forked from rrcarlosr/Jetpack
2493 lines
71 KiB
C
2493 lines
71 KiB
C
#include <common.h>
|
|
|
|
#ifdef CONFIG_SANDBOX
|
|
#define DEBUG
|
|
#endif
|
|
|
|
#include <malloc.h>
|
|
#include <asm/io.h>
|
|
|
|
#ifdef DEBUG
|
|
#if __STD_C
|
|
static void malloc_update_mallinfo (void);
|
|
void malloc_stats (void);
|
|
#else
|
|
static void malloc_update_mallinfo ();
|
|
void malloc_stats();
|
|
#endif
|
|
#endif /* DEBUG */
|
|
|
|
DECLARE_GLOBAL_DATA_PTR;
|
|
|
|
/*
|
|
Emulation of sbrk for WIN32
|
|
All code within the ifdef WIN32 is untested by me.
|
|
|
|
Thanks to Martin Fong and others for supplying this.
|
|
*/
|
|
|
|
|
|
#ifdef WIN32
|
|
|
|
#define AlignPage(add) (((add) + (malloc_getpagesize-1)) & \
|
|
~(malloc_getpagesize-1))
|
|
#define AlignPage64K(add) (((add) + (0x10000 - 1)) & ~(0x10000 - 1))
|
|
|
|
/* resrve 64MB to insure large contiguous space */
|
|
#define RESERVED_SIZE (1024*1024*64)
|
|
#define NEXT_SIZE (2048*1024)
|
|
#define TOP_MEMORY ((unsigned long)2*1024*1024*1024)
|
|
|
|
struct GmListElement;
|
|
typedef struct GmListElement GmListElement;
|
|
|
|
struct GmListElement
|
|
{
|
|
GmListElement* next;
|
|
void* base;
|
|
};
|
|
|
|
static GmListElement* head = 0;
|
|
static unsigned int gNextAddress = 0;
|
|
static unsigned int gAddressBase = 0;
|
|
static unsigned int gAllocatedSize = 0;
|
|
|
|
static
|
|
GmListElement* makeGmListElement (void* bas)
|
|
{
|
|
GmListElement* this;
|
|
this = (GmListElement*)(void*)LocalAlloc (0, sizeof (GmListElement));
|
|
assert (this);
|
|
if (this)
|
|
{
|
|
this->base = bas;
|
|
this->next = head;
|
|
head = this;
|
|
}
|
|
return this;
|
|
}
|
|
|
|
void gcleanup ()
|
|
{
|
|
BOOL rval;
|
|
assert ( (head == NULL) || (head->base == (void*)gAddressBase));
|
|
if (gAddressBase && (gNextAddress - gAddressBase))
|
|
{
|
|
rval = VirtualFree ((void*)gAddressBase,
|
|
gNextAddress - gAddressBase,
|
|
MEM_DECOMMIT);
|
|
assert (rval);
|
|
}
|
|
while (head)
|
|
{
|
|
GmListElement* next = head->next;
|
|
rval = VirtualFree (head->base, 0, MEM_RELEASE);
|
|
assert (rval);
|
|
LocalFree (head);
|
|
head = next;
|
|
}
|
|
}
|
|
|
|
static
|
|
void* findRegion (void* start_address, unsigned long size)
|
|
{
|
|
MEMORY_BASIC_INFORMATION info;
|
|
if (size >= TOP_MEMORY) return NULL;
|
|
|
|
while ((unsigned long)start_address + size < TOP_MEMORY)
|
|
{
|
|
VirtualQuery (start_address, &info, sizeof (info));
|
|
if ((info.State == MEM_FREE) && (info.RegionSize >= size))
|
|
return start_address;
|
|
else
|
|
{
|
|
/* Requested region is not available so see if the */
|
|
/* next region is available. Set 'start_address' */
|
|
/* to the next region and call 'VirtualQuery()' */
|
|
/* again. */
|
|
|
|
start_address = (char*)info.BaseAddress + info.RegionSize;
|
|
|
|
/* Make sure we start looking for the next region */
|
|
/* on the *next* 64K boundary. Otherwise, even if */
|
|
/* the new region is free according to */
|
|
/* 'VirtualQuery()', the subsequent call to */
|
|
/* 'VirtualAlloc()' (which follows the call to */
|
|
/* this routine in 'wsbrk()') will round *down* */
|
|
/* the requested address to a 64K boundary which */
|
|
/* we already know is an address in the */
|
|
/* unavailable region. Thus, the subsequent call */
|
|
/* to 'VirtualAlloc()' will fail and bring us back */
|
|
/* here, causing us to go into an infinite loop. */
|
|
|
|
start_address =
|
|
(void *) AlignPage64K((unsigned long) start_address);
|
|
}
|
|
}
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
void* wsbrk (long size)
|
|
{
|
|
void* tmp;
|
|
if (size > 0)
|
|
{
|
|
if (gAddressBase == 0)
|
|
{
|
|
gAllocatedSize = max (RESERVED_SIZE, AlignPage (size));
|
|
gNextAddress = gAddressBase =
|
|
(unsigned int)VirtualAlloc (NULL, gAllocatedSize,
|
|
MEM_RESERVE, PAGE_NOACCESS);
|
|
} else if (AlignPage (gNextAddress + size) > (gAddressBase +
|
|
gAllocatedSize))
|
|
{
|
|
long new_size = max (NEXT_SIZE, AlignPage (size));
|
|
void* new_address = (void*)(gAddressBase+gAllocatedSize);
|
|
do
|
|
{
|
|
new_address = findRegion (new_address, new_size);
|
|
|
|
if (new_address == 0)
|
|
return (void*)-1;
|
|
|
|
gAddressBase = gNextAddress =
|
|
(unsigned int)VirtualAlloc (new_address, new_size,
|
|
MEM_RESERVE, PAGE_NOACCESS);
|
|
/* repeat in case of race condition */
|
|
/* The region that we found has been snagged */
|
|
/* by another thread */
|
|
}
|
|
while (gAddressBase == 0);
|
|
|
|
assert (new_address == (void*)gAddressBase);
|
|
|
|
gAllocatedSize = new_size;
|
|
|
|
if (!makeGmListElement ((void*)gAddressBase))
|
|
return (void*)-1;
|
|
}
|
|
if ((size + gNextAddress) > AlignPage (gNextAddress))
|
|
{
|
|
void* res;
|
|
res = VirtualAlloc ((void*)AlignPage (gNextAddress),
|
|
(size + gNextAddress -
|
|
AlignPage (gNextAddress)),
|
|
MEM_COMMIT, PAGE_READWRITE);
|
|
if (res == 0)
|
|
return (void*)-1;
|
|
}
|
|
tmp = (void*)gNextAddress;
|
|
gNextAddress = (unsigned int)tmp + size;
|
|
return tmp;
|
|
}
|
|
else if (size < 0)
|
|
{
|
|
unsigned int alignedGoal = AlignPage (gNextAddress + size);
|
|
/* Trim by releasing the virtual memory */
|
|
if (alignedGoal >= gAddressBase)
|
|
{
|
|
VirtualFree ((void*)alignedGoal, gNextAddress - alignedGoal,
|
|
MEM_DECOMMIT);
|
|
gNextAddress = gNextAddress + size;
|
|
return (void*)gNextAddress;
|
|
}
|
|
else
|
|
{
|
|
VirtualFree ((void*)gAddressBase, gNextAddress - gAddressBase,
|
|
MEM_DECOMMIT);
|
|
gNextAddress = gAddressBase;
|
|
return (void*)-1;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
return (void*)gNextAddress;
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*
|
|
Type declarations
|
|
*/
|
|
|
|
|
|
struct malloc_chunk
|
|
{
|
|
INTERNAL_SIZE_T prev_size; /* Size of previous chunk (if free). */
|
|
INTERNAL_SIZE_T size; /* Size in bytes, including overhead. */
|
|
struct malloc_chunk* fd; /* double links -- used only if free. */
|
|
struct malloc_chunk* bk;
|
|
} __attribute__((__may_alias__)) ;
|
|
|
|
typedef struct malloc_chunk* mchunkptr;
|
|
|
|
/*
|
|
|
|
malloc_chunk details:
|
|
|
|
(The following includes lightly edited explanations by Colin Plumb.)
|
|
|
|
Chunks of memory are maintained using a `boundary tag' method as
|
|
described in e.g., Knuth or Standish. (See the paper by Paul
|
|
Wilson ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a
|
|
survey of such techniques.) Sizes of free chunks are stored both
|
|
in the front of each chunk and at the end. This makes
|
|
consolidating fragmented chunks into bigger chunks very fast. The
|
|
size fields also hold bits representing whether chunks are free or
|
|
in use.
|
|
|
|
An allocated chunk looks like this:
|
|
|
|
|
|
chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
|
| Size of previous chunk, if allocated | |
|
|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
|
| Size of chunk, in bytes |P|
|
|
mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
|
| User data starts here... .
|
|
. .
|
|
. (malloc_usable_space() bytes) .
|
|
. |
|
|
nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
|
| Size of chunk |
|
|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
|
|
|
|
|
Where "chunk" is the front of the chunk for the purpose of most of
|
|
the malloc code, but "mem" is the pointer that is returned to the
|
|
user. "Nextchunk" is the beginning of the next contiguous chunk.
|
|
|
|
Chunks always begin on even word boundries, so the mem portion
|
|
(which is returned to the user) is also on an even word boundary, and
|
|
thus double-word aligned.
|
|
|
|
Free chunks are stored in circular doubly-linked lists, and look like this:
|
|
|
|
chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
|
| Size of previous chunk |
|
|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
|
`head:' | Size of chunk, in bytes |P|
|
|
mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
|
| Forward pointer to next chunk in list |
|
|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
|
| Back pointer to previous chunk in list |
|
|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
|
| Unused space (may be 0 bytes long) .
|
|
. .
|
|
. |
|
|
nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
|
`foot:' | Size of chunk, in bytes |
|
|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
|
|
|
The P (PREV_INUSE) bit, stored in the unused low-order bit of the
|
|
chunk size (which is always a multiple of two words), is an in-use
|
|
bit for the *previous* chunk. If that bit is *clear*, then the
|
|
word before the current chunk size contains the previous chunk
|
|
size, and can be used to find the front of the previous chunk.
|
|
(The very first chunk allocated always has this bit set,
|
|
preventing access to non-existent (or non-owned) memory.)
|
|
|
|
Note that the `foot' of the current chunk is actually represented
|
|
as the prev_size of the NEXT chunk. (This makes it easier to
|
|
deal with alignments etc).
|
|
|
|
The two exceptions to all this are
|
|
|
|
1. The special chunk `top', which doesn't bother using the
|
|
trailing size field since there is no
|
|
next contiguous chunk that would have to index off it. (After
|
|
initialization, `top' is forced to always exist. If it would
|
|
become less than MINSIZE bytes long, it is replenished via
|
|
malloc_extend_top.)
|
|
|
|
2. Chunks allocated via mmap, which have the second-lowest-order
|
|
bit (IS_MMAPPED) set in their size fields. Because they are
|
|
never merged or traversed from any other chunk, they have no
|
|
foot size or inuse information.
|
|
|
|
Available chunks are kept in any of several places (all declared below):
|
|
|
|
* `av': An array of chunks serving as bin headers for consolidated
|
|
chunks. Each bin is doubly linked. The bins are approximately
|
|
proportionally (log) spaced. There are a lot of these bins
|
|
(128). This may look excessive, but works very well in
|
|
practice. All procedures maintain the invariant that no
|
|
consolidated chunk physically borders another one. Chunks in
|
|
bins are kept in size order, with ties going to the
|
|
approximately least recently used chunk.
