Jetpack/u-boot/drivers/spi/designware_spi.c

426 lines
10 KiB
C

/*
* Designware master SPI core controller driver
*
* Copyright (C) 2014 Stefan Roese <sr@denx.de>
*
* Very loosely based on the Linux driver:
* drivers/spi/spi-dw.c, which is:
* Copyright (c) 2009, Intel Corporation.
*
* SPDX-License-Identifier: GPL-2.0
*/
#include <common.h>
#include <dm.h>
#include <errno.h>
#include <malloc.h>
#include <spi.h>
#include <fdtdec.h>
#include <linux/compat.h>
#include <asm/io.h>
#include <asm/arch/clock_manager.h>
DECLARE_GLOBAL_DATA_PTR;
/* Register offsets */
#define DW_SPI_CTRL0 0x00
#define DW_SPI_CTRL1 0x04
#define DW_SPI_SSIENR 0x08
#define DW_SPI_MWCR 0x0c
#define DW_SPI_SER 0x10
#define DW_SPI_BAUDR 0x14
#define DW_SPI_TXFLTR 0x18
#define DW_SPI_RXFLTR 0x1c
#define DW_SPI_TXFLR 0x20
#define DW_SPI_RXFLR 0x24
#define DW_SPI_SR 0x28
#define DW_SPI_IMR 0x2c
#define DW_SPI_ISR 0x30
#define DW_SPI_RISR 0x34
#define DW_SPI_TXOICR 0x38
#define DW_SPI_RXOICR 0x3c
#define DW_SPI_RXUICR 0x40
#define DW_SPI_MSTICR 0x44
#define DW_SPI_ICR 0x48
#define DW_SPI_DMACR 0x4c
#define DW_SPI_DMATDLR 0x50
#define DW_SPI_DMARDLR 0x54
#define DW_SPI_IDR 0x58
#define DW_SPI_VERSION 0x5c
#define DW_SPI_DR 0x60
/* Bit fields in CTRLR0 */
#define SPI_DFS_OFFSET 0
#define SPI_FRF_OFFSET 4
#define SPI_FRF_SPI 0x0
#define SPI_FRF_SSP 0x1
#define SPI_FRF_MICROWIRE 0x2
#define SPI_FRF_RESV 0x3
#define SPI_MODE_OFFSET 6
#define SPI_SCPH_OFFSET 6
#define SPI_SCOL_OFFSET 7
#define SPI_TMOD_OFFSET 8
#define SPI_TMOD_MASK (0x3 << SPI_TMOD_OFFSET)
#define SPI_TMOD_TR 0x0 /* xmit & recv */
#define SPI_TMOD_TO 0x1 /* xmit only */
#define SPI_TMOD_RO 0x2 /* recv only */
#define SPI_TMOD_EPROMREAD 0x3 /* eeprom read mode */
#define SPI_SLVOE_OFFSET 10
#define SPI_SRL_OFFSET 11
#define SPI_CFS_OFFSET 12
/* Bit fields in SR, 7 bits */
#define SR_MASK GENMASK(6, 0) /* cover 7 bits */
#define SR_BUSY BIT(0)
#define SR_TF_NOT_FULL BIT(1)
#define SR_TF_EMPT BIT(2)
#define SR_RF_NOT_EMPT BIT(3)
#define SR_RF_FULL BIT(4)
#define SR_TX_ERR BIT(5)
#define SR_DCOL BIT(6)
#define RX_TIMEOUT 1000 /* timeout in ms */
struct dw_spi_platdata {
s32 frequency; /* Default clock frequency, -1 for none */
void __iomem *regs;
};
struct dw_spi_priv {
void __iomem *regs;
unsigned int freq; /* Default frequency */
unsigned int mode;
int bits_per_word;
u8 cs; /* chip select pin */
u8 tmode; /* TR/TO/RO/EEPROM */
u8 type; /* SPI/SSP/MicroWire */
int len;
u32 fifo_len; /* depth of the FIFO buffer */
void *tx;
void *tx_end;
void *rx;
void *rx_end;
};
static inline u32 dw_readl(struct dw_spi_priv *priv, u32 offset)
{
return __raw_readl(priv->regs + offset);
}
static inline void dw_writel(struct dw_spi_priv *priv, u32 offset, u32 val)
{
__raw_writel(val, priv->regs + offset);
}
static inline u16 dw_readw(struct dw_spi_priv *priv, u32 offset)
{
return __raw_readw(priv->regs + offset);
}
static inline void dw_writew(struct dw_spi_priv *priv, u32 offset, u16 val)
{
__raw_writew(val, priv->regs + offset);
}
static int dw_spi_ofdata_to_platdata(struct udevice *bus)
{
struct dw_spi_platdata *plat = bus->platdata;
const void *blob = gd->fdt_blob;
int node = bus->of_offset;
plat->regs = (struct dw_spi *)dev_get_addr(bus);
/* Use 500KHz as a suitable default */
plat->frequency = fdtdec_get_int(blob, node, "spi-max-frequency",
