Jetpack/kernel/nvidia/drivers/video/tegra/dc/dp_lt.c

1135 lines
30 KiB
C

/*
* dp_lt.c: DP Link Training functions.
*
* Copyright (c) 2015-2018, NVIDIA CORPORATION, All rights reserved.
* Author: Animesh Kishore <ankishore@nvidia.com>
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/mutex.h>
#include <linux/workqueue.h>
#include <linux/delay.h>
#include <linux/completion.h>
#include <linux/kernel.h>
#include "dc.h"
#include <linux/moduleparam.h>
#include "dp_lt.h"
#include "dpaux.h"
#include "dp.h"
#include "sor.h"
#include "sor_regs.h"
/*
* By default we do not trigger LT if link is already stable.
* However, analyzer tests in their latest firmware are explicitly
* checking for LT. Add param to suppress this optimization. It
* has no usecase other than analyzer specific requirement.
*/
static bool force_trigger_lt;
module_param(force_trigger_lt, bool, 0644);
MODULE_PARM_DESC(force_trigger_lt,
"Retrigger LT even if link is already stable");
static int lane_fallback_table[] = {1, 2, 4};
static void set_lt_state(struct tegra_dp_lt_data *lt_data,
int target_state, int delay_ms);
static void set_lt_tpg(struct tegra_dp_lt_data *lt_data, u32 tp);
/* Check if post-cursor2 programming is supported */
static inline bool is_pc2_supported(struct tegra_dp_lt_data *lt_data)
{
struct tegra_dc_dp_link_config *cfg = &lt_data->dp->link_cfg;
struct tegra_dp_out *dp_out = lt_data->dp->dc->out->dp_out;
return (!dp_out->pc2_disabled &&
cfg->tps == TEGRA_DC_DP_TRAINING_PATTERN_3);
}
/*
* Wait period before reading link status.
* If dpcd addr 0xe TRAINING_AUX_RD_INTERVAL absent or zero,
* wait for 100us for CR status and 400us for CE status.
* Otherwise, use values as specified.
*/
static inline u32 wait_aux_training(struct tegra_dp_lt_data *lt_data,
bool is_clk_recovery)
{
if (!lt_data->aux_rd_interval)
is_clk_recovery ? usleep_range(150, 200) :
usleep_range(450, 500);
else
msleep(lt_data->aux_rd_interval * 4);
return lt_data->aux_rd_interval;
}
static inline int get_next_lower_lane_count(struct tegra_dc_dp_data *dp)
{
u8 cur_lanes = dp->link_cfg.lane_count;
int k;
for (k = ARRAY_SIZE(lane_fallback_table) - 1; k >= 0; k--) {
if (cur_lanes == lane_fallback_table[k])
break;
}
if (k <= 0)
return -ENOENT;
return lane_fallback_table[k - 1];
}
static inline int get_next_lower_link_rate(struct tegra_dc_dp_data *dp)
{
struct tegra_dc_sor_data *sor = dp->sor;
u8 cur_link_rate = dp->link_cfg.link_bw;
int k;
for (k = sor->num_link_speeds - 1; k >= 0; k--) {
if (cur_link_rate == sor->link_speeds[k].link_rate)
break;
}
if (k <= 0)
return -ENOENT;
return sor->link_speeds[k - 1].link_rate;
}
static bool get_clock_recovery_status(struct tegra_dp_lt_data *lt_data,
u32 *cr_lane_mask)
{
u32 cnt;
u32 n_lanes = lt_data->n_lanes;
u8 data_ptr = 0;
u8 cr_done = 1;
u32 loopcnt = (n_lanes == 1) ? 1 : n_lanes >> 1;
*cr_lane_mask = 0;
for (cnt = 0; cnt < loopcnt; cnt++) {
tegra_dc_dp_dpcd_read(lt_data->dp,
(NV_DPCD_LANE0_1_STATUS + cnt), &data_ptr);
if (n_lanes == 1) {
cr_done = data_ptr & 0x1;
*cr_lane_mask = cr_done;
} else {
u32 tmp;
/* Lane 0 or 2 */
tmp = data_ptr & 0x1;
cr_done &= tmp;
*cr_lane_mask |= tmp << (cnt * 2);
/* Lane 1 or 3 */
data_ptr >>= NV_DPCD_STATUS_LANEXPLUS1_CR_DONE_SHIFT;
tmp = data_ptr & 0x1;
cr_done &= tmp;
*cr_lane_mask |= (tmp << 1) << (cnt * 2);
}
}
return cr_done;
}
static bool get_channel_eq_status(struct tegra_dp_lt_data *lt_data)