|
|
|
|
The chunks in each bin are maintained in decreasing sorted order by
|
|
size. This is irrelevant for the small bins, which all contain
|
|
the same-sized chunks, but facilitates best-fit allocation for
|
|
larger chunks. (These lists are just sequential. Keeping them in
|
|
order almost never requires enough traversal to warrant using
|
|
fancier ordered data structures.) Chunks of the same size are
|
|
linked with the most recently freed at the front, and allocations
|
|
are taken from the back. This results in LRU or FIFO allocation
|
|
order, which tends to give each chunk an equal opportunity to be
|
|
consolidated with adjacent freed chunks, resulting in larger free
|
|
chunks and less fragmentation.
|
|
|
|
* `top': The top-most available chunk (i.e., the one bordering the
|
|
end of available memory) is treated specially. It is never
|
|
included in any bin, is used only if no other chunk is
|
|
available, and is released back to the system if it is very
|
|
large (see M_TRIM_THRESHOLD).
|
|
|
|
* `last_remainder': A bin holding only the remainder of the
|
|
most recently split (non-top) chunk. This bin is checked
|
|
before other non-fitting chunks, so as to provide better
|
|
locality for runs of sequentially allocated chunks.
|
|
|
|
* Implicitly, through the host system's memory mapping tables.
|
|
If supported, requests greater than a threshold are usually
|
|
serviced via calls to mmap, and then later released via munmap.
|
|
|
|
*/
|
|
|
|
/* sizes, alignments */
|
|
|
|
#define SIZE_SZ (sizeof(INTERNAL_SIZE_T))
|
|
#define MALLOC_ALIGNMENT (SIZE_SZ + SIZE_SZ)
|
|
#define MALLOC_ALIGN_MASK (MALLOC_ALIGNMENT - 1)
|
|
#define MINSIZE (sizeof(struct malloc_chunk))
|
|
|
|
/* conversion from malloc headers to user pointers, and back */
|
|
|
|
#define chunk2mem(p) ((Void_t*)((char*)(p) + 2*SIZE_SZ))
|
|
#define mem2chunk(mem) ((mchunkptr)((char*)(mem) - 2*SIZE_SZ))
|
|
|
|
/* pad request bytes into a usable size */
|
|
|
|
#define request2size(req) \
|
|
(((long)((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) < \
|
|
(long)(MINSIZE + MALLOC_ALIGN_MASK)) ? MINSIZE : \
|
|
(((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) & ~(MALLOC_ALIGN_MASK)))
|
|
|
|
/* Check if m has acceptable alignment */
|
|
|
|
#define aligned_OK(m) (((unsigned long)((m)) & (MALLOC_ALIGN_MASK)) == 0)
|
|
|
|
|
|
|
|
|
|
/*
|
|
Physical chunk operations
|
|
*/
|
|
|
|
|
|
/* size field is or'ed with PREV_INUSE when previous adjacent chunk in use */
|
|
|
|
#define PREV_INUSE 0x1
|
|
|
|
/* size field is or'ed with IS_MMAPPED if the chunk was obtained with mmap() */
|
|
|
|
#define IS_MMAPPED 0x2
|
|
|
|
/* Bits to mask off when extracting size */
|
|
|
|
#define SIZE_BITS (PREV_INUSE|IS_MMAPPED)
|
|
|
|
|
|
/* Ptr to next physical malloc_chunk. */
|
|
|
|
#define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->size & ~PREV_INUSE) ))
|
|
|
|
/* Ptr to previous physical malloc_chunk */
|
|
|
|
#define prev_chunk(p)\
|
|
((mchunkptr)( ((char*)(p)) - ((p)->prev_size) ))
|
|
|
|
|
|
/* Treat space at ptr + offset as a chunk */
|
|
|
|
#define chunk_at_offset(p, s) ((mchunkptr)(((char*)(p)) + (s)))
|
|
|
|
|
|
|
|
|
|
/*
|
|
Dealing with use bits
|
|
*/
|
|
|
|
/* extract p's inuse bit */
|
|
|
|
#define inuse(p)\
|
|
((((mchunkptr)(((char*)(p))+((p)->size & ~PREV_INUSE)))->size) & PREV_INUSE)
|
|
|
|
/* extract inuse bit of previous chunk */
|
|
|
|
#define prev_inuse(p) ((p)->size & PREV_INUSE)
|
|
|
|
/* check for mmap()'ed chunk */
|
|
|
|
#define chunk_is_mmapped(p) ((p)->size & IS_MMAPPED)
|
|
|
|
/* set/clear chunk as in use without otherwise disturbing */
|
|
|
|
#define set_inuse(p)\
|
|
((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size |= PREV_INUSE
|
|
|
|
#define clear_inuse(p)\
|
|
((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size &= ~(PREV_INUSE)
|
|
|
|
/* check/set/clear inuse bits in known places */
|
|
|
|
#define inuse_bit_at_offset(p, s)\
|
|
(((mchunkptr)(((char*)(p)) + (s)))->size & PREV_INUSE)
|
|
|
|
#define set_inuse_bit_at_offset(p, s)\
|
|
(((mchunkptr)(((char*)(p)) + (s)))->size |= PREV_INUSE)
|
|
|
|
#define clear_inuse_bit_at_offset(p, s)\
|
|
(((mchunkptr)(((char*)(p)) + (s)))->size &= ~(PREV_INUSE))
|
|
|
|
|
|
|
|
|
|
/*
|
|
Dealing with size fields
|
|
*/
|
|
|
|
/* Get size, ignoring use bits */
|
|
|
|
#define chunksize(p) ((p)->size & ~(SIZE_BITS))
|
|
|
|
/* Set size at head, without disturbing its use bit */
|
|
|
|
#define set_head_size(p, s) ((p)->size = (((p)->size & PREV_INUSE) | (s)))
|
|
|
|
/* Set size/use ignoring previous bits in header */
|
|
|
|
#define set_head(p, s) ((p)->size = (s))
|
|
|
|
/* Set size at footer (only when chunk is not in use) */
|
|
|
|
#define set_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_size = (s))
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
Bins
|
|
|
|
The bins, `av_' are an array of pairs of pointers serving as the
|
|
heads of (initially empty) doubly-linked lists of chunks, laid out
|
|
in a way so that each pair can be treated as if it were in a
|
|
malloc_chunk. (This way, the fd/bk offsets for linking bin heads
|
|
and chunks are the same).
|
|
|
|
Bins for sizes < 512 bytes contain chunks of all the same size, spaced
|
|
8 bytes apart. Larger bins are approximately logarithmically
|
|
spaced. (See the table below.) The `av_' array is never mentioned
|
|
directly in the code, but instead via bin access macros.
|
|
|
|
Bin layout:
|
|
|
|
64 bins of size 8
|
|
32 bins of size 64
|
|
16 bins of size 512
|
|
8 bins of size 4096
|
|
4 bins of size 32768
|
|
2 bins of size 262144
|
|
1 bin of size what's left
|
|
|
|
There is actually a little bit of slop in the numbers in bin_index
|
|
for the sake of speed. This makes no difference elsewhere.
|
|
|
|
The special chunks `top' and `last_remainder' get their own bins,
|
|
(this is implemented via yet more trickery with the av_ array),
|
|
although `top' is never properly linked to its bin since it is
|
|
always handled specially.
|
|
|
|
*/
|
|
|
|
#define NAV 128 /* number of bins */
|
|
|
|
typedef struct malloc_chunk* mbinptr;
|
|
|
|
/* access macros */
|
|
|
|
#define bin_at(i) ((mbinptr)((char*)&(av_[2*(i) + 2]) - 2*SIZE_SZ))
|
|
#define next_bin(b) ((mbinptr)((char*)(b) + 2 * sizeof(mbinptr)))
|
|
#define prev_bin(b) ((mbinptr)((char*)(b) - 2 * sizeof(mbinptr)))
|
|
|
|
/*
|
|
The first 2 bins are never indexed. The corresponding av_ cells are instead
|
|
used for bookkeeping. This is not to save space, but to simplify
|
|
indexing, maintain locality, and avoid some initialization tests.
|
|
*/
|
|
|
|
#define top (av_[2]) /* The topmost chunk */
|
|
#define last_remainder (bin_at(1)) /* remainder from last split */
|
|
|
|
|
|
/*
|
|
Because top initially points to its own bin with initial
|
|
zero size, thus forcing extension on the first malloc request,
|
|
we avoid having any special code in malloc to check whether
|
|
it even exists yet. But we still need to in malloc_extend_top.
|
|
*/
|
|
|
|
#define initial_top ((mchunkptr)(bin_at(0)))
|
|
|
|
/* Helper macro to initialize bins */
|
|
|
|
#define IAV(i) bin_at(i), bin_at(i)
|
|
|
|
static mbinptr av_[NAV * 2 + 2] = {
|
|
NULL, NULL,
|
|
IAV(0), IAV(1), IAV(2), IAV(3), IAV(4), IAV(5), IAV(6), IAV(7),
|
|
IAV(8), IAV(9), IAV(10), IAV(11), IAV(12), IAV(13), IAV(14), IAV(15),
|
|
IAV(16), IAV(17), IAV(18), IAV(19), IAV(20), IAV(21), IAV(22), IAV(23),
|
|
IAV(24), IAV(25), IAV(26), IAV(27), IAV(28), IAV(29), IAV(30), IAV(31),
|
|
IAV(32), IAV(33), IAV(34), IAV(35), IAV(36), IAV(37), IAV(38), IAV(39),
|
|
IAV(40), IAV(41), IAV(42), IAV(43), IAV(44), IAV(45), IAV(46), IAV(47),
|
|
IAV(48), IAV(49), IAV(50), IAV(51), IAV(52), IAV(53), IAV(54), IAV(55),
|
|
IAV(56), IAV(57), IAV(58), IAV(59), IAV(60), IAV(61), IAV(62), IAV(63),
|
|
IAV(64), IAV(65), IAV(66), IAV(67), IAV(68), IAV(69), IAV(70), IAV(71),
|
|
IAV(72), IAV(73), IAV(74), IAV(75), IAV(76), IAV(77), IAV(78), IAV(79),
|
|
IAV(80), IAV(81), IAV(82), IAV(83), IAV(84), IAV(85), IAV(86), IAV(87),
|
|
IAV(88), IAV(89), IAV(90), IAV(91), IAV(92), IAV(93), IAV(94), IAV(95),
|
|
IAV(96), IAV(97), IAV(98), IAV(99), IAV(100), IAV(101), IAV(102), IAV(103),
|
|
IAV(104), IAV(105), IAV(106), IAV(107), IAV(108), IAV(109), IAV(110), IAV(111),
|
|
IAV(112), IAV(113), IAV(114), IAV(115), IAV(116), IAV(117), IAV(118), IAV(119),
|
|
IAV(120), IAV(121), IAV(122), IAV(123), IAV(124), IAV(125), IAV(126), IAV(127)
|
|
};
|
|
|
|
#ifdef CONFIG_NEEDS_MANUAL_RELOC
|
|
static void malloc_bin_reloc(void)
|
|
{
|
|
mbinptr *p = &av_[2];
|
|
size_t i;
|
|
|
|
for (i = 2; i < ARRAY_SIZE(av_); ++i, ++p)
|
|
*p = (mbinptr)((ulong)*p + gd->reloc_off);
|
|
}
|
|
#else
|
|
static inline void malloc_bin_reloc(void) {}
|
|
#endif
|
|
|
|
ulong mem_malloc_start = 0;
|
|
ulong mem_malloc_end = 0;
|
|
ulong mem_malloc_brk = 0;
|
|
|
|
void *sbrk(ptrdiff_t increment)
|
|
{
|
|
ulong old = mem_malloc_brk;
|
|
ulong new = old + increment;
|
|
|
|
/*
|
|
* if we are giving memory back make sure we clear it out since
|
|
* we set MORECORE_CLEARS to 1
|
|
*/
|
|
if (increment < 0)
|
|
memset((void *)new, 0, -increment);
|
|
|
|
if ((new < mem_malloc_start) || (new > mem_malloc_end))
|
|
return (void *)MORECORE_FAILURE;
|
|
|
|
mem_malloc_brk = new;
|
|
|
|
return (void *)old;
|
|
}
|
|
|
|
void mem_malloc_init(ulong start, ulong size)
|
|
{
|
|
mem_malloc_start = start;
|
|
mem_malloc_end = start + size;
|
|
mem_malloc_brk = start;
|
|
|
|
debug("using memory %#lx-%#lx for malloc()\n", mem_malloc_start,
|
|
mem_malloc_end);
|
|
#ifdef CONFIG_SYS_MALLOC_CLEAR_ON_INIT
|
|
memset((void *)mem_malloc_start, 0x0, size);
|
|
#endif
|
|
malloc_bin_reloc();
|
|
}
|
|
|
|
/* field-extraction macros */
|
|
|
|
#define first(b) ((b)->fd)
|
|
#define last(b) ((b)->bk)
|
|
|
|
/*
|
|
Indexing into bins
|
|
*/
|
|
|
|
#define bin_index(sz) \
|
|
(((((unsigned long)(sz)) >> 9) == 0) ? (((unsigned long)(sz)) >> 3): \
|
|
((((unsigned long)(sz)) >> 9) <= 4) ? 56 + (((unsigned long)(sz)) >> 6): \
|
|
((((unsigned long)(sz)) >> 9) <= 20) ? 91 + (((unsigned long)(sz)) >> 9): \
|
|
((((unsigned long)(sz)) >> 9) <= 84) ? 110 + (((unsigned long)(sz)) >> 12): \
|
|
((((unsigned long)(sz)) >> 9) <= 340) ? 119 + (((unsigned long)(sz)) >> 15): \
|
|
((((unsigned long)(sz)) >> 9) <= 1364) ? 124 + (((unsigned long)(sz)) >> 18): \
|
|
126)
|
|
/*
|
|
bins for chunks < 512 are all spaced 8 bytes apart, and hold
|
|
identically sized chunks. This is exploited in malloc.
