timeout))
return -EINVAL;
if (*st->fn_dev->sts & NVS_STS_SPEW_MSG)
dev_info(st->dev, "%s %s %u->%u\n",
st->cfg->name, __func__, st->us_timeout, us_timeout);
st->us_timeout = us_timeout;
return count;
}
static ssize_t nvs_attr_uuid_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nvs_state *st = dev_to_nvs_state(dev);
ssize_t t = 0;
unsigned int i;
for (i = 0; i < 15; i++)
t += snprintf(buf + t, PAGE_SIZE - t, "%02X ",
st->cfg->uuid[i]);
t += snprintf(buf + t, PAGE_SIZE - t, "%02X\n", st->cfg->uuid[i]);
return t;
}
static ssize_t nvs_attr_vendor_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nvs_state *st = dev_to_nvs_state(dev);
return snprintf(buf, PAGE_SIZE, "%s\n", st->cfg->vendor);
}
static ssize_t nvs_attr_version_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nvs_state *st = dev_to_nvs_state(dev);
return snprintf(buf, PAGE_SIZE, "%d\n", st->cfg->version);
}
static DEVICE_ATTR(enable, S_IRUGO | S_IWUSR | S_IWGRP,
nvs_attr_enable_show, nvs_attr_enable_store);
static DEVICE_ATTR(fifo_max_event_count, S_IRUGO,
nvs_attr_fmec_show, NULL);
static DEVICE_ATTR(fifo_reserved_event_count, S_IRUGO,
nvs_attr_frec_show, NULL);
static DEVICE_ATTR(flags, S_IRUGO | S_IWUSR | S_IWGRP,
nvs_attr_flags_show, nvs_attr_flags_store);
static DEVICE_ATTR(flush, S_IRUGO | S_IWUSR | S_IWGRP,
nvs_attr_flush_show, nvs_attr_flush_store);
/* matrix permissions are read only - writes are for debug */
static DEVICE_ATTR(matrix, S_IRUGO,
nvs_attr_matrix_show, nvs_attr_matrix_store);
static DEVICE_ATTR(milliamp, S_IRUGO,
nvs_attr_milliamp_show, NULL);
static DEVICE_ATTR(name, S_IRUGO,
nvs_attr_name_show, NULL);
static DEVICE_ATTR(nvs, S_IRUGO | S_IWUSR | S_IWGRP,
nvs_attr_nvs_show, nvs_attr_nvs_store);
static DEVICE_ATTR(part, S_IRUGO,
nvs_attr_part_show, NULL);
static DEVICE_ATTR(range_max, S_IRUGO | S_IWUSR | S_IWGRP,
nvs_attr_range_max_show, nvs_attr_range_max_store);
static DEVICE_ATTR(resolution, S_IRUGO | S_IWUSR | S_IWGRP,
nvs_attr_resolution_show, nvs_attr_resolution_store);
static DEVICE_ATTR(self_test, S_IRUGO,
nvs_attr_self_test_show, NULL);
static DEVICE_ATTR(thresh_hi, S_IRUGO | S_IWUSR | S_IWGRP,
nvs_attr_thresh_hi_show, nvs_attr_thresh_hi_store);
static DEVICE_ATTR(thresh_lo, S_IRUGO | S_IWUSR | S_IWGRP,
nvs_attr_thresh_lo_show, nvs_attr_thresh_lo_store);
static DEVICE_ATTR(us_period, S_IRUGO | S_IWUSR | S_IWGRP,
nvs_attr_us_period_show, nvs_attr_us_period_store);
static DEVICE_ATTR(us_timeout, S_IRUGO | S_IWUSR | S_IWGRP,
nvs_attr_us_timeout_show, nvs_attr_us_timeout_store);
static DEVICE_ATTR(uuid, S_IRUGO,
nvs_attr_uuid_show, NULL);
static DEVICE_ATTR(vendor, S_IRUGO,
nvs_attr_vendor_show, NULL);
static DEVICE_ATTR(version, S_IRUGO,
nvs_attr_version_show, NULL);
/* commented attributes are just FYI and dynamically created */
static struct attribute *nvs_attrs[] = {
/* &dev_attr_ch, */