500000);
debug("%s: regs=%p max-frequency=%d\n", __func__, plat->regs,
plat->frequency);
return 0;
}
static inline void spi_enable_chip(struct dw_spi_priv *priv, int enable)
{
dw_writel(priv, DW_SPI_SSIENR, (enable ? 1 : 0));
}
/* Restart the controller, disable all interrupts, clean rx fifo */
static void spi_hw_init(struct dw_spi_priv *priv)
{
spi_enable_chip(priv, 0);
dw_writel(priv, DW_SPI_IMR, 0xff);
spi_enable_chip(priv, 1);
/*
* Try to detect the FIFO depth if not set by interface driver,
* the depth could be from 2 to 256 from HW spec
*/
if (!priv->fifo_len) {
u32 fifo;
for (fifo = 1; fifo < 256; fifo++) {
dw_writew(priv, DW_SPI_TXFLTR, fifo);
if (fifo != dw_readw(priv, DW_SPI_TXFLTR))
break;
}
priv->fifo_len = (fifo == 1) ? 0 : fifo;
dw_writew(priv, DW_SPI_TXFLTR, 0);
}
debug("%s: fifo_len=%d\n", __func__, priv->fifo_len);
}
static int dw_spi_probe(struct udevice *bus)
{
struct dw_spi_platdata *plat = dev_get_platdata(bus);
struct dw_spi_priv *priv = dev_get_priv(bus);
priv->regs = plat->regs;
priv->freq = plat->frequency;
/* Currently only bits_per_word == 8 supported */
priv->bits_per_word = 8;
priv->tmode = 0; /* Tx & Rx */
/* Basic HW init */
spi_hw_init(priv);
return 0;
}
/* Return the max entries we can fill into tx fifo */
static inline u32 tx_max(struct dw_spi_priv *priv)
{
u32 tx_left, tx_room, rxtx_gap;
tx_left = (priv->tx_end - priv->tx) / (priv->bits_per_word >> 3);
tx_room = priv->fifo_len - dw_readw(priv, DW_SPI_TXFLR);
/*
* Another concern is about the tx/rx mismatch, we
* thought about using (priv->fifo_len - rxflr - txflr) as
* one maximum value for tx, but it doesn't cover the
* data which is out of tx/rx fifo and inside the
* shift registers. So a control from sw point of
* view is taken.
*/
rxtx_gap = ((priv->rx_end - priv->rx) - (priv->tx_end - priv->tx)) /
(priv->bits_per_word >> 3);
return min3(tx_left, tx_room, (u32)(priv->fifo_len - rxtx_gap));
}
/* Return the max entries we should read out of rx fifo */
static inline u32 rx_max(struct dw_spi_priv *priv)
{
u32 rx_left = (priv->rx_end - priv->rx) / (priv->bits_per_word >> 3);
return min_t(u32, rx_left, dw_readw(priv, DW_SPI_RXFLR));
}
static void dw_writer(struct dw_spi_priv *priv)
{
u32 max = tx_max(priv);
u16 txw = 0;
while (max--) {
/* Set the tx word if the transfer's original "tx" is not null */
if (priv->tx_end - priv->len) {
if (priv->bits_per_word == 8)
txw = *(u8 *)(priv->tx);
else
txw = *(u16 *)(priv->tx);
}
dw_writew(priv, DW_SPI_DR, txw);
debug("%s: tx=0x%02x\n", __func__, txw);
priv->tx += priv->bits_per_word >> 3;
}
}
static int dw_reader(struct dw_spi_priv *priv)
{
unsigned start = get_timer(0);
u32 max;
u16 rxw;
/* Wait for rx data to be ready */
while (rx_max(priv) == 0) {
if (get_timer(start) > RX_TIMEOUT)
return -ETIMEDOUT;
}
max = rx_max(priv);
while (max--) {
rxw = dw_readw(priv, DW_SPI_DR);
debug("%s: rx=0x%02x\n", __func__, rxw);
/*
* Care about rx only if the transfer's original "rx" is
* not null
*/
if (priv->rx_end - priv->len) {
if (priv->bits_per_word == 8)
*(u8 *)(priv->rx) = rxw;
else
*(u16 *)(priv->rx) = rxw;
}
priv->rx += priv->bits_per_word >> 3;
}
return 0;
}
static int poll_transfer(struct dw_spi_priv *priv)
{
int ret;
do {
dw_writer(priv);
ret = dw_reader(priv);
if (ret < 0)
