Jetpack/kernel_avc/kernel-4.9/drivers/misc/memory_state_time.c

463 lines
11 KiB
C

/* drivers/misc/memory_state_time.c
*
* Copyright (C) 2016 Google, Inc.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/device.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/hashtable.h>
#include <linux/kconfig.h>
#include <linux/kernel.h>
#include <linux/kobject.h>
#include <linux/memory-state-time.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/of_platform.h>
#include <linux/slab.h>
#include <linux/sysfs.h>
#include <linux/time.h>
#include <linux/timekeeping.h>
#include <linux/workqueue.h>
#define KERNEL_ATTR_RO(_name) \
static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
#define KERNEL_ATTR_RW(_name) \
static struct kobj_attribute _name##_attr = \
__ATTR(_name, 0644, _name##_show, _name##_store)
#define FREQ_HASH_BITS 4
DECLARE_HASHTABLE(freq_hash_table, FREQ_HASH_BITS);
static DEFINE_MUTEX(mem_lock);
#define TAG "memory_state_time"
#define BW_NODE "/soc/memory-state-time"
#define FREQ_TBL "freq-tbl"
#define BW_TBL "bw-buckets"
#define NUM_SOURCES "num-sources"
#define LOWEST_FREQ 2
static int curr_bw;
static int curr_freq;
static u32 *bw_buckets;
static u32 *freq_buckets;
static int num_freqs;
static int num_buckets;
static int registered_bw_sources;
static u64 last_update;
static bool init_success;
static struct workqueue_struct *memory_wq;
static u32 num_sources = 10;
static int *bandwidths;
struct freq_entry {
int freq;
u64 *buckets; /* Bandwidth buckets. */
struct hlist_node hash;
};
struct queue_container {
struct work_struct update_state;
int value;
u64 time_now;
int id;
struct mutex *lock;
};
static int find_bucket(int bw)
{
int i;
if (bw_buckets != NULL) {
for (i = 0; i < num_buckets; i++) {
if (bw_buckets[i] > bw) {
pr_debug("Found bucket %d for bandwidth %d\n",
i, bw);
return i;
}
}
return num_buckets - 1;
}
return 0;
}
static u64 get_time_diff(u64 time_now)
{
u64 ms;
ms = time_now - last_update;
last_update = time_now;
return ms;
}
static ssize_t show_stat_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
int i, j;
int len = 0;
struct freq_entry *freq_entry;
for (i = 0; i < num_freqs; i++) {
hash_for_each_possible(freq_hash_table, freq_entry, hash,
freq_buckets[i]) {
if (freq_entry->freq == freq_buckets[i]) {
len += scnprintf(buf + len, PAGE_SIZE - len,
"%d ", freq_buckets[i]);
if (len >= PAGE_SIZE)
break;
for (j = 0; j < num_buckets; j++) {
len += scnprintf(buf + len,
PAGE_SIZE - len,
"%llu ",
freq_entry->buckets[j]);
}
len += scnprintf(buf + len, PAGE_SIZE - len,
"\n");
}
}
}
pr_debug("Current Time: %llu\n", ktime_get_boot_ns());
return len;
}
KERNEL_ATTR_RO(show_stat);
static void update_table(u64 time_now)
{
struct freq_entry *freq_entry;
pr_debug("Last known bw %d freq %d\n", curr_bw, curr_freq);
hash_for_each_possible(freq_hash_table, freq_entry, hash, curr_freq) {
if (curr_freq == freq_entry->freq) {
freq_entry->buckets[find_bucket(curr_bw)]
+= get_time_diff(time_now);
break;
}
}
}
static bool freq_exists(int freq)
{
int i;
for (i = 0; i < num_freqs; i++) {
if (freq == freq_buckets[i])
return true;
}
return false;
}
static int calculate_total_bw(int bw, int index)
{
int i;
int total_bw = 0;
pr_debug("memory_state_time New bw %d for id %d\n", bw, index);
bandwidths[index] = bw;
for (i = 0; i < registered_bw_sources; i++)
total_bw += bandwidths[i];
return total_bw;
}
static void freq_update_do_work(struct work_struct *work)
{
struct queue_container *freq_state_update
= container_of(work, struct queue_container,
update_state);
if (freq_state_update) {
mutex_lock(&mem_lock);
update_table(freq_state_update->time_now);
curr_freq = freq_state_update->value;
mutex_unlock(&mem_lock);