|
|
*/
|
|
|
|
#define MAX_SMALLBIN 63
|
|
#define MAX_SMALLBIN_SIZE 512
|
|
#define SMALLBIN_WIDTH 8
|
|
|
|
#define smallbin_index(sz) (((unsigned long)(sz)) >> 3)
|
|
|
|
/*
|
|
Requests are `small' if both the corresponding and the next bin are small
|
|
*/
|
|
|
|
#define is_small_request(nb) (nb < MAX_SMALLBIN_SIZE - SMALLBIN_WIDTH)
|
|
|
|
|
|
|
|
/*
|
|
To help compensate for the large number of bins, a one-level index
|
|
structure is used for bin-by-bin searching. `binblocks' is a
|
|
one-word bitvector recording whether groups of BINBLOCKWIDTH bins
|
|
have any (possibly) non-empty bins, so they can be skipped over
|
|
all at once during during traversals. The bits are NOT always
|
|
cleared as soon as all bins in a block are empty, but instead only
|
|
when all are noticed to be empty during traversal in malloc.
|
|
*/
|
|
|
|
#define BINBLOCKWIDTH 4 /* bins per block */
|
|
|
|
#define binblocks_r ((INTERNAL_SIZE_T)av_[1]) /* bitvector of nonempty blocks */
|
|
#define binblocks_w (av_[1])
|
|
|
|
/* bin<->block macros */
|
|
|
|
#define idx2binblock(ix) ((unsigned)1 << (ix / BINBLOCKWIDTH))
|
|
#define mark_binblock(ii) (binblocks_w = (mbinptr)(binblocks_r | idx2binblock(ii)))
|
|
#define clear_binblock(ii) (binblocks_w = (mbinptr)(binblocks_r & ~(idx2binblock(ii))))
|
|
|
|
|
|
|
|
|
|
|
|
/* Other static bookkeeping data */
|
|
|
|
/* variables holding tunable values */
|
|
|
|
static unsigned long trim_threshold = DEFAULT_TRIM_THRESHOLD;
|
|
static unsigned long top_pad = DEFAULT_TOP_PAD;
|
|
static unsigned int n_mmaps_max = DEFAULT_MMAP_MAX;
|
|
static unsigned long mmap_threshold = DEFAULT_MMAP_THRESHOLD;
|
|
|
|
/* The first value returned from sbrk */
|
|
static char* sbrk_base = (char*)(-1);
|
|
|
|
/* The maximum memory obtained from system via sbrk */
|
|
static unsigned long max_sbrked_mem = 0;
|
|
|
|
/* The maximum via either sbrk or mmap */
|
|
static unsigned long max_total_mem = 0;
|
|
|
|
/* internal working copy of mallinfo */
|
|
static struct mallinfo current_mallinfo = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
|
|
|
|
/* The total memory obtained from system via sbrk */
|
|
#define sbrked_mem (current_mallinfo.arena)
|
|
|
|
/* Tracking mmaps */
|
|
|
|
#ifdef DEBUG
|
|
static unsigned int n_mmaps = 0;
|
|
#endif /* DEBUG */
|
|
static unsigned long mmapped_mem = 0;
|
|
#if HAVE_MMAP
|
|
static unsigned int max_n_mmaps = 0;
|
|
static unsigned long max_mmapped_mem = 0;
|
|
#endif
|
|
|
|
|
|
|
|
/*
|
|
Debugging support
|
|
*/
|
|
|
|
#ifdef DEBUG
|
|
|
|
|
|
/*
|
|
These routines make a number of assertions about the states
|
|
of data structures that should be true at all times. If any
|
|
are not true, it's very likely that a user program has somehow
|
|
trashed memory. (It's also possible that there is a coding error
|
|
in malloc. In which case, please report it!)
|
|
*/
|
|
|
|
#if __STD_C
|
|
static void do_check_chunk(mchunkptr p)
|
|
#else
|
|
static void do_check_chunk(p) mchunkptr p;
|
|
#endif
|
|
{
|
|
INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
|
|
|
|
/* No checkable chunk is mmapped */
|
|
assert(!chunk_is_mmapped(p));
|
|
|
|
/* Check for legal address ... */
|
|
assert((char*)p >= sbrk_base);
|
|
if (p != top)
|
|
assert((char*)p + sz <= (char*)top);
|
|
else
|
|
assert((char*)p + sz <= sbrk_base + sbrked_mem);
|
|
|
|
}
|
|
|
|
|
|
#if __STD_C
|
|
static void do_check_free_chunk(mchunkptr p)
|
|
#else
|
|
static void do_check_free_chunk(p) mchunkptr p;
|
|
#endif
|
|
{
|
|
INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
|
|
mchunkptr next = chunk_at_offset(p, sz);
|
|
|
|
do_check_chunk(p);
|
|
|
|
/* Check whether it claims to be free ... */
|
|
assert(!inuse(p));
|
|
|
|
/* Unless a special marker, must have OK fields */
|
|
if ((long)sz >= (long)MINSIZE)
|
|
{
|
|
assert((sz & MALLOC_ALIGN_MASK) == 0);
|
|
assert(aligned_OK(chunk2mem(p)));
|
|
/* ... matching footer field */
|
|
assert(next->prev_size == sz);
|
|
/* ... and is fully consolidated */
|
|
assert(prev_inuse(p));
|
|
assert (next == top || inuse(next));
|
|
|
|
/* ... and has minimally sane links */
|
|
assert(p->fd->bk == p);
|
|
assert(p->bk->fd == p);
|
|
}
|
|
else /* markers are always of size SIZE_SZ */
|
|
assert(sz == SIZE_SZ);
|
|
}
|
|
|
|
#if __STD_C
|
|
static void do_check_inuse_chunk(mchunkptr p)
|
|
#else
|
|
static void do_check_inuse_chunk(p) mchunkptr p;
|
|
#endif
|
|
{
|
|
mchunkptr next = next_chunk(p);
|
|
do_check_chunk(p);
|
|
|
|
/* Check whether it claims to be in use ... */
|
|
assert(inuse(p));
|
|
|
|
/* ... and is surrounded by OK chunks.
|
|
Since more things can be checked with free chunks than inuse ones,
|
|
if an inuse chunk borders them and debug is on, it's worth doing them.
|
|
*/
|
|
if (!prev_inuse(p))
|
|
{
|
|
mchunkptr prv = prev_chunk(p);
|
|
assert(next_chunk(prv) == p);
|
|
do_check_free_chunk(prv);
|
|
}
|
|
if (next == top)
|
|
{
|
|
assert(prev_inuse(next));
|
|
assert(chunksize(next) >= MINSIZE);
|
|
}
|
|
else if (!inuse(next))
|
|
do_check_free_chunk(next);
|
|
|
|
}
|
|
|
|
#if __STD_C
|
|
static void do_check_malloced_chunk(mchunkptr p, INTERNAL_SIZE_T s)
|
|
#else
|
|
static void do_check_malloced_chunk(p, s) mchunkptr p; INTERNAL_SIZE_T s;
|
|
#endif
|
|
{
|
|
INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
|
|
long room = sz - s;
|
|
|
|
do_check_inuse_chunk(p);
|
|
|
|
/* Legal size ... */
|
|
assert((long)sz >= (long)MINSIZE);
|
|
assert((sz & MALLOC_ALIGN_MASK) == 0);
|
|
assert(room >= 0);
|
|
assert(room < (long)MINSIZE);
|
|
|
|
/* ... and alignment */
|
|
assert(aligned_OK(chunk2mem(p)));
|
|
|
|
|
|
/* ... and was allocated at front of an available chunk */
|
|
assert(prev_inuse(p));
|
|
|
|
}
|
|
|
|
|
|
#define check_free_chunk(P) do_check_free_chunk(P)
|
|
#define check_inuse_chunk(P) do_check_inuse_chunk(P)
|
|
#define check_chunk(P) do_check_chunk(P)
|
|
#define check_malloced_chunk(P,N) do_check_malloced_chunk(P,N)
|
|
#else
|
|
#define check_free_chunk(P)
|
|
#define check_inuse_chunk(P)
|
|
#define check_chunk(P)
|
|
#define check_malloced_chunk(P,N)
|
|
#endif
|
|
|
|
|
|
|
|
/*
|
|
Macro-based internal utilities
|
|
*/
|
|
|
|
|
|
/*
|
|
Linking chunks in bin lists.
|
|
Call these only with variables, not arbitrary expressions, as arguments.
|
|
*/
|
|
|
|
/*
|
|
Place chunk p of size s in its bin, in size order,
|
|
putting it ahead of others of same size.