&dev_attr_enable.attr,
&dev_attr_fifo_max_event_count.attr,
&dev_attr_fifo_reserved_event_count.attr,
&dev_attr_flags.attr,
&dev_attr_flush.attr,
&dev_attr_matrix.attr,
&dev_attr_milliamp.attr,
&dev_attr_name.attr,
&dev_attr_nvs.attr,
/* &dev_attr_offset.attr, */
&dev_attr_part.attr,
&dev_attr_range_max.attr,
&dev_attr_resolution.attr,
/* &dev_attr_scale.attr, */
&dev_attr_self_test.attr,
&dev_attr_thresh_hi.attr,
&dev_attr_thresh_lo.attr,
&dev_attr_us_period.attr,
&dev_attr_us_timeout.attr,
&dev_attr_uuid.attr,
&dev_attr_vendor.attr,
&dev_attr_version.attr,
NULL
};
static int nvs_attr_rm(struct nvs_state *st, struct attribute *attr)
{
unsigned int i;
unsigned int n;
n = ARRAY_SIZE(nvs_attrs) - 1;
for (i = 0; i < n; i++) {
if (!st->attrs[i])
return -EINVAL;
if (st->attrs[i] == attr) {
for (; i < n; i++)
st->attrs[i] = st->attrs[i + 1];
return 0;
}
}
return -EINVAL;
}
static int nvs_init_sysfs(struct nvs_state *st)
{
bool matrix = false;
unsigned int i;
unsigned int j;
unsigned int k;
unsigned int n;
i = st->cfg->snsr_id; /* st->cfg->snsr_id will be >= 0 */
/* Here we have two ways to identify the sensor:
* 1. By name which we try to match to
* 2. By sensor ID (st->cfg->snsr_id). This method is typically used
* by the sensor hub so that name strings don't have to be passed
* and because there are multiple sensors the sensor hub driver has
* to track via the sensor ID.
*/
if (st->cfg->name) {
/* if st->cfg->name exists then we use that */
for (i = 0; i < ARRAY_SIZE(nvs_snsr_names); i++) {
if (!strcmp(st->cfg->name, nvs_snsr_names[i]))
break;
}
if (i >= ARRAY_SIZE(nvs_snsr_names))
i = 0; /* use generic sensor name */
} else {
/* no st->cfg->name - use st->cfg->snsr_id to specify device */
if (i >= ARRAY_SIZE(nvs_snsr_names))
i = 0; /* use generic sensor name */
st->cfg->name = nvs_snsr_names[i];
}
st->snsr_type = i;
/* count attributes */
if (st->cfg->ch_n_max)
n = (st->cfg->ch_n_max << 1); /* scales and offsets */
else
n = 2; /* scale and offset */
/* allocate memory for scale(s) and offset(s) attributes */
st->attr_so = kzalloc(n * sizeof(st->attr_so[0]), GFP_KERNEL);
if (!st->attr_so)
return -ENOMEM;
st->attr_so_n = n;
/* allocate memory for channel attributes */
st->attr_ch = kzalloc(st->ch_n * sizeof(st->attr_ch[0]), GFP_KERNEL);
if (!st->attr_so)
return -ENOMEM;
n += st->ch_n;
n += ARRAY_SIZE(nvs_attrs);
/* subtract the ones that will be removed */
if (!st->fn_dev->enable)
n--;
if ((st->special || st->one_shot) && !st->fn_dev->batch)
n -= 2;
if ((st->special || st->one_shot) && !st->fn_dev->flush)
n--;
if ((!st->cfg->thresh_lo) && (!st->cfg->thresh_hi) &&
(!st->fn_dev->thresh_lo) && (!st->fn_dev->thresh_hi))
n -= 2;
if (!st->fn_dev->self_test)
n--;
/* test if matrix data */
for (i = 0; i < ARRAY_SIZE(st->cfg->matrix); i++) {
if (st->cfg->matrix[i]) {
matrix = true;
break;
}
}