{
u32 cnt;
u32 n_lanes = lt_data->n_lanes;
u8 data_ptr = 0;
bool ce_done = true;
/* support for 1 lane */
u32 loopcnt = (n_lanes == 1) ? 1 : n_lanes >> 1;
for (cnt = 0; cnt < loopcnt; cnt++) {
tegra_dc_dp_dpcd_read(lt_data->dp,
(NV_DPCD_LANE0_1_STATUS + cnt), &data_ptr);
if (n_lanes == 1) {
ce_done = (data_ptr &
(0x1 << NV_DPCD_STATUS_LANEX_CHN_EQ_DONE_SHIFT)) &&
(data_ptr &
(0x1 << NV_DPCD_STATUS_LANEX_SYMBOL_LOCKED_SHFIT));
break;
} else if (!(data_ptr &
(0x1 << NV_DPCD_STATUS_LANEX_CHN_EQ_DONE_SHIFT)) ||
!(data_ptr &
(0x1 << NV_DPCD_STATUS_LANEX_SYMBOL_LOCKED_SHFIT)) ||
!(data_ptr &
(0x1 << NV_DPCD_STATUS_LANEXPLUS1_CHN_EQ_DONE_SHIFT)) ||
!(data_ptr &
(0x1 << NV_DPCD_STATUS_LANEXPLUS1_SYMBOL_LOCKED_SHIFT))) {
ce_done = false;
break;
}
}
if (ce_done) {
tegra_dc_dp_dpcd_read(lt_data->dp,
NV_DPCD_LANE_ALIGN_STATUS_UPDATED, &data_ptr);
if (!(data_ptr &
NV_DPCD_LANE_ALIGN_STATUS_INTERLANE_ALIGN_DONE_YES))
ce_done = false;
}
return ce_done;
}
static bool get_lt_status(struct tegra_dp_lt_data *lt_data)
{
bool cr_done, ce_done;
u32 cr_lane_mask;
cr_done = get_clock_recovery_status(lt_data, &cr_lane_mask);
if (!cr_done)
return false;
ce_done = get_channel_eq_status(lt_data);
return ce_done;
}
/*
* get updated voltage swing, pre-emphasis and
* post-cursor2 settings from panel
*/
static void get_lt_new_config(struct tegra_dp_lt_data *lt_data)
{
u32 cnt;
u8 data_ptr;
u32 n_lanes = lt_data->n_lanes;
u32 *vs = lt_data->drive_current;
u32 *pe = lt_data->pre_emphasis;
u32 *pc = lt_data->post_cursor2;
bool pc2_supported = is_pc2_supported(lt_data);
/* support for 1 lane */
u32 loopcnt = (n_lanes == 1) ? 1 : n_lanes >> 1;
for (cnt = 0; cnt < loopcnt; cnt++) {
tegra_dc_dp_dpcd_read(lt_data->dp,
(NV_DPCD_LANE0_1_ADJUST_REQ + cnt), &data_ptr);
pe[2 * cnt] = (data_ptr & NV_DPCD_ADJUST_REQ_LANEX_PE_MASK) >>
NV_DPCD_ADJUST_REQ_LANEX_PE_SHIFT;
vs[2 * cnt] = (data_ptr & NV_DPCD_ADJUST_REQ_LANEX_DC_MASK) >>
NV_DPCD_ADJUST_REQ_LANEX_DC_SHIFT;
pe[1 + 2 * cnt] =
(data_ptr & NV_DPCD_ADJUST_REQ_LANEXPLUS1_PE_MASK) >>
NV_DPCD_ADJUST_REQ_LANEXPLUS1_PE_SHIFT;
vs[1 + 2 * cnt] =
(data_ptr & NV_DPCD_ADJUST_REQ_LANEXPLUS1_DC_MASK) >>
NV_DPCD_ADJUST_REQ_LANEXPLUS1_DC_SHIFT;
}
if (pc2_supported) {
tegra_dc_dp_dpcd_read(lt_data->dp,
NV_DPCD_ADJUST_REQ_POST_CURSOR2, &data_ptr);
for (cnt = 0; cnt < n_lanes; cnt++) {
pc[cnt] = (data_ptr >>
NV_DPCD_ADJUST_REQ_POST_CURSOR2_LANE_SHIFT(cnt)) &
NV_DPCD_ADJUST_REQ_POST_CURSOR2_LANE_MASK;
}
}
for (cnt = 0; cnt < n_lanes; cnt++)
pr_info("dp lt: new config: lane %d: "
"vs level: %d, pe level: %d, pc2 level: %d\n",
cnt, vs[cnt], pe[cnt], pc2_supported ? pc[cnt] : 0);
}
static void set_tx_pu(struct tegra_dp_lt_data *lt_data)
{
struct tegra_dc_dp_data *dp = lt_data->dp;
struct tegra_dc_sor_data *sor = dp->sor;
u32 n_lanes = lt_data->n_lanes;
int cnt = 1;
u32 *vs = lt_data->drive_current;
u32 *pe = lt_data->pre_emphasis;
u32 *pc = lt_data->post_cursor2;
u32 max_tx_pu;
u32 nv_sor_dp_padctl_reg = nv_sor_dp_padctl(sor->portnum);
if (!dp->pdata || (dp->pdata && dp->pdata->tx_pu_disable)) {
tegra_sor_write_field(dp->sor,
nv_sor_dp_padctl_reg,
NV_SOR_DP_PADCTL_TX_PU_ENABLE,
NV_SOR_DP_PADCTL_TX_PU_DISABLE);
lt_data->tx_pu = 0;
return;
}
max_tx_pu = dp->pdata->lt_data[DP_TX_PU].data[pc[0]][vs[0]][pe[0]];
for (; cnt < n_lanes; cnt++) {
max_tx_pu = (max_tx_pu <
dp->pdata->lt_data[DP_TX_PU].data[pc[cnt]][vs[cnt]][pe[cnt]]) ?