kfree(freq_state_update);
}
}
static void bw_update_do_work(struct work_struct *work)
{
struct queue_container *bw_state_update
= container_of(work, struct queue_container,
update_state);
if (bw_state_update) {
mutex_lock(&mem_lock);
update_table(bw_state_update->time_now);
curr_bw = calculate_total_bw(bw_state_update->value,
bw_state_update->id);
mutex_unlock(&mem_lock);
kfree(bw_state_update);
}
}
static void memory_state_freq_update(struct memory_state_update_block *ub,
int value)
{
if (IS_ENABLED(CONFIG_MEMORY_STATE_TIME)) {
if (freq_exists(value) && init_success) {
struct queue_container *freq_container
= kmalloc(sizeof(struct queue_container),
GFP_KERNEL);
if (!freq_container)
return;
INIT_WORK(&freq_container->update_state,
freq_update_do_work);
freq_container->time_now = ktime_get_boot_ns();
freq_container->value = value;
pr_debug("Scheduling freq update in work queue\n");
queue_work(memory_wq, &freq_container->update_state);
} else {
pr_debug("Freq does not exist.\n");
}
}
}
static void memory_state_bw_update(struct memory_state_update_block *ub,
int value)
{
if (IS_ENABLED(CONFIG_MEMORY_STATE_TIME)) {
if (init_success) {
struct queue_container *bw_container
= kmalloc(sizeof(struct queue_container),
GFP_KERNEL);
if (!bw_container)
return;
INIT_WORK(&bw_container->update_state,
bw_update_do_work);
bw_container->time_now = ktime_get_boot_ns();
bw_container->value = value;
bw_container->id = ub->id;
pr_debug("Scheduling bandwidth update in work queue\n");
queue_work(memory_wq, &bw_container->update_state);
}
}
}
struct memory_state_update_block *memory_state_register_frequency_source(void)
{
struct memory_state_update_block *block;
if (IS_ENABLED(CONFIG_MEMORY_STATE_TIME)) {
pr_debug("Allocating frequency source\n");
block = kmalloc(sizeof(struct memory_state_update_block),
GFP_KERNEL);
if (!block)
return NULL;
block->update_call = memory_state_freq_update;
return block;
}
pr_err("Config option disabled.\n");
return NULL;
}
EXPORT_SYMBOL_GPL(memory_state_register_frequency_source);
struct memory_state_update_block *memory_state_register_bandwidth_source(void)
{
struct memory_state_update_block *block;
if (IS_ENABLED(CONFIG_MEMORY_STATE_TIME)) {
pr_debug("Allocating bandwidth source %d\n",
registered_bw_sources);
block = kmalloc(sizeof(struct memory_state_update_block),
GFP_KERNEL);
if (!block)
return NULL;
block->update_call = memory_state_bw_update;
if (registered_bw_sources < num_sources) {
block->id = registered_bw_sources++;
} else {
pr_err("Unable to allocate source; max number reached\n");
kfree(block);
return NULL;
}
return block;
}
pr_err("Config option disabled.\n");
return NULL;
}
EXPORT_SYMBOL_GPL(memory_state_register_bandwidth_source);
/* Buckets are designated by their maximum.
* Returns the buckets decided by the capability of the device.
*/
static int get_bw_buckets(struct device *dev)
{
int ret, lenb;
struct device_node *node = dev->of_node;
of_property_read_u32(node, NUM_SOURCES, &num_sources);
if (!of_find_property(node, BW_TBL, &lenb)) {
pr_err("Missing %s property\n", BW_TBL);
return -ENODATA;
}
bandwidths = devm_kzalloc(dev,
sizeof(*bandwidths) * num_sources, GFP_KERNEL);
if (!bandwidths)
return -ENOMEM;
lenb /= sizeof(*bw_buckets);
bw_buckets = devm_kzalloc(dev, lenb * sizeof(*bw_buckets),
GFP_KERNEL);
if (!bw_buckets) {
devm_kfree(dev, bandwidths);
return -ENOMEM;
}
ret = of_property_read_u32_array(node, BW_TBL, bw_buckets,
lenb);
if (ret < 0) {
devm_kfree(dev, bandwidths);
devm_kfree(dev, bw_buckets);
pr_err("Unable to read bandwidth table from device tree.\n");
return ret;
}
curr_bw = 0;
num_buckets = lenb;
return 0;
}
/* Adds struct freq_entry nodes to the hashtable for each compatible frequency.