if (!matrix)
n--;
/* allocate memory */
if (n < ARRAY_SIZE(nvs_attrs))
n = ARRAY_SIZE(nvs_attrs);
st->attrs = kzalloc(n * sizeof(st->attrs[0]), GFP_KERNEL);
if (!st->attrs)
return -ENOMEM;
memcpy(st->attrs, nvs_attrs, n * sizeof(st->attrs[0]));
/* remove unused attributes */
if (!st->fn_dev->enable)
nvs_attr_rm(st, &dev_attr_enable.attr);
if ((st->special || st->one_shot) && !st->fn_dev->batch) {
nvs_attr_rm(st, &dev_attr_us_period.attr);
nvs_attr_rm(st, &dev_attr_us_timeout.attr);
}
if ((st->special || st->one_shot) && !st->fn_dev->flush)
nvs_attr_rm(st, &dev_attr_flush.attr);
if ((!st->cfg->thresh_lo) && (!st->cfg->thresh_hi) &&
(!st->fn_dev->thresh_lo) && (!st->fn_dev->thresh_hi)) {
nvs_attr_rm(st, &dev_attr_thresh_lo.attr);
nvs_attr_rm(st, &dev_attr_thresh_hi.attr);
}
if (!st->fn_dev->self_test)
nvs_attr_rm(st, &dev_attr_self_test.attr);
if (!matrix)
nvs_attr_rm(st, &dev_attr_matrix.attr);
/* find end of list */
for (i = 0; i < ARRAY_SIZE(nvs_attrs); i++) {
if (!st->attrs[i])
break;
}
/* create scale and offset attributes */
n = st->attr_so_n >> 1;
for (j = 0; j < n; j++) {
k = j << 1;
if (st->cfg->ch_n_max) {
st->attr_so[k].channel = j;
st->attr_so[k].dev_attr.attr.name =
kasprintf(GFP_KERNEL, "scale%u", j);
} else {
st->attr_so[k].channel = -1;
st->attr_so[k].dev_attr.attr.name =
kasprintf(GFP_KERNEL, "scale");
}
st->attr_so[k].dev_attr.attr.mode =
S_IRUGO | S_IWUSR | S_IWGRP;
st->attr_so[k].dev_attr.show = nvs_attr_scale_show;
st->attr_so[k].dev_attr.store = nvs_attr_scale_store;
st->attrs[i] = &st->attr_so[k].dev_attr.attr;
i++;
}
for (j = 0; j < n; j++) {
k = (j << 1) + 1;
if (st->cfg->ch_n_max) {
st->attr_so[k].channel = j;
st->attr_so[k].dev_attr.attr.name =
kasprintf(GFP_KERNEL, "offset%u", j);
} else {
st->attr_so[k].channel = -1;
st->attr_so[k].dev_attr.attr.name =
kasprintf(GFP_KERNEL, "offset");
}
st->attr_so[k].dev_attr.attr.mode =
S_IRUGO | S_IWUSR | S_IWGRP;
st->attr_so[k].dev_attr.show = nvs_attr_offset_show;
st->attr_so[k].dev_attr.store = nvs_attr_offset_store;
st->attrs[i] = &st->attr_so[k].dev_attr.attr;
i++;
}
/* create channel attributes */
n = st->ch_n - 1; /* - timestamp */
for (j = 0; j < n; j++) {
st->attr_ch[j].channel = j;
if (st->buf_ch[j].sign)
st->attr_ch[j].dev_attr.attr.name =
kasprintf(GFP_KERNEL,
"ch%u_%u_s_%u",
j, st->buf_ch[j].buf_i,
st->buf_ch[j].byte_n);
else
st->attr_ch[j].dev_attr.attr.name =
kasprintf(GFP_KERNEL,
"ch%u_%u_u_%u",
j, st->buf_ch[j].buf_i,
st->buf_ch[j].byte_n);
st->attr_ch[j].dev_attr.attr.mode =
S_IRUGO | S_IWUSR | S_IWGRP;
st->attr_ch[j].dev_attr.show = nvs_attr_ch_show;
st->attr_ch[j].dev_attr.store = nvs_attr_ch_store;
st->attrs[i] = &st->attr_ch[j].dev_attr.attr;
i++;
}
/* timestamp */
st->attr_ch[j].channel = n;
st->attr_ch[j].dev_attr.attr.name = kasprintf(GFP_KERNEL,
"ch%u_%u_t_%u", j,
st->buf_ch[j].buf_i,
st->buf_ch[j].byte_n);