return ret;
} while (priv->rx_end > priv->rx);
return 0;
}
static int dw_spi_xfer(struct udevice *dev, unsigned int bitlen,
const void *dout, void *din, unsigned long flags)
{
struct udevice *bus = dev->parent;
struct dw_spi_priv *priv = dev_get_priv(bus);
const u8 *tx = dout;
u8 *rx = din;
int ret = 0;
u32 cr0 = 0;
u32 cs;
/* spi core configured to do 8 bit transfers */
if (bitlen % 8) {
debug("Non byte aligned SPI transfer.\n");
return -1;
}
cr0 = (priv->bits_per_word - 1) | (priv->type << SPI_FRF_OFFSET) |
(priv->mode << SPI_MODE_OFFSET) |
(priv->tmode << SPI_TMOD_OFFSET);
if (rx && tx)
priv->tmode = SPI_TMOD_TR;
else if (rx)
priv->tmode = SPI_TMOD_RO;
else
priv->tmode = SPI_TMOD_TO;
cr0 &= ~SPI_TMOD_MASK;
cr0 |= (priv->tmode << SPI_TMOD_OFFSET);
priv->len = bitlen >> 3;
debug("%s: rx=%p tx=%p len=%d [bytes]\n", __func__, rx, tx, priv->len);
priv->tx = (void *)tx;
priv->tx_end = priv->tx + priv->len;
priv->rx = rx;
priv->rx_end = priv->rx + priv->len;
/* Disable controller before writing control registers */
spi_enable_chip(priv, 0);
debug("%s: cr0=%08x\n", __func__, cr0);
/* Reprogram cr0 only if changed */
if (dw_readw(priv, DW_SPI_CTRL0) != cr0)
dw_writew(priv, DW_SPI_CTRL0, cr0);
/*
* Configure the desired SS (slave select 0...3) in the controller
* The DW SPI controller will activate and deactivate this CS
* automatically. So no cs_activate() etc is needed in this driver.
*/
cs = spi_chip_select(dev);
dw_writel(priv, DW_SPI_SER, 1 << cs);
/* Enable controller after writing control registers */
spi_enable_chip(priv, 1);
/* Start transfer in a polling loop */
ret = poll_transfer(priv);
return ret;
}
static int dw_spi_set_speed(struct udevice *bus, uint speed)
{
struct dw_spi_platdata *plat = bus->platdata;
struct dw_spi_priv *priv = dev_get_priv(bus);
u16 clk_div;
if (speed > plat->frequency)
speed = plat->frequency;
/* Disable controller before writing control registers */
spi_enable_chip(priv, 0);
/* clk_div doesn't support odd number */
clk_div = cm_get_spi_controller_clk_hz() / speed;
clk_div = (clk_div + 1) & 0xfffe;
dw_writel(priv, DW_SPI_BAUDR, clk_div);
/* Enable controller after writing control registers */
spi_enable_chip(priv, 1);
priv->freq = speed;
debug("%s: regs=%p speed=%d clk_div=%d\n", __func__, priv->regs,
priv->freq, clk_div);
return 0;
}
static int dw_spi_set_mode(struct udevice *bus, uint mode)
{
struct dw_spi_priv *priv = dev_get_priv(bus);
/*
* Can't set mode yet. Since this depends on if rx, tx, or
* rx & tx is requested. So we have to defer this to the
* real transfer function.
*/
priv->mode = mode;
debug("%s: regs=%p, mode=%d\n", __func__, priv->regs, priv->mode);
return 0;
}
static const struct dm_spi_ops dw_spi_ops = {
.xfer = dw_spi_xfer,
.set_speed = dw_spi_set_speed,
.set_mode = dw_spi_set_mode,
/*
* cs_info is not needed, since we require all chip selects to be
* in the device tree explicitly
*/
};
static const struct udevice_id dw_spi_ids[] = {
{ .compatible = "snps,dw-apb-ssi" },
{ }
};
U_BOOT_DRIVER(dw_spi) = {
.name = "dw_spi",
.id = UCLASS_SPI,
.of_match = dw_spi_ids,
.ops = &dw_spi_ops,
.ofdata_to_platdata = dw_spi_ofdata_to_platdata,
.platdata_auto_alloc_size = sizeof(struct dw_spi_platdata),
.priv_auto_alloc_size = sizeof(struct dw_spi_priv),
.probe = dw_spi_probe,
};