dp->pdata->lt_data[DP_TX_PU].data[pc[cnt]][vs[cnt]][pe[cnt]] :
max_tx_pu;
}
lt_data->tx_pu = max_tx_pu;
tegra_sor_write_field(sor, nv_sor_dp_padctl_reg,
NV_SOR_DP_PADCTL_TX_PU_VALUE_DEFAULT_MASK,
(max_tx_pu <<
NV_SOR_DP_PADCTL_TX_PU_VALUE_SHIFT |
NV_SOR_DP_PADCTL_TX_PU_ENABLE));
pr_info("dp lt: tx_pu: 0x%x\n", max_tx_pu);
}
/*
* configure voltage swing, pre-emphasis,
* post-cursor2 and tx_pu on host and sink
*/
static void set_lt_config(struct tegra_dp_lt_data *lt_data)
{
struct tegra_dc_dp_data *dp = lt_data->dp;
struct tegra_dc_sor_data *sor = dp->sor;
u32 n_lanes = lt_data->n_lanes;
bool pc2_supported = is_pc2_supported(lt_data);
int i, cnt;
u32 val;
u32 *vs = lt_data->drive_current;
u32 *pe = lt_data->pre_emphasis;
u32 *pc = lt_data->post_cursor2;
u32 aux_stat = 0;
u8 training_lanex_set[4] = {0, 0, 0, 0};
u32 training_lanex_set_size = sizeof(training_lanex_set);
/* support for 1 lane */
u32 loopcnt = (n_lanes == 1) ? 1 : n_lanes >> 1;
/*
* apply voltage swing, preemphasis, postcursor2 and tx_pu
* prod settings to each lane based on levels
*/
for (i = 0; i < n_lanes; i++) {
u32 mask = 0;
u32 pe_reg, vs_reg, pc_reg;
u32 shift = 0;
cnt = sor->xbar_ctrl[i];
switch (cnt) {
case 0:
mask = NV_SOR_PR_LANE2_DP_LANE0_MASK;
shift = NV_SOR_PR_LANE2_DP_LANE0_SHIFT;
break;
case 1:
mask = NV_SOR_PR_LANE1_DP_LANE1_MASK;
shift = NV_SOR_PR_LANE1_DP_LANE1_SHIFT;
break;
case 2:
mask = NV_SOR_PR_LANE0_DP_LANE2_MASK;
shift = NV_SOR_PR_LANE0_DP_LANE2_SHIFT;
break;
case 3:
mask = NV_SOR_PR_LANE3_DP_LANE3_MASK;
shift = NV_SOR_PR_LANE3_DP_LANE3_SHIFT;
break;
default:
dev_err(&dp->dc->ndev->dev,
"dp: incorrect lane cnt\n");
}
pe_reg = dp->pdata->lt_data[DP_PE].data[pc[i]][vs[i]][pe[i]];
vs_reg = dp->pdata->lt_data[DP_VS].data[pc[i]][vs[i]][pe[i]];
pc_reg = dp->pdata->lt_data[DP_PC].data[pc[i]][vs[i]][pe[i]];
tegra_sor_write_field(sor, NV_SOR_PR(sor->portnum),
mask, (pe_reg << shift));
tegra_sor_write_field(sor, NV_SOR_DC(sor->portnum),
mask, (vs_reg << shift));
if (pc2_supported) {
tegra_sor_write_field(
sor, NV_SOR_POSTCURSOR(sor->portnum),
mask, (pc_reg << shift));
}
pr_info("dp lt: config: lane %d: "
"vs level: %d, pe level: %d, pc2 level: %d\n",
i, vs[i], pe[i], pc2_supported ? pc[i] : 0);
}
set_tx_pu(lt_data);
usleep_range(15, 20); /* HW stabilization delay */
/* apply voltage swing and preemphasis levels to panel for each lane */
for (cnt = n_lanes - 1; cnt >= 0; cnt--) {
u32 max_vs_flag = tegra_dp_is_max_vs(pe[cnt], vs[cnt]);
u32 max_pe_flag = tegra_dp_is_max_pe(pe[cnt], vs[cnt]);
val = (vs[cnt] << NV_DPCD_TRAINING_LANEX_SET_DC_SHIFT) |
(max_vs_flag ?
NV_DPCD_TRAINING_LANEX_SET_DC_MAX_REACHED_T :
NV_DPCD_TRAINING_LANEX_SET_DC_MAX_REACHED_F) |
(pe[cnt] << NV_DPCD_TRAINING_LANEX_SET_PE_SHIFT) |
(max_pe_flag ?
NV_DPCD_TRAINING_LANEX_SET_PE_MAX_REACHED_T :
NV_DPCD_TRAINING_LANEX_SET_PE_MAX_REACHED_F);
training_lanex_set[cnt] = val;
}
tegra_dc_dpaux_write(dp->dpaux, DPAUX_DP_AUXCTL_CMD_AUXWR,
NV_DPCD_TRAINING_LANE0_SET, training_lanex_set,
&training_lanex_set_size, &aux_stat);
/* apply postcursor2 levels to panel for each lane */
if (pc2_supported) {
for (cnt = 0; cnt < loopcnt; cnt++) {
u32 max_pc_flag0 = tegra_dp_is_max_pc(pc[cnt]);
u32 max_pc_flag1 = tegra_dp_is_max_pc(pc[cnt + 1]);
val = (pc[cnt] << NV_DPCD_LANEX_SET2_PC2_SHIFT) |
(max_pc_flag0 ?