st->attr_ch[j].dev_attr.attr.mode = S_IRUGO;
st->attr_ch[j].dev_attr.show = nvs_attr_ch_show;
st->attr_ch[j].dev_attr.store = NULL;
st->attrs[i] = &st->attr_ch[j].dev_attr.attr;
i++;
for (j = 0; j < i; j++) {
sysfs_attr_init(st->attrs[j]);
}
st->attrs[i] = NULL;
st->attr_grp.attrs = st->attrs;
return 0;
}
static int nvs_init_buf(struct nvs_state *st)
{
unsigned int buf_n;
unsigned int i;
unsigned int n;
n = st->cfg->ch_n;
buf_n = abs(st->cfg->ch_sz);
buf_n *= n;
if (st->cfg->snsr_data_n > buf_n)
/* extra channel */
n++;
n++; /* timestamp */
st->ch_n = n;
/* allocate buffer index memory */
st->buf_ch = kzalloc(sizeof(st->buf_ch[0]) * st->ch_n, GFP_KERNEL);
if (!st->buf_ch)
return -ENOMEM;
/* data channels */
for (i = 0; i < st->cfg->ch_n; i++) {
if (st->cfg->ch_sz < 0) {
st->buf_ch[i].sign = true;
st->buf_ch[i].byte_n = abs(st->cfg->ch_sz);
} else {
st->buf_ch[i].sign = false;
st->buf_ch[i].byte_n = st->cfg->ch_sz;
}
}
if (st->cfg->snsr_data_n > buf_n) {
/* extra channel (status) */
st->buf_ch[i].sign = false;
st->buf_ch[i].byte_n = st->cfg->snsr_data_n - buf_n;
buf_n += st->buf_ch[i].byte_n;
i++;
}
/* timestamp */
st->buf_ch[i].sign = false;
st->buf_ch[i].byte_n = sizeof(nvs_timestamp());
buf_n += st->buf_ch[i].byte_n;
/* allocate buffer memory */
st->buf = kzalloc(buf_n, GFP_KERNEL);
if (!st->buf)
return -ENOMEM;
/* buffer indexes */
buf_n = 0;
for (i = 1; i < st->ch_n; i++) {
buf_n += st->buf_ch[i - 1].byte_n;
st->buf_ch[i].buf_i = buf_n;
}
return 0;
}
int nvs_suspend(void *handle)
{
struct nvs_state *st = (struct nvs_state *)handle;
int ret = 0;
if (st == NULL)
return 0;
mutex_lock(&st->mutex);
st->suspend = true;
if (!(st->cfg->flags & SENSOR_FLAG_WAKE_UP)) {
ret = st->fn_dev->enable(st->client, st->cfg->snsr_id, -1);
if (ret >= 0)
st->enabled = ret;
if (ret > 0)
ret = st->fn_dev->enable(st->client,
st->cfg->snsr_id, 0);
else
ret = 0;
}
mutex_unlock(&st->mutex);
return ret;
}
int nvs_resume(void *handle)
{
struct nvs_state *st = (struct nvs_state *)handle;
int ret = 0;
if (st == NULL)
return 0;
mutex_lock(&st->mutex);
if (!(st->cfg->flags & SENSOR_FLAG_WAKE_UP)) {
if (st->enabled)
ret = st->fn_dev->enable(st->client,
st->cfg->snsr_id, st->enabled);
}
st->suspend = false;
mutex_unlock(&st->mutex);
return ret;
}
static void nvs_remove_sysfs(struct nvs_state *st)
{
unsigned int i;
kfree(st->attrs);
if (st->attr_so) {
for (i = 0; i < st->attr_so_n; i++)
kfree((void *)st->attr_so[i].dev_attr.attr.name);
kfree(st->attr_so);
st->attr_so_n = 0;
}
if (st->attr_ch) {
for (i = 0; i < st->ch_n; i++)
kfree((void *)st->attr_ch[i].dev_attr.attr.name);
kfree(st->attr_ch);
st->ch_n = 0;
}
}
static void nvs_remove_buf(struct nvs_state *st)
{
kfree(st->buf_ch);
kfree(st->buf);
}
void nvs_shutdown(void *handle)
{
struct nvs_state *st = (struct nvs_state *)handle;
int ret;
if (st == NULL)
return;