* Returns the supported number of frequencies.
*/
static int freq_buckets_init(struct device *dev)
{
struct freq_entry *freq_entry;
int i;
int ret, lenf;
struct device_node *node = dev->of_node;
if (!of_find_property(node, FREQ_TBL, &lenf)) {
pr_err("Missing %s property\n", FREQ_TBL);
return -ENODATA;
}
lenf /= sizeof(*freq_buckets);
freq_buckets = devm_kzalloc(dev, lenf * sizeof(*freq_buckets),
GFP_KERNEL);
if (!freq_buckets)
return -ENOMEM;
pr_debug("freqs found len %d\n", lenf);
ret = of_property_read_u32_array(node, FREQ_TBL, freq_buckets,
lenf);
if (ret < 0) {
devm_kfree(dev, freq_buckets);
pr_err("Unable to read frequency table from device tree.\n");
return ret;
}
pr_debug("ret freq %d\n", ret);
num_freqs = lenf;
curr_freq = freq_buckets[LOWEST_FREQ];
for (i = 0; i < num_freqs; i++) {
freq_entry = devm_kzalloc(dev, sizeof(struct freq_entry),
GFP_KERNEL);
if (!freq_entry)
return -ENOMEM;
freq_entry->buckets = devm_kzalloc(dev, sizeof(u64)*num_buckets,
GFP_KERNEL);
if (!freq_entry->buckets) {
devm_kfree(dev, freq_entry);
return -ENOMEM;
}
pr_debug("memory_state_time Adding freq to ht %d\n",
freq_buckets[i]);
freq_entry->freq = freq_buckets[i];
hash_add(freq_hash_table, &freq_entry->hash, freq_buckets[i]);
}
return 0;
}
struct kobject *memory_kobj;
EXPORT_SYMBOL_GPL(memory_kobj);
static struct attribute *memory_attrs[] = {
&show_stat_attr.attr,
NULL
};
static struct attribute_group memory_attr_group = {
.attrs = memory_attrs,
};
static int memory_state_time_probe(struct platform_device *pdev)
{
int error;
error = get_bw_buckets(&pdev->dev);
if (error)
return error;
error = freq_buckets_init(&pdev->dev);
if (error)
return error;
last_update = ktime_get_boot_ns();
init_success = true;
pr_debug("memory_state_time initialized with num_freqs %d\n",
num_freqs);
return 0;
}
static const struct of_device_id match_table[] = {
{ .compatible = "memory-state-time" },
{}
};
static struct platform_driver memory_state_time_driver = {
.probe = memory_state_time_probe,
.driver = {
.name = "memory-state-time",
.of_match_table = match_table,
.owner = THIS_MODULE,
},
};
static int __init memory_state_time_init(void)
{
int error;
hash_init(freq_hash_table);
memory_wq = create_singlethread_workqueue("memory_wq");
if (!memory_wq) {
pr_err("Unable to create workqueue.\n");
return -EINVAL;
}
/*
* Create sys/kernel directory for memory_state_time.
*/
memory_kobj = kobject_create_and_add(TAG, kernel_kobj);
if (!memory_kobj) {
pr_err("Unable to allocate memory_kobj for sysfs directory.\n");
error = -ENOMEM;
goto wq;
}
error = sysfs_create_group(memory_kobj, &memory_attr_group);
if (error) {
pr_err("Unable to create sysfs folder.\n");
goto kobj;
}
error = platform_driver_register(&memory_state_time_driver);
if (error) {
pr_err("Unable to register memory_state_time platform driver.\n");
goto group;
}
return 0;
group: sysfs_remove_group(memory_kobj, &memory_attr_group);
kobj: kobject_put(memory_kobj);
wq: destroy_workqueue(memory_wq);
return error;
}
module_init(memory_state_time_init);