NV_DPCD_LANEX_SET2_PC2_MAX_REACHED_T :
NV_DPCD_LANEX_SET2_PC2_MAX_REACHED_F) |
(pc[cnt + 1] <<
NV_DPCD_LANEXPLUS1_SET2_PC2_SHIFT) |
(max_pc_flag1 ?
NV_DPCD_LANEXPLUS1_SET2_PC2_MAX_REACHED_T :
NV_DPCD_LANEXPLUS1_SET2_PC2_MAX_REACHED_F);
tegra_dc_dp_dpcd_write(dp,
(NV_DPCD_TRAINING_LANE0_1_SET2 + cnt), val);
}
}
}
static int do_fast_lt_no_handshake(struct tegra_dp_lt_data *lt_data)
{
BUG_ON(!lt_data->lt_config_valid);
/* transmit link training pattern 1 for min of 500us */
set_lt_tpg(lt_data, TEGRA_DC_DP_TRAINING_PATTERN_1);
usleep_range(500, 600);
/* transmit channel equalization training pattern for min of 500us */
set_lt_tpg(lt_data, lt_data->dp->link_cfg.tps);
usleep_range(500, 600);
return 0;
}
static void lt_data_sw_reset(struct tegra_dp_lt_data *lt_data)
{
struct tegra_dc_dp_data *dp = lt_data->dp;
BUG_ON(!dp);
lt_data->lt_config_valid = false;
lt_data->cr_adj_retry = 0;
lt_data->cr_max_retry = 0;
lt_data->ce_retry = 0;
lt_data->tx_pu = 0;
lt_data->n_lanes = dp->link_cfg.lane_count;
lt_data->link_bw = dp->link_cfg.link_bw;
lt_data->no_aux_handshake = dp->link_cfg.support_fast_lt;
lt_data->aux_rd_interval = dp->link_cfg.aux_rd_interval;
memset(lt_data->pre_emphasis, PRE_EMPHASIS_L0,
sizeof(lt_data->pre_emphasis));
memset(lt_data->drive_current, DRIVE_CURRENT_L0,
sizeof(lt_data->drive_current));
memset(lt_data->post_cursor2, POST_CURSOR2_L0,
sizeof(lt_data->post_cursor2));
}
static void lt_data_reset(struct tegra_dp_lt_data *lt_data)
{
struct tegra_dc_dp_data *dp = lt_data->dp;
BUG_ON(!dp);
lt_data_sw_reset(lt_data);
/* reset LT data on controller and panel only if hpd is asserted */
if (tegra_dc_hpd(dp->dc)) {
/*
* Training pattern is disabled here. Do not HW reset
* lt config i.e. vs, pe, pc2. CTS mandates modifying these
* only when training pattern is enabled.
*/
tegra_dp_update_link_config(dp);
}
}
static void set_lt_tpg(struct tegra_dp_lt_data *lt_data, u32 tp)
{
bool cur_hpd = tegra_dc_hpd(lt_data->dp->dc);
struct tegra_dc_dp_data *dp = lt_data->dp;
if (lt_data->tps == tp)
return;
if (cur_hpd)
tegra_dp_tpg(dp, tp, lt_data->n_lanes);
else
/*
* hpd deasserted. Just set training
* sequence from host side and exit
*/
tegra_sor_tpg(dp->sor, tp, lt_data->n_lanes);
lt_data->tps = tp;
}
static void lt_failed(struct tegra_dp_lt_data *lt_data)
{
struct tegra_dc_dp_data *dp = lt_data->dp;
mutex_lock(&lt_data->lock);
tegra_dc_sor_detach(dp->sor);
set_lt_tpg(lt_data, TEGRA_DC_DP_TRAINING_PATTERN_DISABLE);
lt_data_reset(lt_data);
mutex_unlock(&lt_data->lock);
}
static void lt_passed(struct tegra_dp_lt_data *lt_data)
{
struct tegra_dc_dp_data *dp = lt_data->dp;
mutex_lock(&lt_data->lock);
lt_data->lt_config_valid = true;
set_lt_tpg(lt_data, TEGRA_DC_DP_TRAINING_PATTERN_DISABLE);
tegra_dc_sor_attach(dp->sor);
mutex_unlock(&lt_data->lock);
}
static void lt_reset_state(struct tegra_dp_lt_data *lt_data)
{
struct tegra_dc_dp_data *dp;
struct tegra_dc_sor_data *sor;
bool cur_hpd;
int tgt_state;
int timeout;
BUG_ON(!lt_data || !lt_data->dp || !lt_data->dp->sor);
dp = lt_data->dp;
sor = dp->sor;
cur_hpd = tegra_dc_hpd(dp->dc);
if (lt_data->force_disable) {
pr_info("dp lt: link training force disable\n");
lt_data->force_disable = false;
lt_data->force_trigger = false;
if (!lt_data->no_aux_handshake)
lt_data->lt_config_valid = false;
tgt_state = STATE_DONE_FAIL;
timeout = -1;
goto done;
} else if (!cur_hpd || !dp->link_cfg.is_valid) {
pr_info("dp lt: cur_hpd: %d, link cfg valid: %d\n",
!!cur_hpd, !!dp->link_cfg.is_valid);
lt_failed(lt_data);
lt_data->force_disable = false;
lt_data->force_trigger = false;
tgt_state = STATE_DONE_FAIL;
timeout = -1;
goto done;
}
if (!force_trigger_lt && !lt_data->force_trigger &&
lt_data->lt_config_valid &&
get_lt_status(lt_data)) {
pr_info("dp_lt: link stable, do nothing\n");
lt_passed(lt_data);
tgt_state = STATE_DONE_PASS;
timeout = -1;
goto done;
}
lt_data->force_trigger = false;
/*
* detach SOR early.