mutex_lock(&st->mutex);
st->shutdown = true;
ret = st->fn_dev->enable(st->client, st->cfg->snsr_id, -1);
if (ret > 0)
st->fn_dev->enable(st->client, st->cfg->snsr_id, 0);
mutex_unlock(&st->mutex);
}
int nvs_remove(void *handle)
{
struct nvs_state *st = (struct nvs_state *)handle;
if (st == NULL)
return 0;
st->kif_fn->remove(st);
nvs_remove_sysfs(st);
nvs_remove_buf(st);
if (st->cfg->name)
dev_info(st->dev, "%s %s snsr_id=%d\n",
__func__, st->cfg->name, st->cfg->snsr_id);
else
dev_info(st->dev, "%s snsr_id=%d\n",
__func__, st->cfg->snsr_id);
kfree(st);
return 0;
}
static int nvs_init(struct nvs_state *st)
{
int ret;
mutex_init(&st->mutex);
nvs_report_mode(st);
ret = nvs_init_buf(st);
if (ret) {
dev_err(st->dev, "%s nvs_init_buf ERR=%d\n", __func__, ret);
return ret;
}
ret = nvs_init_sysfs(st);
if (ret) {
dev_err(st->dev, "%s nvs_init_sysfs ERR=%d\n", __func__, ret);
return ret;
}
ret = st->kif_fn->init(st);
if (ret) {
dev_err(st->dev, "%s nvs_init_kif ERR=%d\n", __func__, ret);
return ret;
}
return 0;
}
int nvs_probe(void **handle, void *dev_client, struct device *dev,
struct nvs_fn_dev *fn_dev, struct sensor_cfg *snsr_cfg,
struct nvs_kif_fn *kif_fn, unsigned int kif_st_n)
{
struct nvs_state *st;
unsigned int n;
int ret;
if (kif_fn) {
dev_info(dev, "%s (%s)\n", __func__, kif_fn->name);
} else {
dev_err(dev, "%s ERR: kif_fn NULL\n", __func__);
return -ENODEV;
}
if (!snsr_cfg) {
dev_err(dev, "%s ERR: snsr_cfg NULL\n", __func__);
return -ENODEV;
}
if (snsr_cfg->snsr_id < 0) {
/* device has been disabled */
if (snsr_cfg->name)
dev_info(dev, "%s %s disabled\n",
__func__, snsr_cfg->name);
else
dev_info(dev, "%s device disabled\n", __func__);
return -ENODEV;
}
n = sizeof(*st);
if (kif_st_n) {
n = ALIGN(n, NVS_ALIGN);
n += kif_st_n;
}
n += NVS_ALIGN - 1;
st = kzalloc(n, GFP_KERNEL);
if (!st) {
dev_err(dev, "%s kzalloc ERR\n", __func__);
return -ENOMEM;
}
dev_set_drvdata(dev, st);
st->kif_fn = kif_fn;
st->client = dev_client;
st->dev = dev;
st->fn_dev = fn_dev;
/* protect ourselves from NULL pointers */
if (st->fn_dev->enable == NULL)
/* hook a dummy benign function */
st->fn_dev->enable = nvs_fn_dev_enable;
if (st->fn_dev->sts == NULL)
st->fn_dev->sts = &st->fn_dev_sts;
if (st->fn_dev->errs == NULL)
st->fn_dev->errs = &st->fn_dev_errs;
/* all other pointers are tested for NULL in this code */
st->cfg = snsr_cfg;
ret = nvs_init(st);
if (ret) {
if (st->cfg->name)
dev_err(st->dev, "%s %s snsr_id=%d EXIT ERR=%d\n",
__func__, st->cfg->name,
st->cfg->snsr_id, ret);
else
dev_err(st->dev, "%s snsr_id=%d EXIT ERR=%d\n",
__func__, st->cfg->snsr_id, ret);
nvs_remove(st);
} else {
*handle = st;
}
dev_info(st->dev, "%s (%s) %s done\n",
__func__, kif_fn->name, st->cfg->name);
return ret;
}
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("NVidia Sensor sysfs module");
MODULE_AUTHOR("NVIDIA Corporation");