|
|
*/
|
|
|
|
|
|
#define frontlink(P, S, IDX, BK, FD) \
|
|
{ \
|
|
if (S < MAX_SMALLBIN_SIZE) \
|
|
{ \
|
|
IDX = smallbin_index(S); \
|
|
mark_binblock(IDX); \
|
|
BK = bin_at(IDX); \
|
|
FD = BK->fd; \
|
|
P->bk = BK; \
|
|
P->fd = FD; \
|
|
FD->bk = BK->fd = P; \
|
|
} \
|
|
else \
|
|
{ \
|
|
IDX = bin_index(S); \
|
|
BK = bin_at(IDX); \
|
|
FD = BK->fd; \
|
|
if (FD == BK) mark_binblock(IDX); \
|
|
else \
|
|
{ \
|
|
while (FD != BK && S < chunksize(FD)) FD = FD->fd; \
|
|
BK = FD->bk; \
|
|
} \
|
|
P->bk = BK; \
|
|
P->fd = FD; \
|
|
FD->bk = BK->fd = P; \
|
|
} \
|
|
}
|
|
|
|
|
|
/* take a chunk off a list */
|
|
|
|
#define unlink(P, BK, FD) \
|
|
{ \
|
|
BK = P->bk; \
|
|
FD = P->fd; \
|
|
FD->bk = BK; \
|
|
BK->fd = FD; \
|
|
} \
|
|
|
|
/* Place p as the last remainder */
|
|
|
|
#define link_last_remainder(P) \
|
|
{ \
|
|
last_remainder->fd = last_remainder->bk = P; \
|
|
P->fd = P->bk = last_remainder; \
|
|
}
|
|
|
|
/* Clear the last_remainder bin */
|
|
|
|
#define clear_last_remainder \
|
|
(last_remainder->fd = last_remainder->bk = last_remainder)
|
|
|
|
|
|
|
|
|
|
|
|
/* Routines dealing with mmap(). */
|
|
|
|
#if HAVE_MMAP
|
|
|
|
#if __STD_C
|
|
static mchunkptr mmap_chunk(size_t size)
|
|
#else
|
|
static mchunkptr mmap_chunk(size) size_t size;
|
|
#endif
|
|
{
|
|
size_t page_mask = malloc_getpagesize - 1;
|
|
mchunkptr p;
|
|
|
|
#ifndef MAP_ANONYMOUS
|
|
static int fd = -1;
|
|
#endif
|
|
|
|
if(n_mmaps >= n_mmaps_max) return 0; /* too many regions */
|
|
|
|
/* For mmapped chunks, the overhead is one SIZE_SZ unit larger, because
|
|
* there is no following chunk whose prev_size field could be used.
|
|
*/
|
|
size = (size + SIZE_SZ + page_mask) & ~page_mask;
|
|
|
|
#ifdef MAP_ANONYMOUS
|
|
p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE,
|
|
MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
|
|
#else /* !MAP_ANONYMOUS */
|
|
if (fd < 0)
|
|
{
|
|
fd = open("/dev/zero", O_RDWR);
|
|
if(fd < 0) return 0;
|
|
}
|
|
p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, 0);
|
|
#endif
|
|
|
|
if(p == (mchunkptr)-1) return 0;
|
|
|
|
n_mmaps++;
|
|
if (n_mmaps > max_n_mmaps) max_n_mmaps = n_mmaps;
|
|
|
|
/* We demand that eight bytes into a page must be 8-byte aligned. */
|
|
assert(aligned_OK(chunk2mem(p)));
|
|
|
|
/* The offset to the start of the mmapped region is stored
|
|
* in the prev_size field of the chunk; normally it is zero,
|
|
* but that can be changed in memalign().
|
|
*/
|
|
p->prev_size = 0;
|
|
set_head(p, size|IS_MMAPPED);
|
|
|
|
mmapped_mem += size;
|
|
if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem)
|
|
max_mmapped_mem = mmapped_mem;
|
|
if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
|
|
max_total_mem = mmapped_mem + sbrked_mem;
|
|
return p;
|
|
}
|
|
|
|
#if __STD_C
|
|
static void munmap_chunk(mchunkptr p)
|
|
#else
|
|
static void munmap_chunk(p) mchunkptr p;
|
|
#endif
|
|
{
|
|
INTERNAL_SIZE_T size = chunksize(p);
|
|
int ret;
|
|
|
|
assert (chunk_is_mmapped(p));
|
|
assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem));
|
|
assert((n_mmaps > 0));
|
|
assert(((p->prev_size + size) & (malloc_getpagesize-1)) == 0);
|
|
|
|
n_mmaps--;
|
|
mmapped_mem -= (size + p->prev_size);
|
|
|
|
ret = munmap((char *)p - p->prev_size, size + p->prev_size);
|
|
|
|
/* munmap returns non-zero on failure */
|
|
assert(ret == 0);
|
|
}
|
|
|
|
#if HAVE_MREMAP
|
|
|
|
#if __STD_C
|
|
static mchunkptr mremap_chunk(mchunkptr p, size_t new_size)
|
|
#else
|
|
static mchunkptr mremap_chunk(p, new_size) mchunkptr p; size_t new_size;
|
|
#endif
|
|
{
|
|
size_t page_mask = malloc_getpagesize - 1;
|
|
INTERNAL_SIZE_T offset = p->prev_size;
|
|
INTERNAL_SIZE_T size = chunksize(p);
|
|
char *cp;
|
|
|
|
assert (chunk_is_mmapped(p));
|
|
assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem));
|
|
assert((n_mmaps > 0));
|
|
assert(((size + offset) & (malloc_getpagesize-1)) == 0);
|
|
|
|
/* Note the extra SIZE_SZ overhead as in mmap_chunk(). */
|
|
new_size = (new_size + offset + SIZE_SZ + page_mask) & ~page_mask;
|
|
|
|
cp = (char *)mremap((char *)p - offset, size + offset, new_size, 1);
|
|
|
|
if (cp == (char *)-1) return 0;
|
|
|
|
p = (mchunkptr)(cp + offset);
|
|
|
|
assert(aligned_OK(chunk2mem(p)));
|
|
|
|
assert((p->prev_size == offset));
|
|
set_head(p, (new_size - offset)|IS_MMAPPED);
|
|
|
|
mmapped_mem -= size + offset;
|
|
mmapped_mem += new_size;
|
|
if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem)
|
|
max_mmapped_mem = mmapped_mem;
|
|
if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
|
|
max_total_mem = mmapped_mem + sbrked_mem;
|
|
return p;
|
|
}
|
|
|
|
#endif /* HAVE_MREMAP */
|
|
|
|
#endif /* HAVE_MMAP */
|
|
|
|
|
|
|
|
|
|
/*
|
|
Extend the top-most chunk by obtaining memory from system.
|
|
Main interface to sbrk (but see also malloc_trim).
|
|
*/
|
|
|
|
#if __STD_C
|
|
static void malloc_extend_top(INTERNAL_SIZE_T nb)
|
|
#else
|
|
static void malloc_extend_top(nb) INTERNAL_SIZE_T nb;
|
|
#endif
|
|
{
|
|
char* brk; /* return value from sbrk */
|
|
INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of sbrked space */
|
|
INTERNAL_SIZE_T correction; /* bytes for 2nd sbrk call */
|
|
char* new_brk; /* return of 2nd sbrk call */
|
|
INTERNAL_SIZE_T top_size; /* new size of top chunk */
|
|
|
|
mchunkptr old_top = top; /* Record state of old top */
|
|
INTERNAL_SIZE_T old_top_size = chunksize(old_top);
|
|
char* old_end = (char*)(chunk_at_offset(old_top, old_top_size));
|
|
|
|
/* Pad request with top_pad plus minimal overhead */
|
|
|
|
INTERNAL_SIZE_T sbrk_size = nb + top_pad + MINSIZE;
|
|
unsigned long pagesz = malloc_getpagesize;
|
|
|
|
/* If not the first time through, round to preserve page boundary */
|
|
/* Otherwise, we need to correct to a page size below anyway. */
|
|
/* (We also correct below if an intervening foreign sbrk call.) */
|
|
|
|
if (sbrk_base != (char*)(-1))
|
|
sbrk_size = (sbrk_size + (pagesz - 1)) & ~(pagesz - 1);
|
|
|
|
brk = (char*)(MORECORE (sbrk_size));
|
|
|
|
/* Fail if sbrk failed or if a foreign sbrk call killed our space */
|
|
if (brk == (char*)(MORECORE_FAILURE) ||
|
|
(brk < old_end && old_top != initial_top))
|
|
return;
|
|
|
|
sbrked_mem += sbrk_size;
|
|
|
|
if (brk == old_end) /* can just add bytes to current top */
|
|
{
|
|
top_size = sbrk_size + old_top_size;
|
|
set_head(top, top_size | PREV_INUSE);
|
|
}
|
|
else
|
|
{
|
|
if (sbrk_base == (char*)(-1)) /* First time through. Record base */
|
|
sbrk_base = brk;
|
|
else /* Someone else called sbrk(). Count those bytes as sbrked_mem. */
|
|
sbrked_mem += brk - (char*)old_end;
|
|
|
|
/* Guarantee alignment of first new chunk made from this space */
|
|
front_misalign = (unsigned long)chunk2mem(brk) & MALLOC_ALIGN_MASK;
|
|
if (front_misalign > 0)
|
|
{
|
|
correction = (MALLOC_ALIGNMENT) - front_misalign;
|
|
brk += correction;
|
|
}
|
|
else
|
|
correction = 0;
|
|
|
|
/* Guarantee the next brk will be at a page boundary */
|
|
|
|
correction += ((((unsigned long)(brk + sbrk_size))+(pagesz-1)) &
|
|
~(pagesz - 1)) - ((unsigned long)(brk + sbrk_size));
|
|
|
|
/* Allocate correction */
|
|
new_brk = (char*)(MORECORE (correction));
|
|
if (new_brk == (char*)(MORECORE_FAILURE)) return;
|
|
|
|
sbrked_mem += correction;
|
|
|
|
top = (mchunkptr)brk;
|
|
top_size = new_brk - brk + correction;
|
|
set_head(top, top_size | PREV_INUSE);
|
|
|
|
if (old_top != initial_top)
|
|
{
|
|
|
|
/* There must have been an intervening foreign sbrk call. */
|
|
/* A double fencepost is necessary to prevent consolidation */
|
|
|
|
/* If not enough space to do this, then user did something very wrong */
|
|
if (old_top_size < MINSIZE)
|
|
{
|
|
set_head(top, PREV_INUSE); /* will force null return from malloc */
|
|
return;
|
|
}
|
|
|
|
/* Also keep size a multiple of MALLOC_ALIGNMENT */
|
|
old_top_size = (old_top_size - 3*SIZE_SZ) & ~MALLOC_ALIGN_MASK;
|
|
set_head_size(old_top, old_top_size);
|
|
chunk_at_offset(old_top, old_top_size )->size =
|
|
SIZE_SZ|PREV_INUSE;
|
|
chunk_at_offset(old_top, old_top_size + SIZE_SZ)->size =
|
|
SIZE_SZ|PREV_INUSE;
|
|
/* If possible, release the rest. */
|
|
if (old_top_size >= MINSIZE)
|
|
fREe(chunk2mem(old_top));
|
|
}
|
|
}
|
|
|
|
if ((unsigned long)sbrked_mem > (unsigned long)max_sbrked_mem)
|
|
max_sbrked_mem = sbrked_mem;
|
|
if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
|
|
max_total_mem = mmapped_mem + sbrked_mem;
|
|
|
|
/* We always land on a page boundary */
|
|
assert(((unsigned long)((char*)top + top_size) & (pagesz - 1)) == 0);
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Main public routines */
|
|
|
|
|
|
/*
|
|
Malloc Algorthim:
|
|
|
|
The requested size is first converted into a usable form, `nb'.
|
|
This currently means to add 4 bytes overhead plus possibly more to
|
|
obtain 8-byte alignment and/or to obtain a size of at least
|
|
MINSIZE (currently 16 bytes), the smallest allocatable size.
|
|
(All fits are considered `exact' if they are within MINSIZE bytes.)
|
|
|
|
From there, the first successful of the following steps is taken:
|
|
|
|
1. The bin corresponding to the request size is scanned, and if
|
|
a chunk of exactly the right size is found, it is taken.
|
|
|
|
2. The most recently remaindered chunk is used if it is big
|
|
enough. This is a form of (roving) first fit, used only in
|
|
the absence of exact fits. Runs of consecutive requests use
|
|
the remainder of the chunk used for the previous such request
|
|
whenever possible. This limited use of a first-fit style
|
|
allocation strategy tends to give contiguous chunks
|
|
coextensive lifetimes, which improves locality and can reduce
|
|
fragmentation in the long run.