* DP lane count can be changed only
* when SOR is asleep.
* DP link bandwidth can be changed only
* when SOR is in safe mode.
*/
mutex_lock(&lt_data->lock);
tegra_dc_sor_detach(sor);
mutex_unlock(&lt_data->lock);
lt_data_reset(lt_data);
tgt_state = STATE_CLOCK_RECOVERY;
timeout = 0;
WARN_ON(lt_data->tps != TEGRA_DC_DP_TRAINING_PATTERN_DISABLE);
/*
* pre-charge main link for at
* least 10us before initiating
* link training
*/
mutex_lock(&lt_data->lock);
tegra_sor_precharge_lanes(sor);
mutex_unlock(&lt_data->lock);
done:
set_lt_state(lt_data, tgt_state, timeout);
}
static void fast_lt_state(struct tegra_dp_lt_data *lt_data)
{
struct tegra_dc_dp_data *dp;
struct tegra_dc_sor_data *sor;
int tgt_state;
int timeout;
bool lt_status;
BUG_ON(!lt_data || !lt_data->dp || !lt_data->dp->sor);
dp = lt_data->dp;
sor = dp->sor;
BUG_ON(!lt_data->no_aux_handshake);
WARN_ON(lt_data->tps != TEGRA_DC_DP_TRAINING_PATTERN_DISABLE);
mutex_lock(&lt_data->lock);
tegra_dc_sor_detach(sor);
set_lt_config(lt_data);
tegra_sor_precharge_lanes(sor);
mutex_unlock(&lt_data->lock);
do_fast_lt_no_handshake(lt_data);
lt_status = get_lt_status(lt_data);
if (lt_status) {
lt_passed(lt_data);
tgt_state = STATE_DONE_PASS;
timeout = -1;
} else {
lt_failed(lt_data);
tgt_state = STATE_RESET;
timeout = 0;
}
pr_info("dp lt: fast link training %s\n",
tgt_state == STATE_DONE_PASS ? "pass" : "fail");
set_lt_state(lt_data, tgt_state, timeout);
}
static inline int set_new_link_cfg(struct tegra_dp_lt_data *lt_data,
struct tegra_dc_dp_link_config *new_cfg)
{
struct tegra_dc_dp_data *dp = lt_data->dp;
if (!tegra_dc_dp_calc_config(dp, dp->mode, new_cfg))
return -EINVAL;
new_cfg->is_valid = true;
dp->link_cfg = *new_cfg;
/*
* Disable LT before updating the current lane count and/or link rate.
*/
set_lt_tpg(lt_data, TEGRA_DC_DP_TRAINING_PATTERN_DISABLE);
tegra_dp_update_link_config(dp);
lt_data->n_lanes = dp->link_cfg.lane_count;
lt_data->link_bw = dp->link_cfg.link_bw;
return 0;
}
static void lt_reduce_link_rate_state(struct tegra_dp_lt_data *lt_data)
{
struct tegra_dc_dp_data *dp = lt_data->dp;
struct tegra_dc_dp_link_config tmp_cfg;
dp->link_cfg.is_valid = false;
tmp_cfg = dp->link_cfg;
tmp_cfg.link_bw = get_next_lower_link_rate(dp);
if (tmp_cfg.link_bw < NV_DPCD_MAX_LINK_BANDWIDTH_VAL_1_62_GBPS)
goto fail;
if (set_new_link_cfg(lt_data, &tmp_cfg))
goto fail;
pr_info("dp lt: retry CR, lanes: %d, link rate: 0x%x\n",
lt_data->n_lanes, lt_data->link_bw);
set_lt_state(lt_data, STATE_CLOCK_RECOVERY, 0);
return;
fail:
pr_info("dp lt: link rate already lowest\n");
lt_failed(lt_data);
set_lt_state(lt_data, STATE_DONE_FAIL, -1);
}
static void lt_reduce_lane_count_state(struct tegra_dp_lt_data *lt_data)
{
struct tegra_dc_dp_data *dp = lt_data->dp;
struct tegra_dc_dp_link_config tmp_cfg;
dp->link_cfg.is_valid = false;
tmp_cfg = dp->link_cfg;
tmp_cfg.lane_count = get_next_lower_lane_count(dp);
if (tmp_cfg.lane_count < 1)
goto fail;
if (set_new_link_cfg(lt_data, &tmp_cfg))
goto fail;
pr_info("dp lt: retry CR, lanes: %d, link rate: 0x%x\n",
lt_data->n_lanes, lt_data->link_bw);
set_lt_state(lt_data, STATE_CLOCK_RECOVERY, 0);
return;
fail:
pr_info("dp lt: lane count already lowest\n");
lt_failed(lt_data);
set_lt_state(lt_data, STATE_DONE_FAIL, -1);
}
static void lt_channel_equalization_fallback(struct tegra_dp_lt_data *lt_data,
int *tgt_state, int *timeout, u32 cr_lane_mask)
{
struct tegra_dc_dp_data *dp = lt_data->dp;
/*
* If we fallback during EQ, there are two paths that we can end up in:
* 1) If 4 lanes are enabled, reduce to 2 lanes and go back to the start
* of CR. If 2 lanes are enabled, reduce to 1 lane and go back to the
* start of CR. If only 1 lane is currently enabled, go to step 2.