|
|
|
|
3. Other bins are scanned in increasing size order, using a
|
|
chunk big enough to fulfill the request, and splitting off
|
|
any remainder. This search is strictly by best-fit; i.e.,
|
|
the smallest (with ties going to approximately the least
|
|
recently used) chunk that fits is selected.
|
|
|
|
4. If large enough, the chunk bordering the end of memory
|
|
(`top') is split off. (This use of `top' is in accord with
|
|
the best-fit search rule. In effect, `top' is treated as
|
|
larger (and thus less well fitting) than any other available
|
|
chunk since it can be extended to be as large as necessary
|
|
(up to system limitations).
|
|
|
|
5. If the request size meets the mmap threshold and the
|
|
system supports mmap, and there are few enough currently
|
|
allocated mmapped regions, and a call to mmap succeeds,
|
|
the request is allocated via direct memory mapping.
|
|
|
|
6. Otherwise, the top of memory is extended by
|
|
obtaining more space from the system (normally using sbrk,
|
|
but definable to anything else via the MORECORE macro).
|
|
Memory is gathered from the system (in system page-sized
|
|
units) in a way that allows chunks obtained across different
|
|
sbrk calls to be consolidated, but does not require
|
|
contiguous memory. Thus, it should be safe to intersperse
|
|
mallocs with other sbrk calls.
|
|
|
|
|
|
All allocations are made from the the `lowest' part of any found
|
|
chunk. (The implementation invariant is that prev_inuse is
|
|
always true of any allocated chunk; i.e., that each allocated
|
|
chunk borders either a previously allocated and still in-use chunk,
|
|
or the base of its memory arena.)
|
|
|
|
*/
|
|
|
|
#if __STD_C
|
|
Void_t* mALLOc(size_t bytes)
|
|
#else
|
|
Void_t* mALLOc(bytes) size_t bytes;
|
|
#endif
|
|
{
|
|
mchunkptr victim; /* inspected/selected chunk */
|
|
INTERNAL_SIZE_T victim_size; /* its size */
|
|
int idx; /* index for bin traversal */
|
|
mbinptr bin; /* associated bin */
|
|
mchunkptr remainder; /* remainder from a split */
|
|
long remainder_size; /* its size */
|
|
int remainder_index; /* its bin index */
|
|
unsigned long block; /* block traverser bit */
|
|
int startidx; /* first bin of a traversed block */
|
|
mchunkptr fwd; /* misc temp for linking */
|
|
mchunkptr bck; /* misc temp for linking */
|
|
mbinptr q; /* misc temp */
|
|
|
|
INTERNAL_SIZE_T nb;
|
|
|
|
#ifdef CONFIG_SYS_MALLOC_F_LEN
|
|
if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT))
|
|
return malloc_simple(bytes);
|
|
#endif
|
|
|
|
/* check if mem_malloc_init() was run */
|
|
if ((mem_malloc_start == 0) && (mem_malloc_end == 0)) {
|
|
/* not initialized yet */
|
|
return NULL;
|
|
}
|
|
|
|
if ((long)bytes < 0) return NULL;
|
|
|
|
nb = request2size(bytes); /* padded request size; */
|
|
|
|
/* Check for exact match in a bin */
|
|
|
|
if (is_small_request(nb)) /* Faster version for small requests */
|
|
{
|
|
idx = smallbin_index(nb);
|
|
|
|
/* No traversal or size check necessary for small bins. */
|
|
|
|
q = bin_at(idx);
|
|
victim = last(q);
|
|
|
|
/* Also scan the next one, since it would have a remainder < MINSIZE */
|
|
if (victim == q)
|
|
{
|
|
q = next_bin(q);
|
|
victim = last(q);
|
|
}
|
|
if (victim != q)
|
|
{
|
|
victim_size = chunksize(victim);
|
|
unlink(victim, bck, fwd);
|
|
set_inuse_bit_at_offset(victim, victim_size);
|
|
check_malloced_chunk(victim, nb);
|
|
return chunk2mem(victim);
|
|
}
|
|
|
|
idx += 2; /* Set for bin scan below. We've already scanned 2 bins. */
|
|
|
|
}
|
|
else
|
|
{
|
|
idx = bin_index(nb);
|
|
bin = bin_at(idx);
|
|
|
|
for (victim = last(bin); victim != bin; victim = victim->bk)
|
|
{
|
|
victim_size = chunksize(victim);
|
|
remainder_size = victim_size - nb;
|
|
|
|
if (remainder_size >= (long)MINSIZE) /* too big */
|
|
{
|
|
--idx; /* adjust to rescan below after checking last remainder */
|
|
break;
|
|
}
|
|
|
|
else if (remainder_size >= 0) /* exact fit */
|
|
{
|
|
unlink(victim, bck, fwd);
|
|
set_inuse_bit_at_offset(victim, victim_size);
|
|
check_malloced_chunk(victim, nb);
|
|
return chunk2mem(victim);
|
|
}
|
|
}
|
|
|
|
++idx;
|
|
|
|
}
|
|
|
|
/* Try to use the last split-off remainder */
|
|
|
|
if ( (victim = last_remainder->fd) != last_remainder)
|
|
{
|
|
victim_size = chunksize(victim);
|
|
remainder_size = victim_size - nb;
|
|
|
|
if (remainder_size >= (long)MINSIZE) /* re-split */
|
|
{
|
|
remainder = chunk_at_offset(victim, nb);
|
|
set_head(victim, nb | PREV_INUSE);
|
|
link_last_remainder(remainder);
|
|
set_head(remainder, remainder_size | PREV_INUSE);
|
|
set_foot(remainder, remainder_size);
|
|
check_malloced_chunk(victim, nb);
|
|
return chunk2mem(victim);
|
|
}
|
|
|
|
clear_last_remainder;
|
|
|
|
if (remainder_size >= 0) /* exhaust */
|
|
{
|
|
set_inuse_bit_at_offset(victim, victim_size);
|
|
check_malloced_chunk(victim, nb);
|
|
return chunk2mem(victim);
|
|
}
|
|
|
|
/* Else place in bin */
|
|
|
|
frontlink(victim, victim_size, remainder_index, bck, fwd);
|
|
}
|
|
|
|
/*
|
|
If there are any possibly nonempty big-enough blocks,
|
|
search for best fitting chunk by scanning bins in blockwidth units.
|
|
*/
|
|
|
|
if ( (block = idx2binblock(idx)) <= binblocks_r)
|
|
{
|
|
|
|
/* Get to the first marked block */
|
|
|
|
if ( (block & binblocks_r) == 0)
|
|
{
|
|
/* force to an even block boundary */
|
|
idx = (idx & ~(BINBLOCKWIDTH - 1)) + BINBLOCKWIDTH;
|
|
block <<= 1;
|
|
while ((block & binblocks_r) == 0)
|
|
{
|
|
idx += BINBLOCKWIDTH;
|
|
block <<= 1;
|
|
}
|
|
}
|
|
|
|
/* For each possibly nonempty block ... */
|
|
for (;;)
|
|
{
|
|
startidx = idx; /* (track incomplete blocks) */
|
|
q = bin = bin_at(idx);
|
|
|
|
/* For each bin in this block ... */
|
|
do
|
|
{
|
|
/* Find and use first big enough chunk ... */
|
|
|
|
for (victim = last(bin); victim != bin; victim = victim->bk)
|
|
{
|
|
victim_size = chunksize(victim);
|
|
remainder_size = victim_size - nb;
|
|
|
|
if (remainder_size >= (long)MINSIZE) /* split */
|
|
{
|
|
remainder = chunk_at_offset(victim, nb);
|
|
set_head(victim, nb | PREV_INUSE);
|
|
unlink(victim, bck, fwd);
|
|
link_last_remainder(remainder);
|
|
set_head(remainder, remainder_size | PREV_INUSE);
|
|
set_foot(remainder, remainder_size);
|
|
check_malloced_chunk(victim, nb);
|
|
return chunk2mem(victim);
|
|
}
|
|
|
|
else if (remainder_size >= 0) /* take */
|
|
{
|
|
set_inuse_bit_at_offset(victim, victim_size);
|
|
unlink(victim, bck, fwd);
|
|
check_malloced_chunk(victim, nb);
|
|
return chunk2mem(victim);
|
|
}
|
|
|
|
}
|
|
|
|
bin = next_bin(bin);
|
|
|
|
} while ((++idx & (BINBLOCKWIDTH - 1)) != 0);
|
|
|
|
/* Clear out the block bit. */
|
|
|
|
do /* Possibly backtrack to try to clear a partial block */
|
|
{
|
|
if ((startidx & (BINBLOCKWIDTH - 1)) == 0)
|
|
{
|
|
av_[1] = (mbinptr)(binblocks_r & ~block);
|
|
break;
|
|
}
|
|
--startidx;
|
|
q = prev_bin(q);
|
|
} while (first(q) == q);
|
|
|
|
/* Get to the next possibly nonempty block */
|
|
|
|
if ( (block <<= 1) <= binblocks_r && (block != 0) )
|
|
{
|
|
while ((block & binblocks_r) == 0)
|
|
{
|
|
idx += BINBLOCKWIDTH;
|
|
block <<= 1;
|
|
}
|
|
}
|
|
else
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
/* Try to use top chunk */
|
|
|
|
/* Require that there be a remainder, ensuring top always exists */
|
|
if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE)
|
|
{
|
|
|
|
#if HAVE_MMAP
|
|
/* If big and would otherwise need to extend, try to use mmap instead */
|
|
if ((unsigned long)nb >= (unsigned long)mmap_threshold &&
|
|
(victim = mmap_chunk(nb)) != 0)
|
|
return chunk2mem(victim);
|
|
#endif
|
|
|
|
/* Try to extend */
|
|
malloc_extend_top(nb);
|
|
if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE)
|
|
return NULL; /* propagate failure */
|
|
}
|
|
|
|
victim = top;
|
|
set_head(victim, nb | PREV_INUSE);
|
|
top = chunk_at_offset(victim, nb);
|
|
set_head(top, remainder_size | PREV_INUSE);
|
|
check_malloced_chunk(victim, nb);
|
|
return chunk2mem(victim);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
free() algorithm :
|
|
|
|
cases:
|
|
|
|
1. free(0) has no effect.
|
|
|
|
2. If the chunk was allocated via mmap, it is release via munmap().
|
|
|
|
3. If a returned chunk borders the current high end of memory,
|
|
it is consolidated into the top, and if the total unused
|
|
topmost memory exceeds the trim threshold, malloc_trim is
|
|
called.
|
|
|
|
4. Other chunks are consolidated as they arrive, and
|
|
placed in corresponding bins. (This includes the case of
|
|
consolidating with the current `last_remainder').
|
|
|
|
*/
|
|
|
|
|
|
#if __STD_C
|
|
void fREe(Void_t* mem)
|
|
#else
|
|
void fREe(mem) Void_t* mem;
|
|
#endif
|
|
{
|
|
mchunkptr p; /* chunk corresponding to mem */
|
|
INTERNAL_SIZE_T hd; /* its head field */
|
|
INTERNAL_SIZE_T sz; /* its size */
|
|
int idx; /* its bin index */
|
|
mchunkptr next; /* next contiguous chunk */
|
|
INTERNAL_SIZE_T nextsz; /* its size */
|
|
INTERNAL_SIZE_T prevsz; /* size of previous contiguous chunk */
|
|
mchunkptr bck; /* misc temp for linking */
|
|
mchunkptr fwd; /* misc temp for linking */
|
|
int islr; /* track whether merging with last_remainder */
|
|
|
|
#ifdef CONFIG_SYS_MALLOC_F_LEN
|
|
/* free() is a no-op - all the memory will be freed on relocation */
|
|
if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT))
|
|
return;
|
|
#endif
|
|
|
|
if (mem == NULL) /* free(0) has no effect */
|
|
return;
|
|
|
|
p = mem2chunk(mem);
|
|
hd = p->size;
|
|
|
|
#if HAVE_MMAP
|
|
if (hd & IS_MMAPPED) /* release mmapped memory. */
|
|
{
|
|
munmap_chunk(p);
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
check_inuse_chunk(p);
|
|
|
|
sz = hd & ~PREV_INUSE;
|
|
next = chunk_at_offset(p, sz);
|
|
nextsz = chunksize(next);
|
|
|
|
if (next == top) /* merge with top */
|
|
{
|
|
sz += nextsz;
|
|
|
|
if (!(hd & PREV_INUSE)) /* consolidate backward */
|
|
{
|
|
prevsz = p->prev_size;
|
|
p = chunk_at_offset(p, -((long) prevsz));
|
|
sz += prevsz;
|
|
unlink(p, bck, fwd);
|
|
}
|
|
|
|
set_head(p, sz | PREV_INUSE);
|
|
top = p;
|
|
if ((unsigned long)(sz) >= (unsigned long)trim_threshold)
|
|
malloc_trim(top_pad);
|
|
return;
|
|
}
|
|
|
|
set_head(next, nextsz); /* clear inuse bit */
|
|
|
|
islr = 0;
|
|
|
|
if (!(hd & PREV_INUSE)) /* consolidate backward */
|
|
{
|
|
prevsz = p->prev_size;
|
|
p = chunk_at_offset(p, -((long) prevsz));
|
|
sz += prevsz;
|
|
|
|
if (p->fd == last_remainder) /* keep as last_remainder */
|
|
islr = 1;
|
|
else
|
|
unlink(p, bck, fwd);
|
|
}
|
|
|
|
if (!(inuse_bit_at_offset(next, nextsz))) /* consolidate forward */
|
|
{
|
|
sz += nextsz;
|
|
|
|
if (!islr && next->fd == last_remainder) /* re-insert last_remainder */
|
|
{
|
|
islr = 1;
|
|
link_last_remainder(p);
|
|
}
|
|
else
|
|
unlink(next, bck, fwd);
|
|
}
|
|
|
|
|
|
set_head(p, sz | PREV_INUSE);
|
|
set_foot(p, sz);
|
|
if (!islr)
|
|
frontlink(p, sz, idx, bck, fwd);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
Realloc algorithm:
|
|
|
|
Chunks that were obtained via mmap cannot be extended or shrunk
|
|
unless HAVE_MREMAP is defined, in which case mremap is used.
|
|
Otherwise, if their reallocation is for additional space, they are
|
|
copied. If for less, they are just left alone.
|
|
|
|
Otherwise, if the reallocation is for additional space, and the
|
|
chunk can be extended, it is, else a malloc-copy-free sequence is
|
|
taken. There are several different ways that a chunk could be
|
|
extended. All are tried:
|
|
|
|
* Extending forward into following adjacent free chunk.
|
|
* Shifting backwards, joining preceding adjacent space
|
|
* Both shifting backwards and extending forward.
|
|
* Extending into newly sbrked space
|
|
|
|
Unless the #define REALLOC_ZERO_BYTES_FREES is set, realloc with a
|
|
size argument of zero (re)allocates a minimum-sized chunk.
|
|
|
|
If the reallocation is for less space, and the new request is for
|
|
a `small' (<512 bytes) size, then the newly unused space is lopped
|
|
off and freed.
|
|
|
|
The old unix realloc convention of allowing the last-free'd chunk
|
|
to be used as an argument to realloc is no longer supported.
|
|
I don't know of any programs still relying on this feature,
|
|
and allowing it would also allow too many other incorrect
|
|
usages of realloc to be sensible.
|
|
|
|
|
|
*/
|
|
|
|
|
|
#if __STD_C
|
|
Void_t* rEALLOc(Void_t* oldmem, size_t bytes)
|
|
#else
|
|
Void_t* rEALLOc(oldmem, bytes) Void_t* oldmem; size_t bytes;
|
|
#endif
|
|
{
|
|
INTERNAL_SIZE_T nb; /* padded request size */
|
|
|
|
mchunkptr oldp; /* chunk corresponding to oldmem */
|
|
INTERNAL_SIZE_T oldsize; /* its size */
|
|
|
|
mchunkptr newp; /* chunk to return */
|
|
INTERNAL_SIZE_T newsize; /* its size */
|
|
Void_t* newmem; /* corresponding user mem */
|
|
|
|
mchunkptr next; /* next contiguous chunk after oldp */
|
|
INTERNAL_SIZE_T nextsize; /* its size */
|
|
|
|
mchunkptr prev; /* previous contiguous chunk before oldp */
|
|
INTERNAL_SIZE_T prevsize; /* its size */
|
|
|
|
mchunkptr remainder; /* holds split off extra space from newp */
|
|
INTERNAL_SIZE_T remainder_size; /* its size */
|
|
|
|
mchunkptr bck; /* misc temp for linking */
|
|
mchunkptr fwd; /* misc temp for linking */
|
|
|
|
#ifdef REALLOC_ZERO_BYTES_FREES
|
|
if (bytes == 0) { fREe(oldmem); return 0; }
|
|
#endif
|
|
|
|
if ((long)bytes < 0) return NULL;
|
|
|
|
/* realloc of null is supposed to be same as malloc */
|
|
if (oldmem == NULL) return mALLOc(bytes);
|
|
|
|
#ifdef CONFIG_SYS_MALLOC_F_LEN
|
|
if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT)) {
|
|
/* This is harder to support and should not be needed */
|
|
panic("pre-reloc realloc() is not supported");
|
|
}
|
|
#endif
|
|
|
|
newp = oldp = mem2chunk(oldmem);
|
|
newsize = oldsize = chunksize(oldp);
|
|
|
|
|
|
nb = request2size(bytes);
|
|
|
|
#if HAVE_MMAP
|
|
if (chunk_is_mmapped(oldp))
|
|
{
|
|
#if HAVE_MREMAP
|
|
newp = mremap_chunk(oldp, nb);
|
|
if(newp) return chunk2mem(newp);
|
|
#endif
|
|
/* Note the extra SIZE_SZ overhead. */
|
|
if(oldsize - SIZE_SZ >= nb) return oldmem; /* do nothing */
|
|
/* Must alloc, copy, free. */
|
|
newmem = mALLOc(bytes);
|
|
if (newmem == 0) return 0; /* propagate failure */
|
|
MALLOC_COPY(newmem, oldmem, oldsize - 2*SIZE_SZ);
|
|
munmap_chunk(oldp);
|
|
return newmem;
|
|
}
|
|
#endif
|
|
|
|
check_inuse_chunk(oldp);
|
|
|
|
if ((long)(oldsize) < (long)(nb))
|
|
{
|
|
|
|
/* Try expanding forward */
|
|
|
|
next = chunk_at_offset(oldp, oldsize);
|
|
if (next == top || !inuse(next))
|
|
{
|
|
nextsize = chunksize(next);
|
|
|
|
/* Forward into top only if a remainder */
|
|
if (next == top)
|
|
{
|
|
if ((long)(nextsize + newsize) >= (long)(nb + MINSIZE))
|
|
{
|
|
newsize += nextsize;
|
|
top = chunk_at_offset(oldp, nb);
|
|
set_head(top, (newsize - nb) | PREV_INUSE);
|
|
set_head_size(oldp, nb);
|
|
return chunk2mem(oldp);
|
|
}
|
|
}
|
|
|
|
/* Forward into next chunk */
|
|
else if (((long)(nextsize + newsize) >= (long)(nb)))
|
|
{
|
|
unlink(next, bck, fwd);
|
|
newsize += nextsize;
|
|
goto split;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
next = NULL;
|
|
nextsize = 0;
|
|
}
|
|
|
|
/* Try shifting backwards. */
|
|
|
|
if (!prev_inuse(oldp))
|
|
{
|
|
prev = prev_chunk(oldp);
|
|
prevsize = chunksize(prev);
|
|
|
|
/* try forward + backward first to save a later consolidation */
|
|
|
|
if (next != NULL)
|
|
{
|
|
/* into top */
|
|
if (next == top)
|
|
{
|
|
if ((long)(nextsize + prevsize + newsize) >= (long)(nb + MINSIZE))
|
|
{
|
|
unlink(prev, bck, fwd);
|
|
newp = prev;
|
|
newsize += prevsize + nextsize;
|
|
newmem = chunk2mem(newp);
|
|
MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
|
|
top = chunk_at_offset(newp, nb);
|
|
set_head(top, (newsize - nb) | PREV_INUSE);
|
|
set_head_size(newp, nb);
|
|
return newmem;
|
|
}
|
|
}
|
|
|
|
/* into next chunk */
|
|
else if (((long)(nextsize + prevsize + newsize) >= (long)(nb)))
|
|
{
|
|
unlink(next, bck, fwd);
|
|
unlink(prev, bck, fwd);
|
|
newp = prev;
|
|
newsize += nextsize + prevsize;
|
|
newmem = chunk2mem(newp);
|
|
MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
|
|
goto split;
|
|
}
|
|
}
|
|
|
|
/* backward only */
|
|
if (prev != NULL && (long)(prevsize + newsize) >= (long)nb)
|
|
{
|
|
unlink(prev, bck, fwd);
|
|
newp = prev;
|
|
newsize += prevsize;
|
|
newmem = chunk2mem(newp);
|
|
MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
|
|
goto split;
|
|
}
|
|
}
|
|
|
|
/* Must allocate */
|
|
|
|
newmem = mALLOc (bytes);
|
|
|
|
if (newmem == NULL) /* propagate failure */
|
|
return NULL;
|
|
|
|
/* Avoid copy if newp is next chunk after oldp. */
|
|
/* (This can only happen when new chunk is sbrk'ed.) */
|
|
|
|
if ( (newp = mem2chunk(newmem)) == next_chunk(oldp))
|
|
{
|
|
newsize += chunksize(newp);
|
|
newp = oldp;
|
|
goto split;
|
|
}
|
|
|
|
/* Otherwise copy, free, and exit */
|
|
MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
|
|
fREe(oldmem);
|
|
return newmem;
|
|
}
|
|
|
|
|
|
split: /* split off extra room in old or expanded chunk */
|
|
|
|
if (newsize - nb >= MINSIZE) /* split off remainder */
|
|
{
|
|
remainder = chunk_at_offset(newp, nb);
|
|
remainder_size = newsize - nb;
|
|
set_head_size(newp, nb);
|
|
set_head(remainder, remainder_size | PREV_INUSE);
|
|
set_inuse_bit_at_offset(remainder, remainder_size);
|
|
fREe(chunk2mem(remainder)); /* let free() deal with it */
|
|
}
|
|
else
|
|
{
|
|
set_head_size(newp, newsize);
|
|
set_inuse_bit_at_offset(newp, newsize);
|
|
}
|
|
|
|
check_inuse_chunk(newp);
|
|
return chunk2mem(newp);
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
memalign algorithm:
|
|
|
|
memalign requests more than enough space from malloc, finds a spot
|
|
within that chunk that meets the alignment request, and then
|
|
possibly frees the leading and trailing space.
|
|
|
|
The alignment argument must be a power of two. This property is not
|
|
checked by memalign, so misuse may result in random runtime errors.
|
|
|
|
8-byte alignment is guaranteed by normal malloc calls, so don't
|
|
bother calling memalign with an argument of 8 or less.
|
|
|
|
Overreliance on memalign is a sure way to fragment space.