* 2) If the current link rate is > RBR, downshift to the next lowest
* link rate and reset the lane count to the highest needed.
*
* Before deciding which path to take, we need to look at the current
* CR status on all lanes:
* - If *all* the target LANEX_CR_DONE bits are still set, then we
* didn't transition to this state due to loss of CR during EQ. Try
* fallback path #1 first.
* - If *at least one* of the LANEX_CR_DONE bits is still set, it's
* likely that the earlier CR phase passed due to crosstalk issues on
* some unconnected lanes. In this case, prioritize lane count
* reduction, and choose fallback path #1 first.
* - If *none* of the LANEX_CR_DONE bits are still set, it's likely that
* CR was lost due to the bandwidth that we're trying to drive. Try
* reducing the link rate first, and choose fallback path #2.
*
* If neither of the above two paths are valid, end link training and
* fail.
*/
if (lt_data->n_lanes > 1 && cr_lane_mask) {
/* Fallback path #1 */
lt_data_sw_reset(lt_data);
*tgt_state = STATE_REDUCE_LANE_COUNT;
} else if (lt_data->link_bw >
NV_DPCD_MAX_LINK_BANDWIDTH_VAL_1_62_GBPS) {
/* Fallback path #2 */
lt_data_sw_reset(lt_data);
dp->link_cfg.lane_count = dp->max_link_cfg.lane_count;
*tgt_state = STATE_REDUCE_LINK_RATE;
} else {
lt_failed(lt_data);
*tgt_state = STATE_DONE_FAIL;
}
*timeout = 0;
}
static void lt_channel_equalization_state(struct tegra_dp_lt_data *lt_data)
{
int tgt_state = STATE_CHANNEL_EQUALIZATION;
int timeout = 0;
bool cr_done = true;
bool ce_done = true;
u32 cr_lane_mask;
/*
* See comment above the TEGRA_DC_DP_TRAINING_PATTERN_BS_CSTM entry in
* sor.c for why this WAR is required.
*/
if (lt_data->dp->link_cfg.tps == TEGRA_DC_DP_TRAINING_PATTERN_4) {
struct tegra_dc_sor_data *sor = lt_data->dp->sor;
tegra_sor_writel(sor, NV_SOR_DP_LQ_CSTM_0, 0x1BC6F1BC);
tegra_sor_writel(sor, NV_SOR_DP_LQ_CSTM_1, 0xC6F1BC6F);
tegra_sor_writel(sor, NV_SOR_DP_LQ_CSTM_2, 0x6F1B);
tegra_sor_write_field(sor, NV_SOR_DP_CONFIG(sor->portnum),
NV_SOR_DP_CONFIG_RD_RESET_VAL_NEGATIVE,
NV_SOR_DP_CONFIG_RD_RESET_VAL_POSITIVE);
tegra_sor_tpg(sor, TEGRA_DC_DP_TRAINING_PATTERN_BS_CSTM,
lt_data->n_lanes);
}
set_lt_tpg(lt_data, lt_data->dp->link_cfg.tps);
wait_aux_training(lt_data, false);
/*
* Fallback if any of these two conditions are true:
* 1) CR is lost on any of the currently enabled lanes.
* 2) The LANEx_CHANNEL_EQ_DONE, LANEx_SYMBOL_LOCKED, or
* INTERLANE_ALIGN_DONE bits have not been set for all enabled lanes
* after 5 retry attempts.
*/
/* Fallback condition #1 */
cr_done = get_clock_recovery_status(lt_data, &cr_lane_mask);
if (!cr_done) {
pr_info("dp lt: CR lost\n");
lt_channel_equalization_fallback(lt_data, &tgt_state, &timeout,
cr_lane_mask);
goto done;
}
ce_done = get_channel_eq_status(lt_data);
if (ce_done) {
lt_passed(lt_data);
tgt_state = STATE_DONE_PASS;
timeout = -1;
pr_info("dp lt: CE done\n");
goto done;
}
pr_info("dp lt: CE not done\n");
/* Fallback condition #2 */
if (++(lt_data->ce_retry) > (CE_RETRY_LIMIT + 1)) {
pr_info("dp lt: CE retry limit %d reached\n",
lt_data->ce_retry - 2);
lt_channel_equalization_fallback(lt_data, &tgt_state, &timeout,
cr_lane_mask);
goto done;
}
get_lt_new_config(lt_data);
set_lt_config(lt_data);
pr_info("dp lt: CE retry\n");
done:
set_lt_state(lt_data, tgt_state, timeout);
}
static inline bool is_vs_already_max(struct tegra_dp_lt_data *lt_data,
u32 old_vs[4], u32 new_vs[4])
{
u32 n_lanes = lt_data->n_lanes;
int cnt;
for (cnt = 0; cnt < n_lanes; cnt++) {
if (old_vs[cnt] == DRIVE_CURRENT_L3 &&
new_vs[cnt] == DRIVE_CURRENT_L3)
continue;
return false;
}
return true;
}
static bool check_cr_fallback(struct tegra_dp_lt_data *lt_data, u32 *vs_temp,
size_t vs_temp_size)
{
/*
* Fallback if any of these three conditions are true:
* 1) CR_DONE is not set for all enabled lanes after 10 total retries.