|
|
|
|
*/
|
|
|
|
|
|
#if __STD_C
|
|
Void_t* mEMALIGn(size_t alignment, size_t bytes)
|
|
#else
|
|
Void_t* mEMALIGn(alignment, bytes) size_t alignment; size_t bytes;
|
|
#endif
|
|
{
|
|
INTERNAL_SIZE_T nb; /* padded request size */
|
|
char* m; /* memory returned by malloc call */
|
|
mchunkptr p; /* corresponding chunk */
|
|
char* brk; /* alignment point within p */
|
|
mchunkptr newp; /* chunk to return */
|
|
INTERNAL_SIZE_T newsize; /* its size */
|
|
INTERNAL_SIZE_T leadsize; /* leading space befor alignment point */
|
|
mchunkptr remainder; /* spare room at end to split off */
|
|
long remainder_size; /* its size */
|
|
|
|
if ((long)bytes < 0) return NULL;
|
|
|
|
/* If need less alignment than we give anyway, just relay to malloc */
|
|
|
|
if (alignment <= MALLOC_ALIGNMENT) return mALLOc(bytes);
|
|
|
|
/* Otherwise, ensure that it is at least a minimum chunk size */
|
|
|
|
if (alignment < MINSIZE) alignment = MINSIZE;
|
|
|
|
/* Call malloc with worst case padding to hit alignment. */
|
|
|
|
nb = request2size(bytes);
|
|
m = (char*)(mALLOc(nb + alignment + MINSIZE));
|
|
|
|
/*
|
|
* The attempt to over-allocate (with a size large enough to guarantee the
|
|
* ability to find an aligned region within allocated memory) failed.
|
|
*
|
|
* Try again, this time only allocating exactly the size the user wants. If
|
|
* the allocation now succeeds and just happens to be aligned, we can still
|
|
* fulfill the user's request.
|
|
*/
|
|
if (m == NULL) {
|
|
size_t extra, extra2;
|
|
/*
|
|
* Use bytes not nb, since mALLOc internally calls request2size too, and
|
|
* each call increases the size to allocate, to account for the header.
|
|
*/
|
|
m = (char*)(mALLOc(bytes));
|
|
/* Aligned -> return it */
|
|
if ((((unsigned long)(m)) % alignment) == 0)
|
|
return m;
|
|
/*
|
|
* Otherwise, try again, requesting enough extra space to be able to
|
|
* acquire alignment.
|
|
*/
|
|
fREe(m);
|
|
/* Add in extra bytes to match misalignment of unexpanded allocation */
|
|
extra = alignment - (((unsigned long)(m)) % alignment);
|
|
m = (char*)(mALLOc(bytes + extra));
|
|
/*
|
|
* m might not be the same as before. Validate that the previous value of
|
|
* extra still works for the current value of m.
|
|
* If (!m), extra2=alignment so
|
|
*/
|
|
if (m) {
|
|
extra2 = alignment - (((unsigned long)(m)) % alignment);
|
|
if (extra2 > extra) {
|
|
fREe(m);
|
|
m = NULL;
|
|
}
|
|
}
|
|
/* Fall through to original NULL check and chunk splitting logic */
|
|
}
|
|
|
|
if (m == NULL) return NULL; /* propagate failure */
|
|
|
|
p = mem2chunk(m);
|
|
|
|
if ((((unsigned long)(m)) % alignment) == 0) /* aligned */
|
|
{
|
|
#if HAVE_MMAP
|
|
if(chunk_is_mmapped(p))
|
|
return chunk2mem(p); /* nothing more to do */
|
|
#endif
|
|
}
|
|
else /* misaligned */
|
|
{
|
|
/*
|
|
Find an aligned spot inside chunk.
|
|
Since we need to give back leading space in a chunk of at
|
|
least MINSIZE, if the first calculation places us at
|
|
a spot with less than MINSIZE leader, we can move to the
|
|
next aligned spot -- we've allocated enough total room so that
|
|
this is always possible.
|
|
*/
|
|
|
|
brk = (char*)mem2chunk(((unsigned long)(m + alignment - 1)) & -((signed) alignment));
|
|
if ((long)(brk - (char*)(p)) < MINSIZE) brk = brk + alignment;
|
|
|
|
newp = (mchunkptr)brk;
|
|
leadsize = brk - (char*)(p);
|
|
newsize = chunksize(p) - leadsize;
|
|
|
|
#if HAVE_MMAP
|
|
if(chunk_is_mmapped(p))
|
|
{
|
|
newp->prev_size = p->prev_size + leadsize;
|
|
set_head(newp, newsize|IS_MMAPPED);
|
|
return chunk2mem(newp);
|
|
}
|
|
#endif
|
|
|
|
/* give back leader, use the rest */
|
|
|
|
set_head(newp, newsize | PREV_INUSE);
|
|
set_inuse_bit_at_offset(newp, newsize);
|
|
set_head_size(p, leadsize);
|
|
fREe(chunk2mem(p));
|
|
p = newp;
|
|
|
|
assert (newsize >= nb && (((unsigned long)(chunk2mem(p))) % alignment) == 0);
|
|
}
|
|
|
|
/* Also give back spare room at the end */
|
|
|
|
remainder_size = chunksize(p) - nb;
|
|
|
|
if (remainder_size >= (long)MINSIZE)
|
|
{
|
|
remainder = chunk_at_offset(p, nb);
|
|
set_head(remainder, remainder_size | PREV_INUSE);
|
|
set_head_size(p, nb);
|
|
fREe(chunk2mem(remainder));
|
|
}
|
|
|
|
check_inuse_chunk(p);
|
|
return chunk2mem(p);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
valloc just invokes memalign with alignment argument equal
|
|
to the page size of the system (or as near to this as can
|
|
be figured out from all the includes/defines above.)
|
|
*/
|
|
|
|
#if __STD_C
|
|
Void_t* vALLOc(size_t bytes)
|
|
#else
|
|
Void_t* vALLOc(bytes) size_t bytes;
|
|
#endif
|
|
{
|
|
return mEMALIGn (malloc_getpagesize, bytes);
|
|
}
|
|
|
|
/*
|
|
pvalloc just invokes valloc for the nearest pagesize
|
|
that will accommodate request
|
|
*/
|
|
|
|
|
|
#if __STD_C
|
|
Void_t* pvALLOc(size_t bytes)
|
|
#else
|
|
Void_t* pvALLOc(bytes) size_t bytes;
|
|
#endif
|
|
{
|
|
size_t pagesize = malloc_getpagesize;
|
|
return mEMALIGn (pagesize, (bytes + pagesize - 1) & ~(pagesize - 1));
|
|
}
|
|
|
|
/*
|
|
|
|
calloc calls malloc, then zeroes out the allocated chunk.
|
|
|
|
*/
|
|
|
|
#if __STD_C
|
|
Void_t* cALLOc(size_t n, size_t elem_size)
|
|
#else
|
|
Void_t* cALLOc(n, elem_size) size_t n; size_t elem_size;
|
|
#endif
|
|
{
|
|
mchunkptr p;
|
|
INTERNAL_SIZE_T csz;
|
|
|
|
INTERNAL_SIZE_T sz = n * elem_size;
|
|
|
|
|
|
/* check if expand_top called, in which case don't need to clear */
|
|
#ifdef CONFIG_SYS_MALLOC_CLEAR_ON_INIT
|
|
#if MORECORE_CLEARS
|
|
mchunkptr oldtop = top;
|
|
INTERNAL_SIZE_T oldtopsize = chunksize(top);
|
|
#endif
|
|
#endif
|
|
Void_t* mem = mALLOc (sz);
|
|
|
|
if ((long)n < 0) return NULL;
|
|
|
|
if (mem == NULL)
|
|
return NULL;
|
|
else
|
|
{
|
|
#ifdef CONFIG_SYS_MALLOC_F_LEN
|
|
if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT)) {
|
|
MALLOC_ZERO(mem, sz);
|
|
return mem;
|
|
}
|
|
#endif
|
|
p = mem2chunk(mem);
|
|
|
|
/* Two optional cases in which clearing not necessary */
|
|
|
|
|
|
#if HAVE_MMAP
|
|
if (chunk_is_mmapped(p)) return mem;
|
|
#endif
|
|
|
|
csz = chunksize(p);
|
|
|
|
#ifdef CONFIG_SYS_MALLOC_CLEAR_ON_INIT
|
|
#if MORECORE_CLEARS
|
|
if (p == oldtop && csz > oldtopsize)
|
|
{
|
|
/* clear only the bytes from non-freshly-sbrked memory */
|
|
csz = oldtopsize;
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
MALLOC_ZERO(mem, csz - SIZE_SZ);
|
|
return mem;
|
|
}
|
|
}
|
|
|
|
/*
|
|
|
|
cfree just calls free. It is needed/defined on some systems
|
|
that pair it with calloc, presumably for odd historical reasons.
|
|
|
|
*/
|
|
|
|
#if !defined(INTERNAL_LINUX_C_LIB) || !defined(__ELF__)
|
|
#if __STD_C
|
|
void cfree(Void_t *mem)
|
|
#else
|
|
void cfree(mem) Void_t *mem;
|
|
#endif
|
|
{
|
|
fREe(mem);
|
|
}
|
|
#endif
|
|
|
|
|
|
|
|
/*
|
|
|
|
Malloc_trim gives memory back to the system (via negative
|
|
arguments to sbrk) if there is unused memory at the `high' end of
|
|
the malloc pool. You can call this after freeing large blocks of
|
|
memory to potentially reduce the system-level memory requirements
|
|
of a program. However, it cannot guarantee to reduce memory. Under
|
|
some allocation patterns, some large free blocks of memory will be
|
|
locked between two used chunks, so they cannot be given back to
|
|
the system.
|
|
|
|
The `pad' argument to malloc_trim represents the amount of free
|
|
trailing space to leave untrimmed. If this argument is zero,
|
|
only the minimum amount of memory to maintain internal data
|
|
structures will be left (one page or less). Non-zero arguments
|
|
can be supplied to maintain enough trailing space to service
|
|
future expected allocations without having to re-obtain memory
|
|
from the system.
|
|
|
|
Malloc_trim returns 1 if it actually released any memory, else 0.
|
|
|
|
*/
|
|
|
|
#if __STD_C
|
|
int malloc_trim(size_t pad)
|
|
#else
|
|
int malloc_trim(pad) size_t pad;
|
|
#endif
|
|
{
|
|
long top_size; /* Amount of top-most memory */
|
|
long extra; /* Amount to release */
|
|
char* current_brk; /* address returned by pre-check sbrk call */
|
|
char* new_brk; /* address returned by negative sbrk call */
|
|
|
|
unsigned long pagesz = malloc_getpagesize;
|
|
|
|
top_size = chunksize(top);
|
|
extra = ((top_size - pad - MINSIZE + (pagesz-1)) / pagesz - 1) * pagesz;
|
|
|
|
if (extra < (long)pagesz) /* Not enough memory to release */
|
|
return 0;
|
|
|
|
else
|
|
{
|
|
/* Test to make sure no one else called sbrk */
|
|
current_brk = (char*)(MORECORE (0));
|
|
if (current_brk != (char*)(top) + top_size)
|
|
return 0; /* Apparently we don't own memory; must fail */
|
|
|
|
else
|
|
{
|
|
new_brk = (char*)(MORECORE (-extra));
|
|
|
|
if (new_brk == (char*)(MORECORE_FAILURE)) /* sbrk failed? */
|
|
{
|
|
/* Try to figure out what we have */
|
|
current_brk = (char*)(MORECORE (0));
|
|
top_size = current_brk - (char*)top;
|
|
if (top_size >= (long)MINSIZE) /* if not, we are very very dead! */
|
|
{
|
|
sbrked_mem = current_brk - sbrk_base;
|
|
set_head(top, top_size | PREV_INUSE);
|
|
}
|
|
check_chunk(top);
|
|
return 0;
|
|
}
|
|
|
|
else
|
|
{
|
|
/* Success. Adjust top accordingly. */
|
|
set_head(top, (top_size - extra) | PREV_INUSE);
|
|
sbrked_mem -= extra;
|
|
check_chunk(top);
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
malloc_usable_size:
|
|
|
|
This routine tells you how many bytes you can actually use in an
|
|
allocated chunk, which may be more than you requested (although
|
|
often not). You can use this many bytes without worrying about
|
|
overwriting other allocated objects. Not a particularly great
|
|
programming practice, but still sometimes useful.