* 2) The max voltage swing has been reached.
* 3) The same ADJ_REQ voltage swing values have been requested by the
* sink for 5 consecutive retry attempts.
*/
u32 *vs = lt_data->drive_current;
bool need_fallback = false;
/* Fallback condition #1 */
if ((lt_data->cr_max_retry)++ >= (CR_MAX_RETRY_LIMIT - 1)) {
need_fallback = true;
pr_info("dp lt: CR max retry limit %d reached\n",
lt_data->cr_max_retry);
}
if (!memcmp(vs_temp, vs, vs_temp_size)) {
/* Fallback condition #2 */
if (is_vs_already_max(lt_data, vs_temp, vs)) {
need_fallback = true;
pr_info("dp lt: max vs reached\n");
}
/* Fallback condition #3 */
if ((lt_data->cr_adj_retry)++ >= (CR_ADJ_RETRY_LIMIT - 1)) {
need_fallback = true;
pr_info("dp lt: CR adj retry limit %d reached\n",
lt_data->cr_adj_retry);
}
} else {
lt_data->cr_adj_retry = 1;
}
return need_fallback;
}
static void lt_clock_recovery_state(struct tegra_dp_lt_data *lt_data)
{
struct tegra_dc_dp_data *dp;
struct tegra_dc_sor_data *sor;
int tgt_state = STATE_CLOCK_RECOVERY;
int timeout = 0;
u32 *vs = lt_data->drive_current;
bool cr_done;
u32 vs_temp[4], cr_lane_mask;
bool need_fallback = false;
BUG_ON(!lt_data || !lt_data->dp || !lt_data->dp->sor);
dp = lt_data->dp;
sor = dp->sor;
set_lt_tpg(lt_data, TEGRA_DC_DP_TRAINING_PATTERN_1);
set_lt_config(lt_data);
wait_aux_training(lt_data, true);
cr_done = get_clock_recovery_status(lt_data, &cr_lane_mask);
if (cr_done) {
pr_info("dp lt: CR done\n");
lt_data->cr_adj_retry = 0;
lt_data->cr_max_retry = 0;
tgt_state = STATE_CHANNEL_EQUALIZATION;
goto done;
}
pr_info("dp lt: CR not done\n");
memcpy(vs_temp, vs, sizeof(vs_temp));
get_lt_new_config(lt_data);
/*
* If we choose to fallback during CR, there are two paths:
* 1) If the current link rate is > RBR, downshift to the next lower
* link rate. Prioritize link rate reduction over lane count
* reduction.
* 2) If the current link rate is already RBR, check if only the
* lower-numbered lanes have their CR_DONE bits set. For example, in
* a 4-lane configuration, the lower-numbered lanes would be lanes 0
* and 1. In a 2-lane configuration, the lower-numbered lane is lane
* 0 only. If this is the case, reduce the lane count accordingly
* and reset the link rate to the highest needed.
*
* If neither of the above two paths are valid, end link training and
* fail.
*/
need_fallback = check_cr_fallback(lt_data, vs_temp, sizeof(vs_temp));
if (need_fallback) {
if (lt_data->link_bw >
NV_DPCD_MAX_LINK_BANDWIDTH_VAL_1_62_GBPS) {
/* Fallback path #1 */
lt_data_sw_reset(lt_data);
tgt_state = STATE_REDUCE_LINK_RATE;
goto done;
} else if (lt_data->n_lanes > 1) {
/* Fallback path #2 */
u32 expected_cr_mask;
expected_cr_mask = (lt_data->n_lanes == 4) ? 0x3 : 0x1;
if (expected_cr_mask == cr_lane_mask) {
lt_data_sw_reset(lt_data);
dp->link_cfg.link_bw = dp->max_link_cfg.link_bw;
tgt_state = STATE_REDUCE_LANE_COUNT;
goto done;
}
}
lt_failed(lt_data);
tgt_state = STATE_DONE_FAIL;
goto done;
} else {
pr_info("dp lt: CR retry\n");
}
done:
set_lt_state(lt_data, tgt_state, timeout);
}
typedef void (*dispatch_func_t)(struct tegra_dp_lt_data *lt_data);
static const dispatch_func_t state_machine_dispatch[] = {
lt_reset_state, /* STATE_RESET */
fast_lt_state, /* STATE_FAST_LT */
lt_clock_recovery_state, /* STATE_CLOCK_RECOVERY */
lt_channel_equalization_state, /* STATE_CHANNEL_EQUALIZATION */
NULL, /* STATE_DONE_FAIL */
NULL, /* STATE_DONE_PASS */
lt_reduce_link_rate_state, /* STATE_REDUCE_LINK_RATE */
lt_reduce_lane_count_state, /* STATE_REDUCE_LANE_COUNT */
};
static void handle_lt_hpd_evt(struct tegra_dp_lt_data *lt_data)
{
int tgt_state = STATE_RESET;
if (lt_data->lt_config_valid &&
lt_data->no_aux_handshake &&
!lt_data->force_disable)
tgt_state = STATE_FAST_LT;
set_lt_state(lt_data, tgt_state, 0);
}
static void lt_worker(struct work_struct *work)
{
int pending_lt_evt;
struct tegra_dp_lt_data *lt_data = container_of(to_delayed_work(work),
struct tegra_dp_lt_data, dwork);
/*
* Observe and clear pending flag
* and latch the current HPD state.
*/
mutex_lock(&lt_data->lock);
pending_lt_evt = lt_data->pending_evt;
lt_data->pending_evt = 0;
mutex_unlock(&lt_data->lock);
pr_info("dp lt: state %d (%s), pending_lt_evt %d\n",
lt_data->state, tegra_dp_lt_state_names[lt_data->state],
pending_lt_evt);
if (pending_lt_evt) {
handle_lt_hpd_evt(lt_data);
} else if (lt_data->state < ARRAY_SIZE(state_machine_dispatch)) {
dispatch_func_t func = state_machine_dispatch[lt_data->state];
if (!func)
pr_warn("dp lt: NULL state handler in state %d\n",
lt_data->state);
else
func(lt_data);
} else {
pr_warn("dp lt: unexpected state scheduled %d",
lt_data->state);
}
}
static void sched_lt_work(struct tegra_dp_lt_data *lt_data, int delay_ms)
{
cancel_delayed_work(&lt_data->dwork);
if ((delay_ms >= 0) && !lt_data->shutdown)
schedule_delayed_work(&lt_data->dwork,
msecs_to_jiffies(delay_ms));
}
static void set_lt_state(struct tegra_dp_lt_data *lt_data,
int target_state, int delay_ms)
{
mutex_lock(&lt_data->lock);
pr_info("dp lt: switching from state %d (%s) to state %d (%s)\n",
lt_data->state, tegra_dp_lt_state_names[lt_data->state],
target_state, tegra_dp_lt_state_names[target_state]);
lt_data->state = target_state;
/* we have reached final state. notify others. */
if (target_state == STATE_DONE_PASS ||
target_state == STATE_DONE_FAIL)
complete_all(&lt_data->lt_complete);
/*
* If the pending_hpd_evt flag is already set, don't bother to
* reschedule the state machine worker. We should be able to assert
* that there is a worker callback already scheduled, and that it is
* scheduled to run immediately
*/
if (!lt_data->pending_evt)
sched_lt_work(lt_data, delay_ms);
mutex_unlock(&lt_data->lock);
}
int tegra_dp_get_lt_state(struct tegra_dp_lt_data *lt_data)
{
int ret;
mutex_lock(&lt_data->lock);
ret = lt_data->state;
mutex_unlock(&lt_data->lock);
return ret;
}
void tegra_dp_lt_set_pending_evt(struct tegra_dp_lt_data *lt_data)
{
mutex_lock(&lt_data->lock);
/* always schedule work any time there is a pending lt event */
lt_data->pending_evt = 1;
sched_lt_work(lt_data, 0);
mutex_unlock(&lt_data->lock);
}
/*
* Marks previous LT configuration data as invalid.
* Full LT is required to get new LT config data.
*/
void tegra_dp_lt_invalidate(struct tegra_dp_lt_data *lt_data)
{
mutex_lock(&lt_data->lock);
lt_data->lt_config_valid = false;
mutex_unlock(&lt_data->lock);
}
/* block till link training has reached final state */
long tegra_dp_lt_wait_for_completion(struct tegra_dp_lt_data *lt_data,
int target_state, unsigned long timeout_ms)
{
might_sleep();
if (target_state == tegra_dp_get_lt_state(lt_data))
return 1;
mutex_lock(&lt_data->lock);
reinit_completion(&lt_data->lt_complete);
mutex_unlock(&lt_data->lock);
return wait_for_completion_timeout(&lt_data->lt_complete,
msecs_to_jiffies(timeout_ms));
}
void tegra_dp_lt_force_disable(struct tegra_dp_lt_data *lt_data)
{
mutex_lock(&lt_data->lock);
lt_data->force_disable = true;
mutex_unlock(&lt_data->lock);
tegra_dp_lt_set_pending_evt(lt_data);
}
void tegra_dp_lt_init(struct tegra_dp_lt_data *lt_data,
struct tegra_dc_dp_data *dp)
{
BUG_ON(!dp || !lt_data || !dp->dc);
lt_data->dp = dp;
/* Change for seamless */
if (tegra_dc_hpd(dp->dc) &&
dp->dc->initialized) {
lt_data->state = STATE_DONE_PASS;
/* Set config valid to false */
/* So that fresh LT starts */
lt_data->lt_config_valid = false;
} else {
lt_data->state = STATE_RESET;
lt_data->pending_evt = 0;
lt_data->shutdown = 0;
lt_data_sw_reset(lt_data);
}
mutex_init(&lt_data->lock);
INIT_DELAYED_WORK(&lt_data->dwork, lt_worker);
init_completion(&lt_data->lt_complete);
}