|
|
|
|
*/
|
|
|
|
#if __STD_C
|
|
size_t malloc_usable_size(Void_t* mem)
|
|
#else
|
|
size_t malloc_usable_size(mem) Void_t* mem;
|
|
#endif
|
|
{
|
|
mchunkptr p;
|
|
if (mem == NULL)
|
|
return 0;
|
|
else
|
|
{
|
|
p = mem2chunk(mem);
|
|
if(!chunk_is_mmapped(p))
|
|
{
|
|
if (!inuse(p)) return 0;
|
|
check_inuse_chunk(p);
|
|
return chunksize(p) - SIZE_SZ;
|
|
}
|
|
return chunksize(p) - 2*SIZE_SZ;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Utility to update current_mallinfo for malloc_stats and mallinfo() */
|
|
|
|
#ifdef DEBUG
|
|
static void malloc_update_mallinfo()
|
|
{
|
|
int i;
|
|
mbinptr b;
|
|
mchunkptr p;
|
|
#ifdef DEBUG
|
|
mchunkptr q;
|
|
#endif
|
|
|
|
INTERNAL_SIZE_T avail = chunksize(top);
|
|
int navail = ((long)(avail) >= (long)MINSIZE)? 1 : 0;
|
|
|
|
for (i = 1; i < NAV; ++i)
|
|
{
|
|
b = bin_at(i);
|
|
for (p = last(b); p != b; p = p->bk)
|
|
{
|
|
#ifdef DEBUG
|
|
check_free_chunk(p);
|
|
for (q = next_chunk(p);
|
|
q < top && inuse(q) && (long)(chunksize(q)) >= (long)MINSIZE;
|
|
q = next_chunk(q))
|
|
check_inuse_chunk(q);
|
|
#endif
|
|
avail += chunksize(p);
|
|
navail++;
|
|
}
|
|
}
|
|
|
|
current_mallinfo.ordblks = navail;
|
|
current_mallinfo.uordblks = sbrked_mem - avail;
|
|
current_mallinfo.fordblks = avail;
|
|
current_mallinfo.hblks = n_mmaps;
|
|
current_mallinfo.hblkhd = mmapped_mem;
|
|
current_mallinfo.keepcost = chunksize(top);
|
|
|
|
}
|
|
#endif /* DEBUG */
|
|
|
|
|
|
|
|
/*
|
|
|
|
malloc_stats:
|
|
|
|
Prints on the amount of space obtain from the system (both
|
|
via sbrk and mmap), the maximum amount (which may be more than
|
|
current if malloc_trim and/or munmap got called), the maximum
|
|
number of simultaneous mmap regions used, and the current number
|
|
of bytes allocated via malloc (or realloc, etc) but not yet
|
|
freed. (Note that this is the number of bytes allocated, not the
|
|
number requested. It will be larger than the number requested
|
|
because of alignment and bookkeeping overhead.)
|
|
|
|
*/
|
|
|
|
#ifdef DEBUG
|
|
void malloc_stats()
|
|
{
|
|
malloc_update_mallinfo();
|
|
printf("max system bytes = %10u\n",
|
|
(unsigned int)(max_total_mem));
|
|
printf("system bytes = %10u\n",
|
|
(unsigned int)(sbrked_mem + mmapped_mem));
|
|
printf("in use bytes = %10u\n",
|
|
(unsigned int)(current_mallinfo.uordblks + mmapped_mem));
|
|
#if HAVE_MMAP
|
|
printf("max mmap regions = %10u\n",
|
|
(unsigned int)max_n_mmaps);
|
|
#endif
|
|
}
|
|
#endif /* DEBUG */
|
|
|
|
/*
|
|
mallinfo returns a copy of updated current mallinfo.
|
|
*/
|
|
|
|
#ifdef DEBUG
|
|
struct mallinfo mALLINFo()
|
|
{
|
|
malloc_update_mallinfo();
|
|
return current_mallinfo;
|
|
}
|
|
#endif /* DEBUG */
|
|
|
|
|
|
|
|
|
|
/*
|
|
mallopt:
|
|
|
|
mallopt is the general SVID/XPG interface to tunable parameters.
|
|
The format is to provide a (parameter-number, parameter-value) pair.
|
|
mallopt then sets the corresponding parameter to the argument
|
|
value if it can (i.e., so long as the value is meaningful),
|
|
and returns 1 if successful else 0.
|
|
|
|
See descriptions of tunable parameters above.
|
|
|
|
*/
|
|
|
|
#if __STD_C
|
|
int mALLOPt(int param_number, int value)
|
|
#else
|
|
int mALLOPt(param_number, value) int param_number; int value;
|
|
#endif
|
|
{
|
|
switch(param_number)
|
|
{
|
|
case M_TRIM_THRESHOLD:
|
|
trim_threshold = value; return 1;
|
|
case M_TOP_PAD:
|
|
top_pad = value; return 1;
|
|
case M_MMAP_THRESHOLD:
|
|
mmap_threshold = value; return 1;
|
|
case M_MMAP_MAX:
|
|
#if HAVE_MMAP
|
|
n_mmaps_max = value; return 1;
|
|
#else
|
|
if (value != 0) return 0; else n_mmaps_max = value; return 1;
|
|
#endif
|
|
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
int initf_malloc(void)
|
|
{
|
|
#ifdef CONFIG_SYS_MALLOC_F_LEN
|
|
assert(gd->malloc_base); /* Set up by crt0.S */
|
|
gd->malloc_limit = CONFIG_SYS_MALLOC_F_LEN;
|
|
gd->malloc_ptr = 0;
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
|
|
History:
|
|
|
|
V2.6.6 Sun Dec 5 07:42:19 1999 Doug Lea (dl at gee)
|
|
* return null for negative arguments
|
|
* Added Several WIN32 cleanups from Martin C. Fong <mcfong@yahoo.com>
|
|
* Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h'
|
|
(e.g. WIN32 platforms)
|
|
* Cleanup up header file inclusion for WIN32 platforms
|
|
* Cleanup code to avoid Microsoft Visual C++ compiler complaints
|
|
* Add 'USE_DL_PREFIX' to quickly allow co-existence with existing
|
|
memory allocation routines
|
|
* Set 'malloc_getpagesize' for WIN32 platforms (needs more work)
|
|
* Use 'assert' rather than 'ASSERT' in WIN32 code to conform to
|
|
usage of 'assert' in non-WIN32 code
|
|
* Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to
|
|
avoid infinite loop
|
|
* Always call 'fREe()' rather than 'free()'
|
|
|
|
V2.6.5 Wed Jun 17 15:57:31 1998 Doug Lea (dl at gee)
|
|
* Fixed ordering problem with boundary-stamping
|
|
|
|
V2.6.3 Sun May 19 08:17:58 1996 Doug Lea (dl at gee)
|
|
* Added pvalloc, as recommended by H.J. Liu
|
|
* Added 64bit pointer support mainly from Wolfram Gloger
|
|
* Added anonymously donated WIN32 sbrk emulation
|
|
* Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen
|
|
* malloc_extend_top: fix mask error that caused wastage after
|
|
foreign sbrks
|
|
* Add linux mremap support code from HJ Liu
|
|
|
|
V2.6.2 Tue Dec 5 06:52:55 1995 Doug Lea (dl at gee)
|
|
* Integrated most documentation with the code.
|
|
* Add support for mmap, with help from
|
|
Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
|
|
* Use last_remainder in more cases.
|
|
* Pack bins using idea from colin@nyx10.cs.du.edu
|
|
* Use ordered bins instead of best-fit threshhold
|
|
* Eliminate block-local decls to simplify tracing and debugging.
|
|
* Support another case of realloc via move into top
|
|
* Fix error occuring when initial sbrk_base not word-aligned.
|
|
* Rely on page size for units instead of SBRK_UNIT to
|
|
avoid surprises about sbrk alignment conventions.
|
|
* Add mallinfo, mallopt. Thanks to Raymond Nijssen
|
|
(raymond@es.ele.tue.nl) for the suggestion.
|
|
* Add `pad' argument to malloc_trim and top_pad mallopt parameter.
|
|
* More precautions for cases where other routines call sbrk,
|
|
courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
|
|
* Added macros etc., allowing use in linux libc from
|
|
H.J. Lu (hjl@gnu.ai.mit.edu)
|
|
* Inverted this history list
|
|
|
|
V2.6.1 Sat Dec 2 14:10:57 1995 Doug Lea (dl at gee)
|
|
* Re-tuned and fixed to behave more nicely with V2.6.0 changes.
|
|
* Removed all preallocation code since under current scheme
|
|
the work required to undo bad preallocations exceeds
|
|
the work saved in good cases for most test programs.
|
|
* No longer use return list or unconsolidated bins since
|
|
no scheme using them consistently outperforms those that don't
|
|
given above changes.
|
|
* Use best fit for very large chunks to prevent some worst-cases.
|
|
* Added some support for debugging
|
|
|
|
V2.6.0 Sat Nov 4 07:05:23 1995 Doug Lea (dl at gee)
|
|
* Removed footers when chunks are in use. Thanks to
|
|
Paul Wilson (wilson@cs.texas.edu) for the suggestion.
|
|
|
|
V2.5.4 Wed Nov 1 07:54:51 1995 Doug Lea (dl at gee)
|
|
* Added malloc_trim, with help from Wolfram Gloger
|
|
(wmglo@Dent.MED.Uni-Muenchen.DE).
|
|
|
|
V2.5.3 Tue Apr 26 10:16:01 1994 Doug Lea (dl at g)
|
|
|
|
V2.5.2 Tue Apr 5 16:20:40 1994 Doug Lea (dl at g)
|
|
* realloc: try to expand in both directions
|
|
* malloc: swap order of clean-bin strategy;
|
|
* realloc: only conditionally expand backwards
|
|
* Try not to scavenge used bins
|
|
* Use bin counts as a guide to preallocation
|
|
* Occasionally bin return list chunks in first scan
|
|
* Add a few optimizations from colin@nyx10.cs.du.edu
|
|
|
|
V2.5.1 Sat Aug 14 15:40:43 1993 Doug Lea (dl at g)
|
|
* faster bin computation & slightly different binning
|
|
* merged all consolidations to one part of malloc proper
|
|
(eliminating old malloc_find_space & malloc_clean_bin)
|
|
* Scan 2 returns chunks (not just 1)
|
|
* Propagate failure in realloc if malloc returns 0
|
|
* Add stuff to allow compilation on non-ANSI compilers
|
|
from kpv@research.att.com
|
|
|
|
V2.5 Sat Aug 7 07:41:59 1993 Doug Lea (dl at g.oswego.edu)
|
|
* removed potential for odd address access in prev_chunk
|
|
* removed dependency on getpagesize.h
|
|
* misc cosmetics and a bit more internal documentation
|
|
* anticosmetics: mangled names in macros to evade debugger strangeness
|
|
* tested on sparc, hp-700, dec-mips, rs6000
|
|
with gcc & native cc (hp, dec only) allowing
|
|
Detlefs & Zorn comparison study (in SIGPLAN Notices.)
|
|
|
|
Trial version Fri Aug 28 13:14:29 1992 Doug Lea (dl at g.oswego.edu)
|
|
* Based loosely on libg++-1.2X malloc. (It retains some of the overall
|
|
structure of old version, but most details differ.)
|
|
|
|
*/
|